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Abstract

The idea of down-scaling by means of a statistical approach linking large-scale
atmospheric circulation patterns with smaller scales has been applied and described
on several occasions by climatologists working with GCM climate simulations using
canonical correlation analysis (CCA). Following this basic idea we tried to construct a
‘‘stochastic regional model’’ with very high resolution, which is driven by a larger
scale NWP-parent-model and the stochastic coupling with orography and the physical
influence of the landscape. Unlike the methods of climatologists, we use statistical
interpolation (SI) in the inverse direction to what is common in atmospheric analysis
as a basic method of down-scaling: Analysed or forecasted variable-values are
interpolated from grid-points of the NWP-model to the point of observation stations.

The ‘‘perceptible weather’’, which is of the highest interest to the general public,
happens in the meso-� and meso-� scales. Unfortunately NWP-models with very
high resolution do not always produce sufficient results and time-spans in which
predictability is useful is limited, especially in areas with complex topography.
Therefore we wondered if it was possible to find a good adaptation of the grid-point
values of the large scale NWP-model to points in the smaller scale and at the same
time to transfer higher predictability in time from this large scale NWP-model into the
smaller scale of the topographic complex area: The results show a good adaptation. In
addition, in 1995 and 1996, the statistical parameters RMSE (root mean square error),



RV (reduction of variance) and ACC (anomaly correlation coefficient) demonstrate
that for the variables surface pressure, temperature, relative humidity, and the
horizontal components of the wind, a significantly higher predictability time-span
can be reached for stochastic down-scaling than with high resolution deterministic
models. Based on these results we are positive that this specific method of SI can be
made operational in a regional model.

Zusammenfassung

Die Idee, mit Hilfe einer statistischen Näherung großräumige atmosphärische
Zirkulationsfelder mit solchen des kleineren Scales zu verbinden, wurde von
Klimaforschern, die mit GCM-Modellen Klimasimulationen durchführen, mit Hilfe
der Kanonischen Korrelationsanalyse (CCA) mehrfach angewendet und beschrieben.
Dieser Grundidee folgend wird versucht, ein ,,stochastisches Regionalmodell‘‘ mit
sehr hoher Auflösung zu konstruieren, welches von einem NWP-Muttermodell und
der stochastischen Kopplung mit der Orographie und dem physikalischen Einfluss der
Landschaft angetrieben wird. Im Gegensatz zu den Klimatologen verwenden wir als
Basismethode des down-scalings die statistische Interpolation (SI) in der umgekehrten
Richtung, als es in der atmosphärischen Analyse üblich ist: Analysierte oder
vorhergesagte Werte werden von den Gitterpunkten des NWP-Modells an den Ort der
Beobachtungsstationen interpoliert.

Das ,,fühlbare Wetter‘‘, welches das Hauptinteresse des Vorhersagekonsumenten
findet, läuft im meso-� und meso-�-Scale ab. Unglücklicherweise erbringen NWP-
Modelle mit sehr hoher Auflösung nicht immer zufriedenstellende Resultate und
weisen nur begrenzte Vorhersagbarkeitszeitspannen auf, insbesondere im topogra-
phisch komplexen Gelände. Deshalb stellten wir uns die Frage: Ist es möglich, eine
gute Adaptierung der Gitterpunktswerte des großräumigen NWP-Modells im kleinen
Scale zu finden und gleichzeitig die höhere Vorhersagbarkeit des großräumigen
NWP-Muttermodells in den kleinen Scale eines topographisch komplex struktu-
rierten Geländes zu transferieren? Die Resultate zeigen eine gute Adaptation und die
statistischen Parameter RMSE (Wurzel aus dem mittleren quadratischen Fehler), RV
(Reduktion der Varianz) und ACC (Anomalie-Korrelationskoeffizient) für die Jahre
1995 und 1996 demonstrieren, dass mit dem stochastischen down-scaling eine
signifikant höhere Vorhersagbarkeitszeitspanne als mit deterministischen Modellen
hoher Auflösung erreicht werden kann. Auf der Basis dieser Ergebnisse wird man
bestärkt, diese spezielle Methode einer SI in einem Regionalmodell operationell
einzusetzen.

1. Introduction

The modification of large-scale synoptic processes influenced by
mountainous landscapes represents an essential aspect of successful
weather forecasting in countries with a complex orographical structure.
Many previous experiments (LORENZ, 1969; FLEMING, 1971) showed
that the predictability of small scales, which influence the weather in
mountainous areas, is very limited. In spite of the enormous prog-
ress of deterministic NWP-models with increasingly high space-time
resolution in the last decades, the results are still not satisfying for
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orographical, complexly structured landscapes. Bearing in mind that
the physics of the ‘‘actual’’ weather happens in the subsynoptic
scale, it seems reasonable to aspire a local interpretation of numerical
forecasting products. Commonly there are two efficient methods for
local interpretation, namely ‘‘dynamical’’ and ‘‘statistical’’ adaptation.
Relevant experiments are reported in literature for the first group
of methods (MUSSON-GENON, 1989; MARAIS and MUSSON-GENON,
1992). Dynamical adaptation methods resemble very simplified deter-
ministic models with extremely high local resolution. Unfortunately
the results show a very limited predictability of only 6 to 12 hours.
In order to work with deterministic LAMs or mesoscale models we
need useful solutions for the following problems:

a) the LBCs (Lateral boundary conditions)

b) the initialisation and

c) the efficient simulation of the physical processes in the small scale

by relevant parameterisation.

Deterministic models with high resolution (LAMs) may nowadays
and in the nearer future resolve insufficiently the weather in the small
scale. Additionally, they exhibit a very limited predictability as it is
demonstrated in relevant literature (LORENZ, 1969; FLEMING, 1971;
STULL, 1985; FRAEDRICH and ZIEHMANN-SCHLUMBOHM, 1994).

Sceptics justifiably question whether deterministic models will
make possible the simulation of the relevant dynamical and physical
processes in the small scale of orographic landscapes in the near
future. Additionally, there is hardly any numerical analysis scheme
which is able to resolve meso-� or meso-� scale structures in
mountainous areas near topography (STEINACKER, H€AABERLI, and
P€OOTTSCHACHER, 2000).
Down-scaling can be considered as a method of accessing of scale

structures in space and time, which are below the scales, which
are resolved by numerical analysis-, weather-, or climate-forecast
models.

Predictability is the capability to forecast variables or discrete weath-
er phenomena in a practical, meaningful way in time (LJAPUNOV-time)
or with a certain precision in space. In both predictability-aspects

1) the time aspect (LJAPUNOV-time)

2) the spatial precision

high-resolution NWP-models are not as successful as was hoped or
expected.
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Therefore we wondered: Would it be possible to find a good
adaptation of the grid-point values of the large scale NWP-model on
points in the smaller scale and at the same time to transfer higher
predictability in time from this large scale NWP-parent-model into
the smaller scale of the topographic complex area?

The idea of down-scaling by means of statistical approach for
linking large-scale atmospheric circulation patterns with small scales
has been described and applied by climatologists working with
GCM climate simulations in recent times (V. STORCH et al., 1993; V.
STORCH and ZORITA, 1994; GYALISTRAS et al., 1994). Climate models
show useful information only for spatial scales above a threshold,
which may be in the scale of several grid-distances. However, users
of data from climate simulations need information on much lower
spatial scales. Therefore down-scaling can be considered as an
essential method to provide useful information. The climatologists
use canonical correlation analysis (CCA) or use empirical orthogonal
functions (EOF) to describe the coherent simultaneous variations
between different patterns of atmospheric variables (EHRENDORFER,
1987). STORCH et al. (1993) constructed a statistical regression model
between Iberian rainfalls and North Atlantic surface pressure. The
method of the climatologists cited above, like our method, is based
upon a perfect prog-approach: The statistical relationship is first
established between the large scale and the local observations and
then applied unmodifiedly to predict changes in the local small-scale
variables from any large-scale observation, analysis or forecasted
values. A somewhat similar situation can be found for weather
forecasting and analysis in orographical areas, because of the small
scale of the relevant dynamical and physical weather processes. We
started our experiment of statistical adaptation by stochastic down-
scaling on the basis of such considerations. Our method is different to
the method of climatologists and can be considered as statistical
interpolation (SI) in the inverse direction as it is common in atmo-
spheric analysis: We interpolate from the grid-points of the NWP-
model to the points of observation.

The basic philosophy of our stochastic adaptation can be described
as follows: For every grid box of a larger scale NWP-model, which
is located above a topographic structured area, and for different
meteorological elements it is possible to calculate the characteristic
statistical relationships (correlations) for a large sample between grid
point values of the NWP forecast or analysis model and the obser-
vations situated in the grid box. Correspondingly, the analysis and
forecast values at the grid points and observations, valid at the same
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time, are used. From the relevant correlations between different grid-
points and between grid-points and observation stations the relevant
interpolation coefficients for interpolation from grid-point to ob-
servation station can be ascertained. The method can be used for
a high resolution analysis or forecast, if the analysis or forecast
variables are available at the grid points of the parent-model.

Meteorological forecast skill generally shows strong dependencies
on spectral aspects of the atmospheric flow. The larger the scale of
an atmospheric system is, the more predictable it normally is. The
decrease in predictive skill starts to affect small baroclinic systems
or fronts around Dþ 2, whole cyclonic systems around Dþ 4 and
finally the long planetary waves around Dþ 6. These large scale
systems relate to the general weather type and the systems skill in
predicting them means that the forecaster will be able to make useful
forecasts up to a week ahead most of the time, although the timing
of cyclones or fronts might be in error (ECMWF, 1999). The
deterministic predictability of atmospheric structures (BOER, 1984)
is strongly dependent on the spectral wavenumber ‘‘n’’: The higher
‘‘n’’ is, the more details are described by the model but the lesser is
the overall precision of the calculated results (DALCHER and KALNAY,
1987). Due to the short life-times of the inherent meso-�-structures
(BOER, 1994; STULL, 1985) deterministic meso-scale modelling
usually crashes after a time span of approximately 48 hours.

We will show that the time-span of successful predictions can be
enlarged by our down-scaling method for the small scales, too.

Our stochastic model has some major advantages:

a) No difficulties with the LBCs. These problems do not exist for global

parent-models or are solved in the larger scale parent-model itself.

b) The initialisation is applied to the parent-model because the

stochastic model is a product of high resolution model interpretation

in the small scale. The down-scaled fields are not used as initial

fields for the next time step of integration, because the parent-model

prepares the grid-point values for the next time step. These are

linked by statistical relationships to the small scale fields.

c) A special parameterisation is not necessary, as the physical

processes are implicitly included in the statistical relations. A sep-

aration of these relations according to the seasons of the year in

order to consider the changes of ‘‘diabatic forcing’’ is possible. We

think that the installation of a ‘‘learning file’’ for future improve-

ments of the model is very important.
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For our down-scaling procedure a variant of statistical interpolation
(SI) is used and will be described in more detail in Section 2. It is
not necessary to assume isotropy and homogeneity for the statistical
relationships as it is usually done in conventional SI, because we
always use the same grid-points and observation stations. A very
dense network of observation stations is available for Austria.

The values of the variables surface pressure, 2 m-temperature,
10 m-winds and 2 m-humidity at the grid points of the parent-model
have been correlated between different grid points and between the
grid points and the observed values at more than 50 stations for a
large sample (1993–1995) to determine the relevant covariances, cor-
relation matrices and correlation vectors. All observation stations
are situated at the ground-level � ¼ 1. Unfortunately, only 2 radio-
sounding stations are available for the free atmosphere. The cal-
culation of the correlation between grid points on surface, 1000, 850
and 700 hPa and the observation stations is pursued regardless of the
height above sea level, thus warranting the 3-dimensional influence of
the parent-model. From the inversion of the correlation matrices the
interpolation coefficients belonging to the observation stations inside
a special grid box were received as a result.

2. An Univariate Algorithm of Statistical Interpolation
(SI) for Down-Scaling of Meteorological Elements

In the following section stochastic down-scaling to the coordinate-
level � ¼ 1 is introduced. With reference to DALEY (1991) we can
write the SI-interpolation algorithm

ðAi � BiÞ ¼
XK
k¼1

WikðOk � BkÞ ð1Þ

whereby

K the number of available observation stations inside a certain

influence radius

Ai the analysed value at the grid point i

Bi the ‘‘background’’ or ‘‘first guess’’ value at the gridpoint i

Ok the observed value at the observation station

Bk the ‘‘background’’ or ‘‘first guess’’ value at the observation

station k

Wik the ‘‘a posteriori’’ interpolation coefficient, which has to be

determined.
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The term in the brackets on the right side is commonly referred to
as ‘‘innovation increment’’, the difference on the left is referred to as
‘‘analysis increment’’. The grid points I resemble a regular mesh of
points and the points K represent irregularly distributed observation
stations. In the common form of SI the Bk are mostly forecasted
values of a NWP-model. In our method they are values of the climatic
mean. Bk can be calculated by the so-called ‘‘forward interpolation’’
from grid points to the observation stations.

In our method of down-scaling the algorithm has to be inverted.
We calculate the analysis increment at the observation stations with
the help of an innovation increment ðAi � BiÞ or ðFi � BiÞ at the grid
points of the larger scaled NWP model. The Ai are values from a
larger scale objective analysis and Fi are forecasted values from a
NWP model in the large scale.

The ‘‘inverse algorithm’’ can be written as follows:

Fk � Bk ¼
XI

i¼1

W�
ik ðFi � BiÞ ð2Þ

with

Fk the required forecasted value at the observation station k

Fi the forecasted value of the NWP-model at the gridpoint i

I the number of used grid points

W�
ik the interpolation coefficient of the inverse variant.

Fi can be replaced by a value of a larger scale SI analysis Ai. In this
case Fk has to be exchanged by Ak.

Unfortunately the ‘‘true’’ value of each meteorological element is
unknown, but we are convinced that the observed values, in spite of
instrumental errors, are close to the true value. Therefore we assume
that the ‘‘true’’ value is best approximated by Ok. After subtracting
the observed value Ok on both sides of (2) we receive

Fk � Ok ¼ Bk � Ok þ
XI

i¼1

W�
ik ðFi � BiÞ: ð3Þ

After squaring both sides of (3), applying the expectation operator
h��i and finding interpolation-coefficients W�

ik , which minimise the re-
sulting relation (see the derivation in DALEY (1991)), we receive a
relation in matrix form

C~ww�k ¼~cck; ð4Þ
whereby C resembles a I� I symmetric covariance matrix, ~ww�k and
~cck resemble column vectors of the weights and of the covariance
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between ‘‘first guess’’ error at the grid point i and the observation
station k. A 3-dimensional grid box made up by I ¼ 16 grid points
has been used.

DALEY (1991) demonstrated that for the above algorithm (1), a
normalised variant can also be derived. In analogy to this procedure
one arrives after some algebra at the relation

~!!k ¼ ð�ilBÞ
�1~��ikB ð5Þ

whereby ð�ilBÞ
�1

is the inverse of a correlation matrix between ‘‘first
guess’’ errors at the I grid-points with the elements

Ril ¼
hðFi � BiÞ � ðFl � BlÞi

½hðFi � BiÞ2ihðFl � BlÞ2i�1=2
: ð6Þ

Fl are forecasted, Bl ‘‘first-guess’’ and Al analysis values at gridpoint
l. ~�� ik

B resembles a correlation vector between the station k and grid
point i with the components

Rik ¼
hðFi � BiÞ � ðOk � BkÞi

½hðFi � BiÞ2ihðOk � BkÞ2i�1=2
: ð7Þ

As soon as the optimal interpolation coefficients ~!!k are known the
values Fk at the observation stations can be calculated in analogy to
DALEY with the normalised formula

Fk ¼ Bk þ ½hðOk � BkÞ2i�1=2
XI

i¼1

!ikðFi � BiÞ
½hðFi � BiÞ2i�1=2

: ð8Þ

For the solution of (8) and the determination of the optimal
interpolation coefficients !ik it is necessary to ascertain the relevant
statistics (6) and (7) for the years 1993–1995 for a sample of more
than 50 observation stations for every day 12 UTC. We dealt with the
calculation of the correlation matrices, which we handled according
to a perfect prog-procedure, which is defined by WILKS (1995):
‘‘Development of perfect prog-regression equations is similar to the
development of classical regression equations, in that observed
predictors are used to specify observed predictands’’. Therefore we
always used analysis values Ai and Al for Fi and Fl in (6) and (7),
assuming that Ai and Al are very near to the true values. This
procedure however seems to be a reasonable way of finding the best
statistical structures and the optimal !ik. We calculated the statistics
for every grid box of the operational ECMWF-mesh, which covers
Austria. We expected that the impact of the NWP model (ECMWF

10 F. Huber-Pock et al.



T213/L31 or T319/L60) would be reproduced by the formula (8) and
the modifications by the orographic landscape would be reproduced
by the correlation vector of equation (5) with the components (7) (see
Fig. 2.1).

We intended to separate the statistics according to the seasons
of the year to examine the changes of the diabatic forcing. The in-
stallation of a ‘‘learning file’’ for future improvement is highly rec-
ommended. In our method the values Ak or Fk can be down-scaled
exactly only to locations, of which observation values are available.
We consider the fact that the interpolation weights must be calculated
once and for all as a great advantage, contrary to the common SI,
where observation stations are only temporarily available. In our
procedure the same data points (grid points) can always be used in
equation (8).

3. Results

3.1. Observations and Down-Scaled Variable Values

We calculated down-scaled values for all days 12 h UTC of the years
1995 and 1996. In the following demonstration only the values of
January and July 1995 are shown as examples for the surface pressure
(hPa) and the 2 m relative humidity for station Vienna, Hohe Warte
(11035), the 2 m temperature of the stations Innsbruck (11120) and

Fig. 2.1. Grid-box with I ¼ 16 gridpoints. Inside of the box are k observing stations
on the Model level � ¼ 1 for evaluating the correlation matrix with elements (6) and

correlation vector with components (7)
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Patscherkofel (11126) and the components of the 10 m horizontal
wind for the station Patscherkofel (11126).

In the following Figs. 3.1–3.5 the abscissa indicates the day in the
year and the ordinate indicates the air pressure in hPa, the relative
humidity in %, the temperature in degrees Celsius and the wind
components in m=sec. The solid curve indicates the measured value of
the element in question at the observation-station (Synop), the broken
line indicates the down-scaled value and the dotted line is the result
of simple linear interpolation from the four nearest gridpoints of the
ECMWF-model to the observation-station. In Fig. 3.1 the results of
down-scaling the sea level pressure to the observation-station Vienna.
Hohe Warte, is demonstrated.

Figure 3.2 shows the measurements of 2 m relative humidity for
Vienna, Hohe Warte, in comparison with down-scaled values. Here

Fig. 3.1. Surface pressure, January and July 1995 for Vienna-Hohe Warte
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the results are not as good as with surface pressure. This is not
surprising since the distribution of relative humidity can be con-
sidered as more or less discontinuous.

In Figs. 3.3 and 3.4 one can see measured and down-scaled
temperatures for Innsbruck and Patscherkofel. The agreement of
measurements and down-scaling is very good on condition that it is
in an area with very complex topography. In Figs. 3.5 and 3.6 one
will find the down-scaled adaptations for the 10 m horizontal wind
components u and v.

The down-scaling of the components of the wind is not as
successful compared to temperature and pressure, but generally a
satisfactory adaptation can be obtained.

To ensure that statistical interpolation (SI) is the right algorithm
for our down-scaling method we compared SI-results with the

Fig. 3.2. Relative humidity for Vienna Hohe Warte. January and July 1995
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results of simple linear interpolation. For an estimation of the
variance shares to explain the variation of the time series and the
absolute and relative deviation between down-scaled and measured
values see Table 3.1 below. It indicates a significant improvement
of the punctual down-scaled forecast-values when using SI as op-
posed to linear interpolation. SI is significantly better in nearly all
cases.

3.2. Statistical Evaluation

The statistical part contains more data in comparison to Chapter 3.1.,
e.g. from the time span 1991 to 1995 and independent prognoses for
the year 1996.

Fig. 3.3. Temperature for Innsbruck. January and July 1995
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3.2.1. Characteristic Measurements

The table below contains a range of basic statistical parameters. In
this table, the prognosis by means of statistical interpolation (SI) is
compared to the linear interpolation (Lin). The statistical measured
numbers refer to the mean values from about 60 stations.

3.2.2. Comparison of Different Forecast Variants

3.2.2.1. RMSE (Root Mean Square Error)

in the Groups of Data for the Calculation

of Interpolation Coefficients (Omega Values)

The RMSE indicates the average error of a prognosis as compared to
the actual measured value. When calculating prognoses for forecast
lead times of 24 to 240 hours, using the method of down-scaling

Fig. 3.4. Temperature for Patscherkofel. January and July 1995
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presented above, the initial data, i.e. the data of measurement stations
can be calculated. The RMSE values have been determined for the
following variants:

1: Calculation of the prognosis with coefficients (omega value) from

the entire set of data

2: Calculation of the prognosis separated in summer and winter

coefficients

3: Calculation of the prognosis just with summer coefficients

4: Calculation of the prognosis just with winter coefficients

5: Calculation of the prognosis with a combination of summer and

winter coefficients with weighting between the main season coef-

ficients by a moving average procedure for spring and autumn

The following serve as reference values:

� ref-clim: Calculation of the prognosis only from climate values

� ref-lin: Calculation of the prognosis with linear interpolation

Fig. 3.5. Horizontal 10 m wind component u for Patscherkofel. January and July 1995
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After evaluating the RMSE values of the different variants, it be-
comes obvious that the error increases as expected with increased time
steps. The reference prognosis by means of linear interpolation from the
gridpoints does, however, show the same trend, so that this behaviour
can be considered as a property of the basic NWP model. It is, however,
essential that on the whole, the total error is smaller with down-scaling,
whereby the most useful option is the weighted prognosis, i.e. the one
using a combination of summer and winter coefficients.

3.2.2.2. RMSE (Root Mean Square Error) in Relation

to Different Time Spans of the Calculation

of Interpolation Coefficients (Omega Values)

An examination of the RMSE for the calculation of the coefficients
in relation to different starting time spans shows that the time span
has got little impact on the RMSE values. In the example above, a

Fig. 3.6. Horizontal 10 m wind component v for Patscherkofel. January and July 1995
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T
ab

le
3

.1
.

S
ta

ti
st

ic
al

p
ar

am
et

er
s

(m
ea

n
,
m

in
im

u
m

,
m

ax
im

u
m

,
st

an
d
ar

d
d
ev

ia
ti

o
n
,
va

ri
an

ce
)

w
h
en

co
m

p
ar

in
g
S
I

w
it

h
L
in

fo
r

te
m

p
er

at
u
re

,
re

la
ti

v
e

h
u
m

id
it

y
an

d
ai

r
p
re

ss
u
re

.
T

h
e

ca
lc

u
la

te
d

n
u
m

b
er

s
d
es

cr
ib

e
th

e
d
if

fe
re

n
ce

va
lu

es
o
b
se

rv
at

io
n
m
in
u
s

p
ro

g
n
o
si

s

M
ea

n
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
L
in

M
ea

n
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
S
I

M
in

im
u

m
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
L
in

M
in

im
u

m
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
S
I

M
ax

im
u

m
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
L
in

M
ax

im
u

m
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
S
I

S
ta

n
d

ar
d

-
d

ev
ia

ti
o

n
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
L
in

S
ta

n
d

ar
d

-
d

ev
ia

ti
o

n
o

f
al

l
d

if
fe

re
n

ce
s

o
b

se
rv

at
io

n
m

in
u

s
p

ro
g

n
o

si
s
S
I

T
em

p
er

at
u

re
� C

M
ea

n
�

1
.4

�
0

.6
�

1
3

.5
�

8
.1

6
.7

6
.9

3
.2

2
.2

M
in

in
u

m
�

6
.1

�
1

.6
�

2
5

.0
�

1
3

.5
1

.2
3

.5
2

.2
1

.4
M

ax
im

u
m

1
1

.2
0

.6
�

2
.5

�
3

.5
1

9
.6

1
0

.2
5

.4
3

.2
S

ta
n

d
ar

d
-d

ev
ia

ti
o

n
3

.1
0

.5
3

.2
2

.2
3

.4
1

.5
0

.7
0

.4
V

ar
ia

n
ce

9
.3

0
.2

1
0

.1
5

.0
1

1
.3

2
.4

0
.4

0
.1

R
el

at
iv

e
H

u
m

id
it

y
%

M
ea

n
5

.7
�

1
.4

�
2

9
.3

�
3

6
.7

4
9

.8
3

2
.9

1
3

.8
1

2
.0

M
in

in
u

m
�

8
.8

�
1

1
.5

�
5

2
.5

�
5

8
.8

2
8

.5
1

9
.4

9
.6

8
.5

M
ax

im
u

m
2

6
.8

5
.9

�
1

3
.6

�
2

4
.8

7
4

.5
5

2
.5

2
4

.5
1

6
.3

S
ta

n
d

ar
d

-d
ev

ia
ti

o
n

7
.5

3
.5

8
.5

6
.8

1
3

.0
7

.5
3

.2
1

.9
V

ar
ia

n
ce

5
6

.5
1

2
.5

7
6

.6
4

6
.0

1
6

8
.2

5
5

.5
1

0
.1

3
.6

A
ir

p
re

ss
u

re
h

P
a

M
ea

n
8

7
0

.7
8

1
.2

�
3

.3
9

6
.8

5
.5

2
.4

0
.9

M
in

im
u

m
1

6
.3

�
0

.7
1

3
.2

�
2

0
.7

1
9

.2
1

.5
0

.8
0

.5
M

ax
im

u
m

3
2

3
.2

6
.9

3
0

5
.8

3
.8

3
4

8
.8

9
.0

6
.9

3
.8

S
ta

n
d

ar
d

-d
ev

ia
ti

o
n

7
2

.4
1

.2
7

0
.8

4
.7

7
7

.2
8

.8
1

.5
0

.5
V

ar
ia

n
ce

5
2

4
2

.3
1

.3
5

0
1

8
.4

2
1

.7
5

9
6

5
.3

7
6

.6
2

.2
0

.3

18 F. Huber-Pock et al.



period of three years turns out to be most favourable for the cal-
culation of the coefficient for the year 1996.

For the year 1995, not shown here, a four year period was more
favourable. In general, we think that a four year period is the most
favourable time span. The differences mentioned above can be
explained by an ECMWF-model change which took place in 1996,
and by that the prognosis was changed since it depended on the basic
parent-model. From Fig. 3.8 it also becomes clear that the differences

Fig. 3.7. Comparison of different mean-values of RMSE (references ref-clim and
ref-lin, 1 to 5) for the temperature (�C) in 1996

Fig. 3.8. Comparison of RMSE-values (�C) calculated with the basic data-sets 1 to 4
for the forecast periods 0 to 240 h for 1996

1: Prognosis of the temperature of the year 1996 with coefficients (omega values)
from 1991 to 1995

2: Prognosis of the temperature of the year 1996 with coefficients (omega values)
from 1992 to 1995

3: Prognosis of the temperature of the year 1996 with coefficients (omega values)
from 1993 to 1995

4: Prognosis of the temperature of the year 1996 with coefficients (omega values)
from 1991 to 1994
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of the RMSE values of different starting time spans decreases with
increasing forecast lead times. In the next paragraph we continue with
some predictability considerations.

3.3. Predictability Considerations

In this section we demonstrate different error measures or skill-scores
of the predictability of our methodology to answer the question, if it
is possible to transfer higher predictability in time from a large scale
NWP-parent-model into the smaller scale of a topographic complex
area by a down-scaling process.

3.3.1. Reduction of Variance (RV)

The reduction of variance is a combination of RMSE values of a
prognosis that has to be tested and a reference prognosis:

RV ¼ 1 �
�

RMSEPROG

RMSEref

�2

ð9Þ

Fig. 3.9. Comparison of forecasts for different prognostic elements for 1996
1: Prognosis of the temperature of 1996 with coefficients (omega values) from 1991

to 1995
2: Prognosis of the relative humidity of 1996 with coefficients (omega values) from

1991 to 1995
3: Prognosis of the air pressure of 1996 with coefficients (omega values) from 1991 to

1995
4: Prognosis of the wind component u of 1996 with coefficients (omega values) from

1991 to 1995
5: Prognosis of the wind component v of 1996 with coefficients (omega values) from

1991 to 1995
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The RV value in that case is positive, if the tested prognosis is better
than the reference prognosis, and negative vice versa. In this case
the down-scaling method is compared to a reference prognosis from
climate values. An improvement for the different elements, such as
temperature (t2), relative humidity (rh2), air pressure (ps), u-component
of the wind (10 u) and v-component of the wind (10 v) is of varied qual-
ity compared to a prognosis from the climate values. Prognoses from
stochastic down-scaling are clearly improved with temperature and air
pressure, but the improvement with other elements is smaller.

The image also shows the general decrease of prognosis quality for
longer forecast lead times.

3.3.2. The Anomaly Correlation Coefficient (ACC)

The ACC measures the correlation between forecast and analysed
deviations from climatology. It evaluates the similarity between prog-
nosis results of different time steps. If the prognosis is correct, the
ACC is one, or 100%.

ACC ¼
�
Fj � C

��
Oj � C

�
nh�

Fj � C
�2

�
�
Fj � C

�2
ih�

Oj � C
�2

�
�
Oj � C

�2
io0:5

ð10Þ

Fj ¼ prognostic value at observation station k or gridpoint i

Oj¼ observed value at observation station k or analysed value at

gridpoint i

C ¼ climatic mean at observation station k or gridpoint i

In the following, the averaged ACC values of the ECMWF
prognoses (referred to as ECMWF all), the averaged ACC values of
the ground values of the model (referred to as ECMWF SFC) and the
values from stochastic down-scaling (referred to as Synop all) are
being compared on the 4� 55 gridpoints of the grid for 1996.

The ACC of the average values of the down-scaling prognoses of
all synop stations is close to the ACC values of the ECMWF data. It
becomes clear that the predictability is closely linked to the model the
down-scaling is based upon. The loss of predictability of stochastic
down-scaling in face of the ECMWF parent-model for temperature is
only marginal.
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We calculated the ACC for surface pressure (Fig. 3.11), for 2 m rela-
tive humidity (Fig. 3.12) and for the components of the 10 m horizontal
wind (Fig. 3.13 and Fig. 3.14). As limit of practical predictability a
value of ACC¼ 0.6 is commonly accepted. The best result we found

Fig. 3.10. Comparison of ACC-values for ECMWF-forecasts and down-scaling
forecasts of 2 m surface temperature (forecast-period 1996)

Fig. 3.11. Comparison of ACC-values for ECMWF-forecasts and down-scaling
forecasts for surface air pressure (forecast-period 1996)
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with temperature. The predictability is very good and expands over
10 days for the parent-model and for down-scaled forecasts. The loss
of predictability in comparison to the NWP-model is only marginal.

Fig. 3.12. Comparison of ACC-values for ECMWF-forecasts and down-scaling
forecasts for 2 m relative humidity (forecast-period 1996)

Fig. 3.13. Comparison of ACC-values for ECMWF-forecasts and down-scaling
forecasts for the 10 m horizontal wind component u (forecast-period 1996)
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As usual the value of ACC¼ 0.6 is reached for surface pressure at about
7 days. Our down-scaled forecasts reach this value in approximately the
same time span. It is interesting that the ECMWF-values are less
satisfactory. At first this is surprising, but we checked our calculations
and data very thoroughly and found the results to be valid. One possible
cause could be that the ECMWF-model topography is not quite optimal,
but this has no special impact on the statistical relationships from grid-
point to observation station. We also found the same good results for
down-scaling the horizontal components of the wind. Last but not least,
the relative humidity shows that the practical predictability ends for the
down-scaled forecasts at about 96 hours. Here the parent-model is much
better with a predictability-time of 144 hours. However, in any case the
value of 96 hours is much better than the predictability-time of most
high-resolution deterministic models.

4. Conclusions

After obtaining these results of our experiments, we can be sure
that statistical adaptation by stochastic down-scaling is useful. Our

Fig. 3.14. Comparison of ACC-values for ECMWF-forecasts and down-scaling
forecasts for the 10 m horizontal wind component v (forecast-period 1996)
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forecast experiments for the complete years 1995 and 1996 confirm
this conclusion. Additionally our question in reference to the transfer
of higher predictability from an NWP-parent-model into the smaller
scale of an area with complex topography can be answered positively.
Therefore we are encouraged to continue our examinations to turn
stochastic down-scaling in an operational model. Cloudiness and
precipitation should also be included in a next phase.

In order to make not only point-forecasts, but also forecasts
of down-scaled field distributions on a high resolution subgrid
appropriate to the complex topography, we will try to incorporate the
high resolution analysis model VERA (P€OOTTSCHACHER, STEINACKER,
and DORNINGER, 1996) in the future. This will be possible, as soon as
appropriate variable values are down-scaled from the parent-model of
ECMWF for the observation points over Austria and the countries
surrounding the Alps. After application of the VERA-analysis pro-
cess high resoluted prognostic fields will result.

Acknowledgement

The research was supported by the Austrian ‘‘Fonds zur Förderung der
wissenschaftlichen Forschung’’ (FWF) under contract P10556-TEC, the Central
Institute for Meteorology and Geodynamics in Vienna and the Institute for
Meteorology and Geophysics of the University of Vienna, Austria. A lot of useful
criticism and propositions of two anonymous reviewers are gratefully acknowledged.

References

[1] BOER, G. J. (1984) A spectral analysis of predictability and error in an opera-
tional forecasting system. Mon. Wea. Rev. 112: 1183–1197

[2] BOER, G. J. (1994) Predictability regimes in atmospheric flow. Mon. Wea. Rev.
122: 2285–2295

[3] DALCHER, A., KALNAY, E. (1987) Error growth and predictability in operational
ECMWF forecasts. Tellus 39A: 474–491

[4] DALEY, R. (1991) Atmospheric Data Analysis. Cambridge University Press,
Cambridge

[5] ECMWF (1999) User Guide to ECMWF Forecast Products. In: § 3.1. Reading
[6] EHRENDORFER, M. (1987) A regionalisation of Austria’s precipitation climate

using principal component analysis. J. Climatol. 7: 71–89
[7] FRAEDRICH, K., ZIEHMANN-SCHLUMBOHM, C. (1994) Predictability experi-

ments with persistence forecasts in a red-noise atmosphere. Q.J.R. Met. Soc.
120: 387–428

[8] FLEMING, R. J. (1971) On stochastic dynamic prediction II: Predictability and
utility. Mon. Wea. Rev. 99: 927–938

[9] GYALISTRAS, D., V. STORCH, H., FISCHLIN, A. (1994) Linking GCM-simulated
climatic changes to the ecosystem models; Case studies of statistical down-
scaling in the Alps. Clim. Res. 4: 99, 167–189

Adaptation by Stochastic Down-Scaling 25



[10] LORENZ, E. N. (1969) The predictability of a flow which possesses many scales
of motion. Tellus 21: 289–307

[11] MUSSON-GENON, L. (1989) Forecasting in the vertical with a local dynamical
interpretation method. Mon. Wea. Rev. 117: 29–39

[12] MARAIS, CH., MUSSON-GENON, L. (1992) Forecasting the surface weather
elements with a dynamical adaptation method using a variational technique.
Mon. Wea. Rev. 120: 1035–1049

[13] P€OOTTSCHACHER, W., STEINACKER, R., DORNINGER, M. (1996) VERA – A high
resolution analysis scheme for the atmosphere over complex terrain. In: Pre-
prints 7th Int. Conf. on Mesoscale Processes. Amer. Meteor. Soc., Reading, UK,
pp. 245–247

[14] STEINACKER, R., H€AABERLI, C., P€OOTSCHACHER, W. (2000) A transparent method
for the analysis and quality evaluation of irregularly distributed and noisy
observational data. Mon. Wea. Rev. 128: 2203–2316

[15] V. STORCH, H., ZORITA, E., CUBASCH, U. (1993) Down-scaling of global climate
change estimates to regional scales: An application to Iberian rainfall in
wintertime. J. Climate 6: 1161–1171

[16] V. STORCH, H., ZORITA, E. (1994) Down-scaling and weather generators: The
problem of inferring user-oriented information from Climate Model Output. In:
6th Conf. on Climate Variations, Nashville, 1994. Amer. Met. Soc., Boston

[17] STULL, B. R. (1985) Predictability and scales of motion. Bull. Amer. Met. Soc.
66: 432–436

[18] WILKS, D. S. (1995) Statistical Methods in the Atmospheric Sciences. Academic
Press, London

Authors’ addresses: Prof. Dr. Franz Huber-Pock, Prof. Dr. Georg Skoda, Mag.
Andreas Tiesner, Institute for Meteorology and Geophysics, University of Vienna,
Althanstraße 14, 1090 Vienna, Austria; Dr. Christoph Kress, Central Institute of
Meteorology and Geodynamics, Hohe Warte 38, 1190 Vienna, Austria.

26 F. Huber-Pock et al.: Adaptation by Stochastic Down-Scaling


