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The goal of the DIRAC experiment at CERN (PS212) is to measure the
atr~ atom lifetime with 10% precision. Such a measurement would yield a
precision of 5% on the value of the S-wave 77 scattering lengths combination
|ag — az|. Based on part of the collected data we present a first result on the
lifetime, 7 = [2.91 T0¢3] x 107" s, and discuss the major systematic errors.
This lifetime corresponds to |ag — az| = 0.264 T0:0% m_1. This article is a

short version of the work [2].

1 Introduction

The aim of the DIRAC experiment at CERN [3] is to measure the lifetime of pionium,
an atom consisting of a 7+ and a 7~ meson (Aa,). The lifetime is dominated by the
charge-exchange scattering process (777~ — 797°) 1 and is thus related to the relevant
scattering lengths [5]. The partial decay width of the atomic ground state (principal
quantum number n = 1, orbital quantum number [ = 0) is [4, 6, 7]

FlS:i:gOCSp‘a(]—(J/QIQ(l-’-(S) (1)
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with 71 the lifetime of the atomic ground state, o the fine-structure constant, p the 7°
momentum in the atomic rest frame, and ag and ay the S-wave 7w scattering lengths for
isospin 0 and 2, respectively. The term ¢ accounts for QED and QCD corrections [7]. It is a
known quantity (§ = (5.841.2)x1072) ensuring a 1% accuracy for Eq. (1). A measurement
of the lifetime therefore allows to obtain in a model-independent way a value of |ag — az|.
The 7w scattering lengths ag, as have been calculated within the framework of Standard
Chiral Perturbation Theory [8] with a precision better than 2.5% [9] (ay = 0.220 +0.005,
az = —0.0444 £ 0.0010, ag — ag = 0.265 £ 0.004 in units of inverse pion mass) and lead
to the prediction 15 = (2.9 £0.1) x 107 s. Generalized Chiral Perturbation Theory
though allows for larger a-values [10]. Model independent measurements of ay have been
done using K4 decays [11, 12].

! Annihilation into two photons amounts to &~ 0.3% [4] and is neglected here.
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Oppositely charged pions emerging from a high energy proton-nucleus collision may
be either produced directly or stem from strong decays (”short-lived” sources) and elec-
tromegnetic or weak decays (”long-lived” sources) of intermediate hadrons. Pion pairs
from “short-lived” sources undergo Coulomb final state interaction and may form atoms.
The region of production being small as compared to the Bohr radius of the atom and
neglecting strong final state interaction, the cross section ¢’} for production of atoms with
principal quantum number n is related to the inclusive production cross section for pion
pairs from ”short lived” sources without Coulomb correlation (0?) [13] :
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with pa, E4 and M, the momentum, energy and mass of the atom in the lab frame,
respectively, and p, p_ the momenta of the charged pions. The square of the Coulomb
atomic wave function for zero distance 7 between them in the c.m. system is |¥$(0)|* =
p%/mn3, where pg = mya/2 is the Bohr momentum of the pions and m, the pion mass.
The production of atoms occurs only in S-states [13].

Final state interaction also transforms the “unphysical” cross section o into a real one
for Coulomb correlated pairs, o¢ [14, 15]:
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where \I/g;(r_*) is the continuum wave function and 2k* = ¢ with ¢ being the relative mo-
mentum of the 7+ and 7~ in the c.m. system?. |\Ilf]:(f’*)\2 describes Coulomb correlation

and at 7* = 0 coincides with the Gamov-Sommerfeld factor Ac(g) with ¢ = |g] [15]:

2rmaa/q

Ac(q) (4)

T1- exp(—2mm,a/q)

For low ¢, 0 < ¢ < qo, Egs. (2, 3, 4) relate the number of produced As, atoms, Ny, to
the number of Coulomb correlated pion pairs, Ne¢ [16]:

1

N, otot 2ram,)?
N—Ci" B o-totA< - ( T ) q0 = kth(q0)~ (5)
- C 19=90

/ Acla)dq

In order to account for the finite size of the pion production region and of the two-pion
final state strong interaction, the squares of the Coulomb wave functions in Eqgs. (2) and
(3) must be substituted by the square of the complete wave functions, averaged over the
distance 7 and the additional contributions from 7%7% — A, as well as 7%7°

[15]. It should be noticed that these corrections essentially cancel in the k-factor (Eq.

— T

2For the sake of clarity we use the symbol @ for the reconstructed and ¢ for the physical relative
momentum.
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(5)) and lead to a correction of only a fraction of a percent. Thus finite size corrections
can safely be neglected for ky.

Once produced, the Ay, atoms propagate with relativistic velocity (average Lorentz
factor 4 = 17 in our case) and, before they decay, interact with target atoms, whereby
they become excited/de-excited or break up. The 77~ pairs from break-up (atomic
pairs) exhibit specific kinematical features which allow to identify them experimentally
[13], namely very low relative momentum ¢ and ¢;, (the component of ¢ parallel to the
total momentum p, + p_). After break-up, the atomic pair traverses the target and
to some extent loses these features by multiple scattering, essentially in the transverse
direction, while ¢y, is almost not affected. This is one reason for analyzing the data in Q)
as well as in Q.

Excitation/de-excitation and break-up of the atom are competing with its decay. Solv-
ing the transport equations with the cross sections for excitation and break-up, [18] leads
to a target-specific relation between break-up probability and lifetime which is estimated
to be accurate at the 1% level [19] Measuring the break-up probability thus allows to
determine the lifetime of pionium [13].

The first observation of the Ay, atom [20] has allowed to set a lower limit on its lifetime
[16, 17] of 7 > 1.8 x 1071 5 (90% C'L). In this paper we present a determination of the
lifetime of the Ay, atom, based on a large sample of data taken in 2001 with Ni targets.

2 The DIRAC experiment

The DIRAC experiment uses a magnetic double-arm spectrometer at the CERN 24 GeV/c
extracted proton beam T8. Details on the set-up may be found in [21]. Since its start-
up, DIRAC has accumulated about 15’000 atomic pairs. The data used for this work
were taken with two Ni foils, one of 94um thickness (76% of the 77~ data), and one of
98um thickness (24% of the data). An extensive description of the DIRAC set-up, data
selection, tracking, Monte Carlo procedures, signal extraction and a first high statistics
demonstration of the feasibility of the lifetime measurement, based on the Ni data of
2001, have been published in [22]. The set-up and the definitions of detector acronyms
are shown in Fig. 1.

Pairs of oppositely charged pions are selected by means of Cherenkov, preshower and
muon counters. Through the measurement of the time difference between the vertical
hodoscope signals of the two arms, time correlated (prompt) events (o4, = 185 ps) can be
distinguished from accidental events (see [22]). The resolution of the three components of
the relative momentum @) of two tracks, transverse and parallel to the c.m. flight direction,
Q., Qy and @, is about 0.5 MeV /c for @) < 4MeV /c. Due to charge combinatorials and
inefficiencies of the SFD, the distributions for the transverse components have substantial
tails, which the longitudinal component does not exhibit [23]. This is yet another reason
for analyzing the data both in ) and Q1. Data were analyzed with the help of the DIRAC
analysis software package ARIANE [25].
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Figure 1: Schematic top view of the DIRAC spectrometer. Upstream of the magnet:
target, microstrip gas chambers (MSGC), scintillating fiber detectors (SFD),
ionization hodoscopes (IH) and iron shielding. Downstream of the magnet:
drift chambers (DC), vertical and horizontal scintillation hodoscopes (VH, HH),
gas Cherenkov counters (Ch), preshower detectors (PSh) and, behind the iron
absorber, muon detectors (Mu).

3 Analysis

The spectrometer including target is fully simulated by GEANT-DIRAC [24], a GEANT3-
based simulation code. The detectors, including read-out, inefficiency, noise and digital-
ization are simulated and implemented into the DIRAC analysis code ARIANE [25]. The
triggers are fully simulated as well. The Monte Carlo simulation of different event types
and their reconstruction produce distributions with exactly the same procedures and cuts
as used for experimental data. The different event types are generated according to the
underlying physics.

Atomic pairs: The atomic 7F 7~ pairs are generated according to the probabilities and
kinematics described by the evolution of the atom while propagating through the target
and by the break-up process (see [26]). Pairs total momenta are generated according
to the measured total momentum distributions for short-lived pairs. These 777~ pairs,
starting from their spatial production point, are then propagated through the remaining
part of the target and the full spectrometer using GEANT-DIRAC. Reconstruction of
the track pairs using the fully simulated detectors and triggers leads to the atomic pair
distribution dn’/dQ.

Coulomb correlated wta~ pairs (CC-background): The events are generated
according to Egs. (3,4) using measured total momentum distributions for short-lived
pairs. The generated g-distributions are assumed to follow phase space modified by the
Coulomb correlation function (Eq. (4)), dNZ& /dg o< ¢* x Ac(q). Processing them with
GEANT-DIRAC and then analyzing them using full detector and trigger simulation leads
to the Coulomb correlated distribution dNMY /dQ.
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Non-correlated wtw~ pairs (NC-background): 777~ pairs, where at least one
pion originates from the decay of a ”long-lived” source (e.g. electromagnetically or weakly
decaying mesons or baryons) do not undergo any final state interaction. Thus they are
generated according to dN%a/dg o< ¢*, using slightly softer momentum distributions
than for short-lived sources (difference obtained from FRITIOF-6). The Monte Carlo
distribution dNMS /dQ is obtained as above.

Accidental 7t 7~ pairs (acc-background): 77~ pairs, where the two pions origi-
nate from two different proton-nucleus interactions, are generated according to dN9<" /dq
¢?, using measured momentum distributions. The Monte Carlo distribution dN¢ /dQ is
obtained as above.

All the Monte Carlo distributions are normalized, fOQm”(dNiAm /dQ)dQ = NMC, i =
A CC,NC,acc. The measured prompt distributions are approximated by appropriate
functions. The functions for atomic pairs, F4(Q), and for the backgrounds, F5(Q), (anal-
ogously for Q1) are defined as:

rec MC
n’ee dnly

FAlQ) = =S ——

A( ) %JXIC dd]gMC Nree, qNMC N, dANMC (6)
rec v rec 5 WacedVpr ace

Fp(Q) = TeC0oCC 4 NG DENG | Wecelp

NEE dQ  NYE dQ N d@Q
with n’f¢, N&S, N6 the reconstructed number of atomic pairs, Coulomb- and non-
correlated background, respectively, and w,.. the fraction of accidental background out
of all prompt events N,,. Analyzing the time distribution measured with the vertical
hodoscopes (see [22]) we find wae.=7.1% (7.7%) for the 94 pm (98 pm) data sets [22, 23]
and keep it fixed when fitting. The measured distributions as well as the background are
shown in Fig. 2 (top).

First, we determine the background composition by minimizing y? outside of the atomic
pair signal region, i.e. for Q > 4MeV/c and )1, > 2MeV /c. For this purpose we require
n’¢ = 0. As a constraint, the background parameters Ni and Ny& representing the
total number of C'C- and NC-events, have to be the same for ) and Q1. Then, with the
parameters found, the background is subtracted from the measured prompt distribution,
resulting in the residual spectra. For the signal region, defined by the cuts @ = 4MeV /c
and @, = 2MeV /¢, we obtain the total number of atomic pairs, n/¢*9e and of Coulomb
correlated background events, Ngg. Results of fits for @ and @ together are shown in
Table 1. CC-background and NC- or acc-backgrounds are distinguishable due to their
different shapes, most pronounced in the @, distributions (see Fig. 2). Accidental and
NC-background shapes are almost identical for () and fully identical in Q.

Second, the atomic pair signal may be directly obtained by fitting distributions over
the full range and including the Monte Carlo shape distribution F,4 (“shape fit”). The
signal strength has to be the same in ) and @r. The result for the signal strength n’f®
as well as the CC-background below the cuts, N2, are shown in Table 1.

In order to deduce the break-up probability, P, = na/N4, the total number of atomic
pairs ny and the total number of produced Ay, atoms, N4, have to be known. The
procedure of obtaining the two quantities requires reconstruction efficiencies and relies
on the known relation between produced atoms and Coulomb correlated 77~ pairs of
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Figure 2: Top: Experimental @) and @); distributions after subtraction of the prompt
accidental background, and fitted Monte Carlo backgrounds (dashed lines). The
peak at @ = 4 MeV/c is due to the cut Qr < 4 MeV/c. Bottom: Residuals
after background subtraction. The dashed lines represent the expected atomic
signal shape. The bin-width is 0.25 MeV/c.

Table 1: Break-up probabilities for the combined Ni2001 data, based on the fit results and
the k-factors for the cuts Qeye = 4MeV/c and Qr cur = 2MeV/c.

nTAesidual n:qec Ng‘lg’ k Pbr

Q 6518 + 373 106500 + 1130 0.1384 0.442 + 0.026

QL 6509 + 330 82280+ 873  0.1774 0.445+0.023

Q &Qp, 6530 £294 106549 £ 1004 0.447 +0.023

Eq. (5). The break-up probability P, thus becomes:
na n/Z\EC(Q S cht) . €

Py, =— = with k(Qeuwt) = k —_— 7
b= Ny T HQuNGEQ < Qo) 1 M) = a0 2 ™
where €4 and ecc are reconstruction efficiencies for atomic pairs and CC-pairs. The

break-up probabilities from @ and Qr agree within a fraction of a percent (see Table 1).
The values from shape fit and from background fit are in perfect agreement as compared
to the statistical error. As a result we adopt P, = 0.447 &+ 0.0234;.

The break-up probability has to be corrected for the impurities of the targets. The
94 pm thick target has a purity of only 98.4%, while the 98 pum thick target is 99.98%
pure. The impurities being mostly of smaller atomic number than Ni lead for both targets
together to a reduction of break-up probability of 1.1% as compared to pure Ni. Thus
the measured break-up probability has to be increased by 0.005 in order to correspond to
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pure Ni, with the final result of:

Py = 0.452 % 0.023,10r- (®)

4 Systematic errors

The difference in break-up probability while varying fit range leads to AP, = 0.023.
Consistency of the procedure requires that the break-up probability does not depend on
Qcut- There is a systematic effect which, however, levels off for large cut momenta: the
more the signal is contained in the cut, the more the P, values stabilize. This may be due
to systematics in the atomic pair shape directly and/or in reconstructed CC-background
for small relative momenta. This was investigated by assuming two extreme models for
atom break-up: the break-up occurs either only from the 1S-state or from highly excited
states. The two extremes result in a difference in break-up probability of AP;Thap “ =0.008.

We have investigated possible uncertainties in multiple scattering as simulated by
GEANT by changing the scattering angle in the GEANT simulation by +£5%. As a
result, the break-up probability changes by 0.002 per one percent change of multiple scat-
tering angle. In fact we have measured the multiple scattering for all scatterers (upstream
detectors, vacuum windows, target) and found narrower angular distributions than ex-
pected from the standard GEANT model [27]. This, however, may be due also to errors in
determining the thickness and material composition of the upstream detectors. Based on
these studies we conservatively attribute a maximum error of +5% and —10% to multiple
scattering.

Another source of uncertainty may be due to the presence of unrecognized K+ K~ and
Pp pairs that would fulfill all selection criteria [28]. Such pairs may be as abundant as 0.5%
and 0.15%, respectively, of 7¥7~ pairs as estimated for KK~ with FRITIOF-6 and for
pp from time-of-flight measurements in a narrow momentum interval with DIRAC data.
Their mass renders the Coulomb correlation much more peaked at low ) than for pions,
which leads to a change in effective 77n~ Coulomb background at small @, thus to a
smaller atomic pair signal and therefore to a decrease of break-up probability. The effect
leads to a change of APb’:K’ PP — _0.04. We do not apply this shift but consider it as a
maximum systematic error of Py,.. Admixtures from unrecognized e™e™ pairs from photon
conversion do not contribute because of their different shapes.

Finally, the correlation function Eq. (3) used in the analysis is valid for pointlike pro-
duction of pions, correlated only by Coulomb final state interaction (Eq. (4)). However,
there are corrections due to finite size and strong interaction [15]. These have been studied
based on the UrQMD transport code simulations [29] and DIRAC data on 7~ 7~ correla-
tions. The corrections lead to a change of AbeTi nite=size — _(.02. Due to the uncertainties
we conservatively consider 1.5 times this change as a maximum error, but do not modify
PbT‘

The systematics are summarized in Table 2. The extreme values represent the ranges
of the assumed uniform probability density function (u.p.d.f.), which, in case of asym-
metric errors, were complemented symmetrically for deducing the corresponding standard
deviations . Convoluting the five u.p.d.f. results in bell-shaped curves very close to a
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Table 2: Summary of systematic effects on the measured break-up probability P,.
source extreme values o
CC-background  40.012/ — 0.012 +0.007
signal shape +0.004/ — 0.004 +0.002
multiple scattering  +0.01/ — 0.02 +o-000

K*TK~ and pp +0/ —0.04 0023
finite size +0/ —0.03 o
Total tgiggg

Gaussian, and the +o (Table 2, total error) correspond roughly to a 68.5% confidence
level and can be added in quadrature to the statistical error.
The final value of the break-up probability is

Py = 0.452 £ 0.02350¢ 70059 Foyst = 0.452 7025, (9)

5 Lifetime of Pionium

The lifetime may be deduced on the basis of the relation between break-up probability
and lifetime for a pure Ni target (Fig. 3). This relation, estimated to be accurate at
the 1% level, may itself have uncertainties due to the experimental conditions. Thus the
target thickness is estimated to be correct to better than £+ 1 pum, which leads to an error
in the lifetime less than 1% of the expected lifetime and negligible. The result for the
lifetime is

0.45 0.19 —15 0.49 ~15
Tis = [2.91 T058 otar Lot dsyse] X 10717 s = [2.91 FE] x 1077 s. (10)
P [[] stat. error only
bri Ni2001 B st and sy o

= 0.452

040 |

0.38 -

0.36 - 201

I I I L I I
0.34 L5 2.0 25 3.0 35 4.0

Ty [fs]

Figure 3: Break-up probability B, as a function of the lifetime of the atomic ground state
715 for the Ni targets. The experimentally determined P, with statistical and
total errors translates into a value of the lifetime with corresponding errors.
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The errors are not symmetric because the P, — 7 relation is not linear, and because
finite size corrections and heavy particle admixtures lead to possible smaller values of
P,.. With full statistics (2.3 times more than analysed here) the statistical errors may be
reduced accordingly. The two main systematic errors (particle admixtures and finite size
correction) will be studied in more detail in the future program of DIRAC.

+0.033 -1

Using Eq. (1), the above lifetime corresponds to |ag — as| = 0.264 T 50 m; '
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