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In this talk, I discuss recent work on the extraction of meson-nucleon scatter-
ing lengths from the complex energy shifts in pionic deuterium and in kaonic
hydrogen in the framework of effective field theories. Also, a simple model
for the kaon-alpha-particle scattering length is presented and consequences
concerning the possible binding of antikaons in nuclei are discussed.

1 Introductory remarks

Hadronic atoms are QED bound states composed of hadrons. They exist in many species,
such as pionium (π+π−), pionic and kaonic hydrogen (π−p, K−p), pionic deuterium (π−d),
and many others. In most cases, the Bohr radius of these atoms is much larger than the
typical scale of the strong interactions (QCD) and the average momenta of the hadrons
are very small. This allows for a non-relativistic treatment of these composite systems.
QCD leads to observable effects in the spectrum of these atoms, most notably the ground-
state energy shift ∆E (with respect to the pure QED value) and the decay width Γ of
the ground state. One thus has access to hadron scattering at zero energy, that is to the
much thought after S-wave hadron-hadron scattering lengths. These are very sensitive
to the chiral and isospin symmetry breaking in QCD. Hadronic atoms can be analyzed
systematically and consistently in the framework of low-energy Effective Field Theory
(EFT), including virtual photons. In this contribution, recent results on the description
of pionic deuterium and kaonic hydrogen are discussed. Also of interest are possible
deeply bound antikaonic nuclei. In this context, I discuss some very recent work on
the S-wave kaon-α-particle scattering lengths and its possible extraction at the Jülich
COoler SYnchrotron. Note that because of limited space reference is only given to work
with direct connection to the material presented in the next three sections. Many more
references can be found in the other fine contributions to these proceedings.
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2 Analysis of pionic deuterium

First, I briefly review the work presented in [1], where we systematically investigate pionic
deuterium within the framework of nested effective field theories (EFTs). To leading order,
the standard Deser-type formula for the complex energy shift of the 1s level applies

−∆E1s + i
Γ1s

2
=

4E1s

rB

aπd , (1)

and the complex pion-deuteron scattering length has been measured precisely at PSI [2]

aπd =
(
−0.0261 (±0.0005) + i 0.0063 (±0.0007)

)
M−1

π . (2)

The pion-deuteron scattering length gives access to the small isoscalar pion-nucleon scat-
tering length a+ since aπd = (aπ−p + aπ−n) + double scattering + other corrections =
2a+ + . . .. Since a+ � 0, one has to be able to calculate the corrections accurately and
systematically - an ideal playground for EFT. While there have already been many studies
to relate the deuteron with the nucleon scattering lengths (just to mention a few: multi-
ple scattering, potential model and hybrid approaches, EFT with light, perturbative and
heavy pions, and so on), no clear picture concerning the theoretical uncertainty has so far
emerged, and that is precisely the main issue here. The whole treatment of this problem
naturally falls into several steps, which are analyzed utilizing nested EFTs.

As the first step, one has to consider the extraction of the πd scattering length from
the 3p − 1s transition energy and width in the pionic deuterium. The next-to-leading
order result has been obtained for the level energies, which can be used for an accurate
determination of the πd threshold scattering amplitude from experimental measurements,
see table 1 in [1]. Since the isospin-breaking corrections in this amplitude are not expected
to be relevant, given the relatively large theoretical uncertainty in connecting aπd with
the πN scattering lengths (see below), these corrections have been neglected for the
time being. Our results essentially confirm the ones earlier obtained by the PSI-ETHZ
collaboration [2], we have updated the nuclear and pion finite size corrections utilizing
more recent determinations of the respective charge radii.

The main focus of our work [1] is on investigating the possibility to relate aπd to the
πN scattering lengths and on the analysis of the systematic theoretical error in such a
procedure. We give a consistent treatment of the problem within the framework of heavy
pion (HP) EFT, where the expansion parameter is given by the quantity x = γ/Mπ � 1/3,
where γ � 45 MeV is the characteristic bound-state momentum in the deuteron. It was
observed in Ref.[3] that in the description of threshold pion-deuteron scattering processes,
diagrams with virtual pion absorption/emission are suppressed, i.e. that hadron number
is conserved. This can be described most economically by considering the pions as heavy,
which leads to HP EFT (or the modified power counting in the chiral perturbation theory
approach with light pions, see [4]). To leading order in x, one obtains the standard relation

a
(0)
πd =

1 + Mπ/m

1 + Mπ/2m
2a+ + O(x) , (3)

with m the nucleon and Mπ the charged pion mass. Note that in this formula a+ is
given to all orders in the chiral expansion. In [1], we have evaluated contributions to
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the quantity aπd up-to-and-including O(x), corresponding to next-to-leading order in HP
EFT. This gives

a
(1)
πd = −m(1 + Mπ/m)2

π(1 + Mπ/2m)
x a2

−

[
gab ln

mED

µ2
+ Jab

]
+

M4
π

4π2(1 + Mπ/2m)
x3 f r

0 (µ) , (4)

where (for clarity) the small contributions ∼ a2
+ have been neglected. Here, ED �

2.22 MeV is the magnitude of the deuteron binding energy and µ the scale of dimensional
regularization. Further, gab = 0.747 and Jab = −1.507 are contributions from one-loop
integrals and we recover the standard result in the static limit Mπ/m → 0. The last
term in Eq. (3) is the contribution from the leading four-nucleon–two-pion (three-body)
operator. We note that the LEC f r

0 (µ) = O(1/x2) is not of natural size. Renormalization

group invariance of the scattering length, da
(1)
πd (µ)/dµ = 0, leads to the following scale

dependence of the LEC f0,

µ
d

dµ
f r

0 (µ) = −8π(1 + Mπ/m)2

EDM2
π

a2
− gab . (5)

In the absence of a determination of f0, one can use the scale-dependence of this contri-
bution for estimating the theoretical error in our calculations. This scale dependence is
shown in Fig. 1. The scale must be chosen to be of order of the pion mass, but is otherwise
arbitrary. In our opinion, the range 100 MeV < µ < 250 MeV can be roughly considered
as a “natural” choice of this scale. It should be also taken into account that the plot
in this figure, which corresponds to the recent experimental measurements of the pionic
hydrogen decay width, still does not include the isospin-breaking corrections from chiral
perturbation theory (CHPT) [5, 6]. As we see from Fig. 1, the theoretical uncertainty
due to the unknown LEC f0 is rather large. This was already observed in a different
setting in [7]. Our main conclusion, concerning the accuracy limits in the extraction of
the πN scattering lengths from the pion-deuteron data, can be formulated as follows: by
far the largest source of uncertainty is the low-energy constant f0, which is the genuine
short-distance three-body contribution and should be either determined by other experi-
ments or should be obtained by lattice simulations. In particular, one might attempt to
get at least the order-of-magnitude estimate from the process NN → NNππ or from the
pion-nucleus optical potential, in case of non-equal proton and neutron densities, where f0

should be present apart from the “conventional” terms. Neither of these methods seems
easy to be applied. But, without having fixed the value of f0 at a sufficient precision, it
is impossible to improve the accuracy of the prediction of the pion-deuteron scattering
length. However, as detailed in [1], it is feasible to estimate f0 by using the resonance
saturation hypothesis (see appendix C in that paper). At present time, however, the
parameters of the resonance Lagrangian are not known at a sufficient precision, and more
effort is needed to pin them down accurately from the experimental data.

Two further remarks are in order. First, in the presence of the absorptive channels, the
coupling constant f0 is not real. The imaginary part of the πd scattering length is given
by

Im aπd =
µd

2π
Φ2

0 Im f0 , (6)
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Figure 1: The constraints on the S-wave πN scattering lengths a+ and a− from the pionic
deuterium energy shift for different values of the scale parameter µ. The upper
and lower lines correspond to µ = 250 MeV and µ = 100 MeV, respectively. In
addition, we display the constraints from the most recent measurement of the
pionic hydrogen shift and width [8]. The upper limit for the width is measured
in the 4p − 1s transition in pionic hydrogen.

where Φ2
0 = γ3/2π denotes the square of the deuteron wave function at the origin. Further,

the imaginary part of the constant f0 is directly related to the inelastic channels, which
are “shielded” when constructing the HP EFT. The QCD contribution (as denoted by
the superscript “str”) can be readily evaluated to leading order, it is given by

Im f str
0 =

mp	

4π
|T (pnπ− → nn)|2 , p	 =

√
mMπ + · · · , (7)

with T (pnπ− → nn) the pion absorption amplitude at threshold. To get the complete
imaginary part, which also includes the effect of the γnn state, one writes Im aπd =
Im astr

πd (1 + 1/Rγ), where Rγ = 2.83 is the Panofsky ratio. Second, in [1] we have also
investigated in detail the differences between the Weinberg approach and the HP EFT.
It was shown that, despite the very mild cutoff dependence in the Weinberg approach
[4], the uncertainty due to the unknown LECs is significant and is of the same order of
magnitude as in the HP EFT. The reason for this is that the large initial- and final-
state nucleon-nucleon interactions lead to the amplification of the initially small LEC
contribution. Taking into account this amplification, the theoretical predictions within
both approaches are essentially the same. For further discussion of pionic deuterium and
related issues, see also the talks by Ericson, Gotta and Simons at this conference.
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3 Analysis of kaonic hydrogen

Let us now consider kaonic hydrogen. Its salient features are: i) it can decay into various
strong final states (K−p → π0Λ, π±Σ∓, . . .) and weaker electromagnetic ones (K−p →
γΛ, γΣ0, . . .). This together with the closeness of the Λ(1405) resonance, presumably a
meson-baryon bound state, leads to a complicated and interesting analytical structure of
the S-matrix in the vicinity of the threshold; ii) the average momentum is very small,
〈�p 2〉 = α µ � 2 MeV (with µ the reduced mass and α the fine-structure constant), i.e.
the system is highly non-relativistic; iii) the Bohr radius is rB = 1/(α µ) � 100 fm; iv)
the binding energy is E1s = 1

2
α2 µ + . . . � 8 keV and the width Γ1s � 250 eV� E1s; v)

since M = mn + MK̄0 −mp −MK− = 5.26 MeV > 0, there are large unitarity corrections
in the relation between the ground state shift and width and the S-wave kaon-nucleon
scattering length; and vi) isospin breaking can be systematically included in terms of the
small parameter δ ∼ α ∼ (md − mu). In such a counting, the leading (next-to-leading)
order energy shift is ∼ δ3 (∼ δ4). In what follows, I will discuss the calculation of the
energy levels of kaonic hydrogen at next-to-leading order (NLO) in this small parameter.

The calculation of the electromagnetic energy levels and the strong shift is based on the
standard non-relativistic Lagrangian (for details see [9] and also the talk by Korobov).
Besides kinetic terms, it contains local operators with protons and charged kaons coupled
to photons and additional operators with two nucleon and two kaon fields. The coefficients
of the hadron-photon operators can be read off from the matching conditions for the
kaon and nucleon electromagnetic form factors. The four-hadron operators have complex
coefficients. Matching to the relativistic scattering amplitude allows one to express the
strong energy shift in terms of the threshold amplitude, i.e. the kaon-nucleon scattering
lengths, a0 and a1, respectively. This leads to:

∆Es
n − i

2
Γn = − α3µ3

c

2πMK+n3
TKN

{
1 − αµ2

c

4πMK+

TKN(sn(α) + 2πi) + δvac
n

}
, (8)

TKN = 4π

(
1 +

MK+

mp

)
1

2
(a0 + a1) + O(

√
δ) , (9)

sn(α) = 2(ψ(n) − ψ(1) − 1

n
+ ln α − ln n , (10)

with µc the reduced mass of the K−p system and Ψ(x) = Γ′(x)/Γ(x). Further, a0 and
a1 are the isoscalar and isovector S-wave kaon-nucleon scattering length, respectively.
The last term in Eq. (8) is the vacuum polarization contribution, which formally is of
order α5, but amplified by powers of µc/me, with me the electron mass. Therefore, one
counts the quantity αµc/me as O(δ) and thus vacuum polarizations starts to contribute at
leading order δ3. While this representation is correct, it is not accurate enough, precisely
because of the large unitarity corrections, which are formally of order

√
δ. In addition,

there are large Coulomb corrections ∼ α ln α ∼ δ ln δ. As it turns out, by resumming the
fundamental meson-baryon bubble to account for the unitary cusp, the large corrections
of O(

√
δ) can be expressed in terms of a0 and a1, i.e.

T (0)
KN = 4π

(
1 +

MK+

mp

) 1
2
(a0 + a1) + q0a0a1

1 + q0

2
(a0 + a1)

, q0 =
√

2µ0∆M , (11)

EXA05, Vienna 121



Ulf-G. Meißner

[Re (a)]

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

Davies et al 1979

Izycki et al 1980

Bird et al 1983

1500

1000

500

0
-400 0 700

∆ E(eV)

Γ(eV)

3

1

DEAR
4

1 Meissner & Oller

2 Martin

Ito et al 1998

4 Borasoy, Nissler & Weise

3 Oset & Ramos

3

Figure 2: Predictions of the ground-state strong shift ∆Es
1 and width Γ1. Filled circles

correspond to using the Deser formula (8), empty circles to using T (0)
KN instead

of 1
2
(a0 + a1) in this formula, and filled boxes to our final formula (12) with

δTKN = δvac
n = 0.

with µ0 the reduced mass of the K̄0n system. This result is in agreement with the early one
of Dalitz and Tuan [10]. All further corrections of order O(

√
δ) collected in the additional

term δTKN are expected to be small, TKN = T (0)
KN + iαµ2

c

2MK+
(T (0)

KN)2 + δTKN + O(δ). Note

that this representation also incorporates the abovementioned large Coulomb corrections.
Putting pieces together, we arrive at the final formula to analyze the older KEK and more
recent DEAR data on kaonic hydrogen

∆Es
n − i

2
Γn = − α3µ3

c

2πMK+n3
(T (0)

KN + δTKN)

{
1 − αµ2

csn(α)

4πMK+

T (0)
KN + δvac

n

}
. (12)

The following remarks are in order: i) The corrections of O(
√

δ) and O(δ ln δ) are
parameter-free (expressed entirely in terms of the scattering lengths) and are numeri-
cally by far dominant; ii) we have estimated δTKN in CHPT and found δTKN/TKN =
(−0.5 ± 0.4) · 10−2 at O(p2) in the chiral expansion (this should be improved by a more
accurate calculation at higher orders); iii) the vacuum polarization δvac

n can be taken from
[11], δvac

n � 1%. We can now use Eq. (12) to compare the existing bound state data
with predictions based on scattering data, that is taking the values for a0,1 from various
analyses of kaon-nucleon scattering data and calculate the strong shift and width with
these values. In Fig. 2 we show the recent result from DEAR [12] and older results of
the energy shift from kaonic hydrogen experiments in comparison with the predictions
for ∆E and Γ based on various sets of scattering lengths a0, a1 available in the literature
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[13, 14, 15, 16]. As we immediately observe from the plot, the use of the lowest-order
Deser formula, Eq. (8), (represented by the filled circles) can not be justified any more:
both the cusp effect (as represented by the open circles) and Coulomb corrections have
a size comparable with the present precision of the DEAR experiment, and should be
taken into account in the extraction of the S-wave KN scattering lengths from the ex-
perimental data. The figure also reveals that the recent DEAR data apparently are not
consistent with the (older) scattering data. On the other hand, most predictions based
on the scattering data are seen to be consistent with the older KEK kaonic hydrogen
data [17]. I consider it premature to completely revise the low-energy antikaon-proton
interaction based on the DEAR result but rather more refined studies on the accuracy
of the extraction of the scattering lengths from the cross sections and mass distributions
in K−p → MB are called for. In addition, more precise data on e.g. πΣ mass distribu-
tions would be very much needed to further sharpen the extraction of the K̄N scattering
amplitude.

To summarize this part, we derived the formal expression for the strong shifts of the en-
ergy levels in kaonic hydrogen in QCD, up-to-and-including O(δ4) in the isospin breaking
parameter δ ∼ α, md −mu. The use of the non-relativistic effective Lagrangian approach
allows one to treat that otherwise extremely complicated problem with a surprising ease.
We discover that large isospin-breaking corrections arise, in particular, due to the fol-
lowing sources: (a) s-channel rescattering with the K̄0n intermediate state (cusp effect),
and (b) Coulomb corrections that are non-analytic in α. We further prove that the re-
maining corrections are analytic in δ at O(δ) (for details see [9]). Examining some of
these corrections, on the other hand, we do not find a big effect – the obtained values are
at the percent level, which one expects to be a typical size of isospin breaking in QCD.
The present status of corrections in kaonic hydrogen can be summarized by the Eq. (12).
Instead of the combination 1

2
(a0 + a1) which enters in the original Deser formula (8), we

propose to focus on the extraction of the quantity T (0)
KN from the experimental data. The

reason for this is that T (0)
KN already includes the dominant non-analytic corrections in a

parameter-free form. The remaining analytic corrections at O(δ) are contained in the
quantities δTKN and δvac

n . The evaluation of δTKN within CHPT could be interesting,
but possibly complicated due to the expansion in the strange quark mass. At the present
stage, in the absence of such calculations, the best is to include δTKN in the estimate of
the systematic error. From the above discussion one may hope that the effect from δTKN

should not exceed a few percent, which is a natural size of electromagnetic corrections.
For further discussions of kaonic hydrogen and related issues, see the talks by Borasoy,
Fayfman, Ivanov, Weise and Zmeskal at this conference.

4 On the K−α scattering length and antikaon-nuclear
bound states

The interest in exotic few-nucleon systems involving the K̄-meson as a constituent was
triggered by the work of [18] (and others) as well as the detection of a strange tribaryon
S0(3115) in the interaction of stopped K−-mesons with 4He [19]. In this context, one

EXA05, Vienna 123



Ulf-G. Meißner

needs to know the K−α scattering length. In [20], we have addressed this issue and the
possible consequences for antikaon-nuclear bound states.

To calculate the S-wave K−α scattering length as well as the final-state-interaction
(FSI) enhancement factor, we use the Foldy–Brueckner adiabatic approach based on the
multiple scattering (MS) formalism [21]. In this framework, the continuum K−α wave
function, which is defined at fixed coordinates of the four nucleons in 4He, can be written
as the sum of the incident plane wave of the kaon and waves emerging from the four fixed
scattering centers. Keeping only the S-wave contribution, we can express the total wave
function Ψk through the j-channel wave functions ψj(rj) in the following way

Ψk(rK−;r1, r2, r3, r4) = eik·r+
4∑

j=1

tK−Nj

eiqRj

Rj
ψj(rj), (13)

with m (mK−) the nucleon (charged kaon) mass, Rj= |rK−−rj| and the t-matrix, tK−Nj
,

is related to the elastic scattering amplitude fK−N via tK−N(k) = (1+mK−/m) fK−N(k) ,
where k is the modulus of the relative K̄N momentum. The S-wave K−α scattering
length can be derived from the asymptotic expansion of Eq. (13) at rK−→∞ and it is
given by

aK−α =
mα

mα + mK−

〈
4∑

j=1

tK−N ψj(rj)

〉∣∣∣∣∣P4
j=1 rj=0

, (14)

with mα the α-particle mass. Further, to obtain the FSI enhancement factor we calculate
the total wave function Ψk given by Eq. (13) at rK−=

∑4
j=1 rj=0 and average it over the

coordinates of the nucleons rj in 4He. Thus the FSI enhancement factor is [21]

λMS(kK−α)=

∣∣∣∣∣
〈

Ψqlab
K−

(rK−=
4∑

j=1

rj=0; r1, r2, r3, r4)

〉∣∣∣∣∣
2

. (15)

The integration in Eq. (15) over the nucleon coordinates rj was performed using the
Monte-Carlo method. This approach provides us with the possibility to include all con-
figurations of the nucleons in 4He. Within this method we can also take into account in
Eq. (13) the dependence of the tK−Nj

amplitude on the type of nucleonic scatterer, i.e.
proton or neutron. The basic uncertainties of calculations in the MS approximation are
given by the next-to-leading order model corrections such as recoil corrections, contribu-
tions from double and and triple scattering terms, etc and due to the uncertainties of the
elementary I=0 and I=1 K̄N scattering lengths. The calculations of the K−α scattering
length were therefore done for five sets of parameters for the K̄N lengths shown in the
Table 1. Unitarizing the constant scattering length, we can reconstruct the K̄α scatter-
ing amplitude within the zero range approximation. We found a loosely bound state with
binding energy ER=− 2. . .− 7 MeV and width ΓR=11. . .18 MeV. Our result differs from
the prediction of Akaishi and Yamazaki [18] obtained under the assumption of a strongly
attractive phenomenological K̄N potential but using the same scattering lengths of Set 1
as employed here. It is not clear if medium effects and higher order corrections might
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Set Reference a0(K̄N)[fm] a1(K̄N)[fm] a(K−α)[fm]
1 [22] −1.59 + i0.76 0.26 + i.57 −1.80 + i0.90
2 [22] −1.61 + i0.75 0.32 + i0.70 −1.87 + i0.95
3 [23] −1.57 + i0.78 0.32 + i0.75 −1.90 + i0.98
4 [24] −1.03 + i0.95 0.94 + i0.72 −2.24 + i1.58
5 [15] −1.31 + i1.24 0.26 + i0.66 −1.98 + i1.08

Table 1: The K−α scattering length for various sets of the K̄N scattering lengths a0,1.

Figure 3: The invariant K−α mass spectra produced in the dd→αK+K− reaction at ex-
cess energies 30 and 50 MeV. The solid lines describe the pure phase space
distribution, while the dashed and dotted lines show our calculations with K−α
FSI given by parameters of Set 1 and 4, respectively.

be so strong in order to change so drastically the K̄α scattering length predicted by our
calculations within the multiple scattering approach. In any case it is very important
to measure the S-wave K̄α scattering length and to clarify the situation concerning the
possible existence of a (deeply) bound K̄α state.

We have also analyzed the K−α FSI in the reaction dd→αK+K− and discussed the
possibility to evaluate the K−α scattering length from the K−α invariant mass spectra
[20]. For that, we calculated the K−α invariant mass spectra at excess energies ε=30
and 50 MeV which are shown in Fig. 3. The solid lines show the calculations for the
pure phase space, i.e. assuming a constant production amplitude and neglecting FSI.
The dashed and dotted lines in Fig. 3 show the results obtained with the K−α FSI
calculated with the parameters of the Set 1 and 4, respectively. All lines at each figure
are normalized to the same value, given by the reaction cross section at a certain excess
energy. At ε=50 MeV the invariant mass spectra are normalized to the dd→αK+K− cross
section of 1 nb. It is clear that the FSI significantly changes the K−α mass spectra. The
most pronounced effect is observed at low invariant masses available in the first 10 MeV
bin. To draw qualitative conclusions, one can compare the ratio of the cross sections at
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the lowest K−α invariant masses, i.e. within the first 10 MeV bin, calculated with and
without FSI. We found that this ratio R=1.26. . .1.34 at ε=30 MeV, 1.49. . .1.56 at ε=50
MeV and 1.84. . .2.18 at ε=100 MeV. Here the limits of the ratio at each excess energy
are given by the calculations with the K̄N scattering length from the Set 1 and Set 4.
With these estimates it is clear a that reasonable determination of the K−α scattering
length requires high statistical measurements at K−α invariant masses below 4.23 GeV,
i.e. approximately 100 events. Such a high precision experiment apparently can be done at
the Jülich Cooler Synchrotron COSY. This shows that the measurement of the K−α mass
distribution near the reaction threshold may provide a new tool for the determination of
the s-wave K−α scattering length. It is important to stress that for kaonic helium atoms,
energy shifts can be measured for the 2p state and widths for the 2p and 3d states. The
np→1s transitions for 4He cannot be observed since the absorption from the p states is
almost complete. Therefore the possibility to determine the S-wave K̄α scattering length
from experiments with kaonic atoms is questionable. With this respect a measurement at
COSY provides an unique opportunity to determine the S-wave K−α scattering length.
Furthermore, we have investigated the momentum dependence of the enhancement factor
λMS(k) calculated within the multiple scattering approximation and compared it with
the one obtained utilizing the Watson–Migdal formalism. It was found that the absolute
difference between both calculations is relatively small at momenta q≤100 MeV/c. Fur
further discussions of antikaonic bound states, see the talks by Akaishi, Dote, Itahashi,
Iwasaki, Nagae, Suzuki, Weise and Yamazaki at this conference.

5 Summary and outlook

Hadronic atoms allow one to access meson-baryon scattering lengths, leading to stringent
tests of the properties of QCD in the non-perturbative regime. In addition, exotic nuclear
systems with bound antikaons give further constraints on the so important K̄N interac-
tion. On the theoretical side, isospin breaking in pionic deuterium and kaonic deuterium
should be studied along the lines outlined here. In addition, more systematic studies of
exotic nuclei with antikaons as constituents are called for.
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