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Abstract

We study local analytic solutions f of the generalized Dhombres equation f (xf(x)) =
»(f(x)) with £(0) = 0 in the complex domain. We give an existence result, describe
the structure of the set of all local analytic solutions and solve the converse problem,
i.e., we characterize those local analytic functions which are solutions of a generalized
Dhombres equation. Connections of generalized Dhombres equations with linear
functional equations and generalized Bottcher equations are used. Furthermore, we
establish relations of generalized Dhombres equations with Briot-Bouquet differential
equations and with iteration groups. Finally, as an application of Bottcher functions,
we describe the connections between two generalized Dhombres equations and the
representations of their solutions as infinite products.
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1. Introduction

Continuous solutions of a generalization of the Dhombres functional
equation (cf. [1]) on real intervals and their dynamics have been studied
in several papers (e.g., [4], [5], [12]), in particular recently in [13].
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However, also the problem of the existence of analytic (holo-
morphic) solutions of such functional equations seems to be inter-
esting and promising, as well as the study of the dynamics of these
equations in the complex domain. As we will see in this note, the
generalized Dhombres functional equations are closely related to
certain generalized Bottcher equations which were recently investi-
gated in [11] by methods from complex analysis.

We are going to investigate functional equations of the type

fOf(x) = o(f (%)), (1)

where ¢ is a given function and f denotes the solution. In the present
situation we will assume that

¢ is holomorphic at x = 0, (2)

f is holomorphic at x = 0 and f(0) = 0, (3)

(i.e., 0 is a fixed point of the solution).

We are going to investigate local analytic solutions f of (1). If ¢
is holomorphic for |x| <6 (with some 6>0), then by a local analytic
solution of (1) we understand a function f with f(0) = 0, analytic in
|x| <& (for some €>0), such that (1) holds for |x| <e. This € may and
will depend on the particular solution f. We will not approach here
the problem to find an explicit estimate for £ = (f).

We give now some necessary conditions on ¢ and f which have to
be fulfilled if (1) has a local analytic solution f such that (2) and (3)
hold, and such that f # 0 (i.e., f is “nontrivial”).

Remark 1. a) Let f be a local analytic solution of (1), i.e., (2) and (3)
are satisfied. Then ¢(0) = 0.

b) If ¢ =0, then f = 0O is the only local analytic solution of (1) in
each neighbourhood of x = 0.

¢) Letf # 0 be a local analytic solution of (1) such that (2) and (3)
are satisfied. Then there exist an integer k > 1 and ¢, € C\{0} =: C
such that

) = fdox 4 <8, (4)
and

fx) = + x4 x| <e, (5)
for some 6 >0 and ¢ = ¢(f) >0.

Proof. a) This is obvious. b) Let f be a local analytic solution of (1).
Assume that f # 0. This means f(0) = 0 and f(xf(x)) = 0 in some
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neighborhood of x = 0 and there exists an integer k > 1 and ¢, € C
such that

fo)=ax+---,  |xl<e (6)
Then (1) gives
kD) =0, x| <e (7)

with c’,ﬁ“ = (. Because of the identity theorem for analytic functions
this is a contradiction and hence, f = 0.

¢) Let f be a local analytic solution of (1) with f # 0. Then, by b),
@ # 0. Hence there exist [eN, d,€C, k€N, ¢, € C such that

o(x) = dx' + -, x| <8, (8)
and
flx) = cxk 4 x| <e, 9)

for some 6 >0, ¢ >0. Then (1) yields that on the left-hand side f (xf (x))
has order k(k + 1) atx = 0, and f (xf(x)) = ¢k ™1+ 4 ... while, on
the right-hand side, (f(x)) has order Ik, and ¢(f(x)) = dicix’® + - - -.

Hence Ik = k(k + 1) which gives I =k + 1 and ¢} = dj ™!
Since cf’l # 0 we have d; 1 = 1, and o(x) = x*1 + d o2+ -,
for |x| <é. This proves c), and hence, the argument is complete.

The paper is organized as follows. In Sect. 2 we show the existence
of locally analytic solutions of (1), provided op(x) = x**!1 4+ ... is
analytic at x = 0. We show that, for each ¢, € C, there exists exactly
one local analytic solution f(x) = ¢xx* + - -+ (Theorem 1). Then we
show that every formal solution f(x) = ¢;x* + - - - of (1) is convergent
by applying results on local analytic solutions of the generalized
Bottcher equation. A different representation of local analytic solu-
tions of (1) in our situation is given in Theorem 2, by using the clas-
sical iteration process for a linear functional equation to which (1) can
be reduced. This representation involves certain infinite products.

In Sect. 3 we give as a consequence of Theorem 1 and its proof a
result on the structure of the set of all local analytic solutions of (1),
for ¢ # 0 (Theorem 3).

This structure theorem leads to the answer of a converse problem:
For which f = 0 there exist ¢ such that f is a solution of (1)? The
answer is formulated in Theorem 4. Roughly speaking, the structure
derived for the set of local analytic solutions of (1) is also sufficient
to have a set of local analytic functions being the solutions of a
generalized Dhombres equation. This converse problem, in the real
case, was solved in [13].
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In Sect. 4 we characterize the set of local analytic solutions of (1)
as the set of all local analytic solutions of a certain Briot-Bouquet
differential equation, associated with (1) in a unique way (Theorem 5;
for Briot-Bouquet differential equations see [3], [7], [2]). Conversely,
we associate to each Briot-Bouquet differential equation of the form
xw'(x) =k - N(w(x)) a unique generalized Dhombres equation (1) so
that the sets of local analytic solutions are the same.

In Sect. 5 we establish a connection between the set of all local
analytic solutions of (1) for ¢ # 0, with analytic iteration groups of
first type. This gives a parametrization of the set of local analytic
solutions of (1) as members of such an iteration group (Theorem 7).
The proof is based on the characterization of iteration groups of type |
by certain Aczél-Jabotinsky differential equations which can be equiv-
alently transformed to the class of Briot-Bouquet differential equa-
tions occurring in Sect. 4.

Conversely, we associate with each analytic iteration group of type
I an equation (1) such that the set of local analytic solutions of this (1)
consists exactly of the members of the given iteration group.

Moreover, the group operation of the iteration group associated
with (1) induces a group operation on the set of local analytic solu-
tions of (1) which takes the form of a perturbed translation equation.

In Sect. 6 we apply Bottcher functions (i.e., the classical Bottcher
equation) to equations (1). This leads to another representation of the
non-trivial local solutions of (1) (Theorem 9), but also to the explicit
construction of a bijection between the sets of solutions of two
generalized Dhombres equations (1), with functions ¢, and ¢, on the
right-hand side, in the case when

i) =xT 4. j=1,2, (10)
with the same k > 1 (Theorem 10).

2. Local Analytic Solutions of Generalized Dhombres
Equations with Fixed Point 0

From Remark 1 we know that in a generalized Dhombres equation (1)
with non-trivial local analytic solutions f with f(0) = 0 we neces-
sarily have o(x) = x**1 + d ox**2 ... |x| <6 for some k> 1,
and that then necessarily f(x) = cxx* + - - -, with ¢; # 0 and |x|<e.
The existence problem is solved by

Theorem 1. a) Let o(x) =x*' + ... with k > 1 be analytic at
x = 0. Then to each ci € C there exists exactly one solution f of (1)
with f(x) = cx® + - x| <e.
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b) All local analytic solutions f with f(0) = 0 of (1) are given by
a), ¢, =0 if and only if f = 0.

Proof. Let f be a local analytic solution of (1) with f(0) = 0. If f # 0,
then by Remark 1 there exists k > 1 such that f(x) = ¢;af + - - -, with
cr # 0. Hence f = 0 means c¢; = 0. Our proof is based on the follow-
ing two remarks.

Remark 2. Let k > 1, and f with f(x) = ctxf + -+, ¢x # 0, be ana-
Iytic at x = O Then there exist exactly k different local analytic
functions T")(x), I =0,...,k — 1, such that

(Tm@Dka@) (11)
holds i 1n some neighbourhood of x = 0. We have TV (x) = tgl)x + -
with tl #0, for [ =0,. k — 1. These functions 7" may be
arranged so that 7 (x) = Cl )(x), where ¢ = ¢*™/%. Each TV is
uniquely determined by its linear part ti)( ), and ¢ = (¢ ()) for
[=0,....,k—1.

This result is kind of folklore (see [14], pp. 223—-224) but we include
here a proof for the convenience of the reader. Assume that 7'(x),
analytic at x = 0, is a solution of 7'(x)* = f(x) in a neighbourhood of 0.
Then T(x) = tix + - -+ with X = ¢;. Write T(x) = t;x(1 +Fx + -+ +)
and f(x) = c;x*(1 + ¢1x + - --). Then

O+ i+ = +ex+--) (12)
in a neighbourhood of 0, hence for x # 0,
(I+hx+-- ) =14+ex+---, O0<|x|l<e.  (13)

This relation can be holomorphlcally continued to x = 0, and the unlque
solution 1+ 7#;x + --- is obtained by substituting ¢x + Cox? + -
into the binomial series (1 + y) 1k Since X = ¢; has exactly k d1f—
ferent complex solutions 7, Remark 2 is proved.

Remark 3. Let k> 1, [ > 1, and let F(x) = x™ + cpp ' 4
be analytic at x =0. Then there exists a umque G(x) =x'+
Dy XU+ .-, analytic at x = 0, such that G(x)* = F(x) holds in
some neighbourhood of 0.

Now to prove a) let f be a solution of (1), f(x) = ckx" + -0 #0.
Then, according to Remark 2 there exists 7'(x ) =nHx+- w1th t1 #0
and analytic at x = 0, such that F(x) = T(x)" holds in some neigh-
bourhood of 0. Substituting this into (1) we find, for sufficiently small |x|,

(TGT()"))" = @(T()"). (14)
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Since the local (analytic) inverse T~! of T exists, we can substitute
T~!(x) for x in the last relation and obtain

(T(T7 (%) - )" = o) (15)

in some neighbourhood of 0. T(T~!(x)x*) has a Taylor series in x
starting with x**!. Hence by Remark 3, 7(7~!(x)x*) = 1(x) in some
neighbourhood of 0, where ¢ is uniquely determined by

V) =el), ) =2 (16)
for sufficiently small |x|. Applying 7~! on both sides of (15) we get,
withf = T~ 1,

*U(x) = UY() (17)

in some neighbourhood of 0, with U(x) = uyjx+ ---,u; # 0. Then
(17) is locally equivalent with (1), and may be viewed either as a
linear functional equation (see [6]) or a generalized Bottcher equation
for U (cf. [11]).

We take now the second point of view. From Theorem 7 of [11]
it follows that for each u; € C there exists exactly one local analytic
solution U(x) = ujx + - - - of (17), and these are all such solutions with
U(0) =0, U # 0. It is now clear that with T = U ~", f(x) = (T(x))*
yields a nontrivial solution of (1), and f(x) = (1/u})x* +---. By an
appropriate choice of u; we get each value ¢; = 1/uf in C.

It remains to prove that a solution f of (1) with f(x) = cpx* + - - - is
uniquely determined by c;. Assume that f] and f, are both solutions of
(1) with

ﬁ(x):ckxk"i_"': (]:112) (18)
with the same c;. Take T} and 7 according to Remark 2, so that
(Y}(X))k :ﬁ(x)v =12 (19)

in some neighbourhood of 0, and such that 77 and 7, have the same
linear part 71x. Then Uy =T, Uand U, = T, ! are solutions of (17)
with the same linear part, and hence U =U,, T) = T and f| = f>.
This proves Theorem 1a).

Theorem 1b) is clear, since the representation f = T* is possible for
all local analytic solutions f of (1) with f # 0, f(0) = 0. This com-
pletes the proof of Theorem 1.

The essential step for the proof of Theorem 1 was to solve (17). We
now consider (17) as a linear functional equation. In order to con-
struct all local analytic solutions ¢/ # 0 of (17) we make some more
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preparatory transformations. We put U(x) = u1x - U(x) in a neighbour-
hood of x = 0, so that U(x) = 1+ ---. Then (17) is equivalent with

U(p(x)) = —— - U(x) (20)

in some neighbourhood of 0, where 6: x — x**! /1)(x) is, by holomorphic
extension to x = 0, analytic at x = 0, and x**1 /¢p(x) =1+ ---.
Now the classical “iteration process” (cf. [6], Ch. 3) may be
applied to the linear equation (20) and yields
00 v+1
y P (x)
UX) =] | %7 (21)
E) (4 (x)"
which converges uniformly and absolutely in each compact subset of
a certain neighbourhood of 0. Here " is the v-th iterate of v, and
these iterates are analytic in a common neighbourhood of 0, since
P(x) = x¥1 4 ... with k + 1 > 2. Putting everything together we get

Theorem 2. Let o(x) = x**! + ... be analytic at x = 0, k > 1. Then
the set of local analytic solutions f of (1), with f # 0 and f(0) = 0, is

given by
Flx) = <[u,x-lﬁ)%][”)k (22)

in some neighbourhood |x|<e(f). Here 1" is the v-th iterate of 1.
[0(z)]Y denotes the inverse of 6.

3. The Structure Theorem. A Converse Problem

Let p(x) = x**! + di o2k + ... be analytic in x = 0, with k > 1.
Now we will prove that the set of all local solutions f(x) =
cxx® 4+ -+ (cx € C) has the following structure.

Theorem 3. Let ¢(x) = x* + dj (,x**? + - - be analytic in x = 0,
with k > 1. Then there exists exactly one local analytic function fj,
with fo(x) = x + - - -, such that the set of all local analytic solutions
f(x) = cix* +--- of (1) has the form

{f1f(x) = folcrr), cr €C} (23)
for |x|<e(f); e(f) depending in general on f.

Proof. We know from Theorem 1 that under our hypothesis on ¢ to
each ¢; € C there exists exactly one local analytic solution f of (1)
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with f(x) = c;x* + -+ - (x| <e(f)), and that these are all solutions of
(1). In order to obtain the solutions f # 0 we wrote f(x) = (T(x))*
and got for T~! = I/ the functional equation (17) in some neighbour-
hood of 0, where (x) was uniquely determined from 1 (x)* = o (x)",
(x) = x¥1 4 ... We claim that 1/ has the form

Y(x) =2 (") (24)
in a neighbourhood of 0 where 1(x) =x+---. To see this write
o(x) =x1p(x) with @(x)=1+---, and hence (') =

x5 (xk). Hence (using Remark 3) 9(x) = xFH13(x) % where
we now use the binomial series for the exponent 1/k to get ¥ (x) =
x- 2K (k) = x-9p(x*) with 9(x) = x4 ---. Using the form (24)
of 1 and substituting Cx with ¢ = ¢*™/* in (1) we find

FUCx) = UCxtp - (). (25)
This means that x+—— U/((x) is a local analytic solution of (17) such
that U(Cx) = Cupx + -+, if U(x) =wux+---, uy # 0. Since (1) is a
linear functional equation for I/ and since a solution of (1) is uniquely
determined by its first coefficient we get U((x) = (U(x) in some
neighbourhood of 0, hence

Ux) = Z Uy XL (26)
v=0
Now we show that 7 = /! has the same structure. T is characterized
by the relation 7'(U(x)) = x near 0. Again substituting (x for x by (26)
we get T(U(Cx)) = T(CU(x)) = ¢x. Again by substituting 7'(x) for x
we find, because of U(T'(x)) = x, that T({x) = (T (x) in some neigh-
bourhood of 0, hence

T() =Y tupx™ =tx- T(), (27)
v=0

where t; = 1/u; and T(y) = 1 + - - -.

Now let 49 be the unique solution of (1) with /© (x) = x+---,
and T = (U©)~'. Since (1) is linear and each solution /(x) =
uix +--- of (1) is determined by its first coefficient u;, we get
U= ulu@), and for T = U~!

T(x) = TO(1,x) (28)
with #; = 1/u;. Indeed,

TO (1 (x)) = TV <ui]u(x)> = TOUO(x)) = x,
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in some neighbourhood of 0, so that the local inverse T of I/ is given
by (28). Now, since f(x) = (T(x))* we find by (27) and (28),

F0) = (T(x)" = (T0(02))" = (- T (10)") = folewr®), (29)

where, using (27), T (x) = x - TO (&%), ¢; = &, and fo(y) := y - T°(y),
which only depends on ¢, but not on the individual solution
f- Moreover, fy(y) =y + ---. It remains to prove that f is uniquely
determined by ¢, i.e., by the given functional equation (1). In fact, it is
uniquely determined by any non-trivial solution f(x) = cxx* + - -,
k > 1,c; # 0, 0f (1). Assume, that in some neighbourhood of 0, we have

@) =fled),  fx) =golex),  led<n,  (30)

with analytic functions fy, go. Then (fy — &o)(cxx*) = 0, |x| <. Since
cx # 0, the values ¢;x* cover a neighbourhood of 0, if x runs through
a neighbourhood of 0. So, by the identity theorem, we get fy = go.
Now Theorem 3 is completely proved.

There is the following converse problem (in the real case, cf. [13]):
For which functions f # 0 does there exist a function ¢ such that
f(xf(x)) = p(f(x)) holds in some domain? In our present situation f
is a local analytic function, f(x) = cix* + -+ k > 1,¢; # 0, in some
neighbourhood of 0. Theorem 3 allows us to answer this question
completely for local analytic functions. We have

Theorem 4. a) Let fy, fo(y) =y +---, be analytic in some neigh-
bourhood of 0. Then there exists a unique local analytic ¢, p(x) =
x4 such that the set of all local analytic solutions of (1) is
given by

{f1f(x) = folewd®), x| <e(f),cx €C}. (31)

b) Let f(x) = cixk + -+ with k > 1,¢; # 0 be analytic in some

neighbourhood of 0. Then there exists a local analytic ¢ with

©(0) = 0 such that f is a solution of (1) if and only if f has the form

f(x) = f(x*) in some neighbourhood of 0, where f is analytic. If such
a p exists, then it is uniquely determined by f.

Proof. a) Assume that ¢ is a local analytic function with ¢(0) =0,
such that each f with f(x) = fo(cxx¥), |x| <e(f), is a solution of (1).
Thenf(xf(x)) = ¢(f(x)) < fofo(x*)") = ¢(fo(x*)) in some neigh-
bourhood of x = 0. Since covers a neighbourhood of 0, if x
runs through a neighbourhood of 0, we find from this equivalence:
f(xf(x)) = ¢(f(x)) in some neighbourhood of x = 0 < fo (v fo (y)k) =
©(fo(y)) in some neighbourhood of y = 0.
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Putting (f;')(y) in place of y in the last relation, we get:
flxf(x) = ( (x)) in a neighbourhood of 0 <

fo(f () - ) = ¢(y), in some neighborhood of 0. (32)

This shows that ¢ is uniquely determined by f, if it exists. On the
other hand, if we define ¢ by (32), then it obviously satisfies the
assertions of Theorem 4 a). So, for ¢ defined according to (32), we
see that all functions x+—— f(c;x*), |x| <e(f), are solutions of (1).
These are, in fact, all local analytic solutions f of (1) with f(0) = 0.
Indeed, by Theorem 1, there is exactly one solutlon fx) =cexb + -
with given ¢, € C. But since f(c;x*) = cxx* + - - - and is a solution of
(1), we got all solutions.

b) We only have to show the existence of ¢ to a given f and its
uniqueness. But this is done with the same calculations as used in the
proof of a). This completes the proof of Theorem 4.

Remark 4. Theorems 3 and 4 show that for the local analytic solu-
tions f with f(0) = 0 of (1) there may not exist a common region con-
taining 0 where they all are analytic. Take, in Theorem 4a), f, with
fo(y) =y +---, so that its radius of convergence is finite (but clearly
positive). Then the radius of convergence of fo(ckx") tends to O with
lim |¢;| = co. But all functions x+— f(cxx*) are solutions of the
same (1).

Bemark 5. One may ask for an explicit representation of the function
fo in Theorem 3, associated with a given (. We may use a similar
approach as given in Theorem 2 for the solutions f of (1) Since fo( 9
is a solution of (1), namely the one with fo( Ky =xk +- - we get from
(1), by known calculations and arguments already used before,

FoFo)") = w(fo») (33)
in some neighbourhood of y = 0 (cf. (32)) or, equivalently,
Yao(y) = () (34)

in some neighbourhood of 0, for g, = f, ' Then (33) is a further
generalization of Dhombres’ equation, and (34) may be viewed as a
generalized Bottcher equation or as a linear functional equation for
80> &(y) =y + - --. Then (34) is the functional equation (17) with ¢
in place of 7). Hence the usual “‘iteration process” yields

(-1]
v T )
go()’) - [yrll (go’(y))kH] . (35)
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Remark 6. In order to describe the local analytic solutions of (1) in
our present situation, one could also follow another way:

(i) Show directly from (1), by comparing coefficients of powers x”
on both sides, that there is a unique formal solution f(x) = c;x* + - - -
with given ¢, (taking p(x) = x*1 + .

(i) Then put f(z) = f(z*) with somef w1thf1( ) =cxy+---. This
leads to the functional equation (34) for g :=f  in place of g, which
is equivalent with (1) in some neighbourhood of 0. Then (34) is the
same as (1) with ¢ instead of 1, and we know already that such a
functional equation has a unique local analytic solution g with
prescribed initial part y;y. Hence there exists a unlque local analytic
solution f of (1) with f(x) = f(x*) and f(y) = cxy + - - -, where ¢z € C
is arbitrarily given. So we get directly to the representation of
Theorem 3.

4. Generalized Dhombres Equations
and Briot-Bouquet Differential Equations

We will now present a formulation of the equations (1) as certain dif-
ferential equations in complex domain, namely as special Briot-Bouquet
differential equations. For this type of differential equations we refer
the reader to [3], pp. 295-297, [2], pp. 402-407, [7], pp. 104-106 and
[8], pp. 160-162. First, we associate a given (1) with a Briot-Bouquet
differential equation.

Theorem 5. a) Let p(z) = 75 + dy 2?2 + - (k > 1) be analytic
in a neighbourhood of 0. Then there exists a unique local ana-
Iytic function N,, N,(z) =z+--- such that the set of all local
analytic solutions of (1) with f(0) =0 is the same as the set of
local analytic solutions w with w(0) = 0 of the differential equation

() = kN, (w(2)) (36)
in a neighbourhood of 0.
b) If we represent, according to Theorem 3b), the solutions of (1) in

the form f(z) f(zk), then f is a local analytic solution of the
differential equation

2 (z) = Ny (w(z)) (37)
with w(0) = 0, and vice versa.

Proof. a) Let ¢ be as in the assumption, then the set of all local analytic
solutions f of (1) with f(0) =0 can, according to Theorem 3, be
represented in the form f (x) = fo(cex¥), (f),iff(x) = cpx* + -
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where f, is uniquely determined by ¢ and fy(y) =y +---. This
yields, by the chain rule,

xf'(x) = folewd ke, (38)
in some neighbourhood of 0. Since f(; : exists, we get
= 1 =1
xf'(x) = kfo(fo (FCSfo (f(x)), (39)
and introducing N, := (f:) ) f; 1) . f(; " we obtain
xf'(x) = kNo(f(x)), (40)
i.e., Eq. (36), in some neighbourhood of 0, where N, »(y) + - - - is local

analytic in y = 0, since fo fol and fO are so.

Now we have to prove that each local analytic solution w with
w(0) = 0 of (36) is a solution of (1). An easy calculation shows that
each such solution w of (36) is of the form w(x) = cxx* + - - - with
some ¢, € C, and that w is uniquely determined by ¢, (we omit the
details). On the other hand, by the construction of (36) there exists a
solution w of (36) of the form w(x) = cxx* + - - -, namely the solution
x+— fo(cixk) of (1) from which we started.

It remains to show that there is only one N, such that (1) and

o' (x) = kN(w(x)), w(0) =0 (41)

have the same set of local analytic solutions.
Assume that

xX'w(x) = kN;(w(x)), j=1,2, w(0) =0, (42)

with local analytic functions N;, such that Nj(x) =x+ --- have
the same set of local analytic solutlons as (1) Then there is a
local analytic function w(x) = cx* +---, k>1, ¢ #0 which
satisfies both differential equations and hence we get by substitution,
k(Ny — N2)(w(x)) = 0 in some neighbourhood of 0. Since the values
w(x) cover a neighbourhood of 0, since w # 0, we find by the identity
theorem Ny — N, = 0.

b) The proof is similar as for a). This completes the proof of
Theorem 5.

There again an inverse problem arises: Given N, N(x) =x+ - -,
analytic in x = 0. Does there exist a ¢, ¢(x) = x**! + ..., such that
the set of local analytic solutions w of (41) is the same as the set of
local analytic solutions f of (1)? The answer is positive and given by
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Theorem 6. Let N(x) =x+ --- be analytic in x =0. Then there
exists a unique «, local analytic at x =0, o(x) = x*' + ... such
that the Briot-Bouquet differential equation

xw'(x) = k- N(w(x)), w(0) =0 (43)

has the same set of local analytic solutions as (1). The function N,
associated with ¢ according to Theorem 5, equals N.

Proof. From the theory of Briot-Bouquet differential equations (see
in particular [8], pp. 160-162) we deduce that all formal solutions
w(x) with w(0) of (43) are given by w(x) = c;x* + - - -, where ¢; € C
can be arbitrarily prescribed, and that the formal solution
w(x) = cgxk + - -+ is uniquely determined by c;. Moreover, each
w(x) is convergent in some neighbourhood of 0, so that the formal
solutions of (43) yield all local analytic w solutions of (43) with
w(0) = 0. For the convenience of the reader we give another, direct
approach to the local analytic solutions w(x) with w(0) = 0 of (36).

First of all, it follows from (36) by comparing coefficients on both
sides that such a w has the form w(x) = ¢xx* + - - -, where ¢; € C is not
determined whereas the coefficients of c¢,, v > k + 1, are uniquely
determined by c; and they exist. If ¢, = 0 we obtain w = 0. Now let
cr #0. Then w(x) = cpx*w(x) with Ww(x) = 1 +yx+ ---. Hence
(43) is in a neighbourhood of 0 equivalent with

X ( Zké ) w(x)”, (44)

v>2

where we use N( )=y +6y* + - If x # 0 we deduce from that
= kb T ), w(0) =1, (45)

v>2

which holds in a punctured neighbourhood of 0. We show that it holds
in a neighbourhood of x = 0.
To see this we firstly prove that the function

— > kbc)x w” (46)

v>2

is defined and holomorphic in some region |x| <er, [w — 1| <ez. From
the convergence of N(y) =y + > -, 6,y” we get, by simple estima-
tions, that the series in (46) is indeed absolutely convergent if x| <p
and |w — 1| <p,, for some p;, p, >0. Hence it is uniformly conver-
gent in each compact set contained in |x|<p;, |w — 1|<p,, and by
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Weierstrass’ theorem it represents a function holomorphic in |x| < py,
|[w — 1] < pa. Hence we are allowed to substitute for w the convergent
series w(x) = 1 4 4,x + - - - for sufficiently small |x| into the series in
(46), and obtain an analytic function in some neighbourhood of 0.
This means that the differential equation for w can be continued to
hold also in x =0, and that it allows the application of Cauchy’s
existence and uniqueness theorem. Hence, w(x) is indeed analytic at
x = 0, and the existence result for (43) holds.
Then we consider the Briot-Bouquet differential equation

W (x) =NW(x),  W(0)=0. (47)

Here we get from the general theory [7] that (47) has exactly one
formal solution Wy with wo(x) = x + - - - which is also convergent in
some neighbourhood of 0. We will now prove that, using this wy, we
get the local analytic solutions of (47) in the form

w(x) = wo(cxt), (48)

where |x| is sufficiently small and ¢; can be arbitrarily chosen in C.
We deduce from (48) and (47) that

A w(x) = 2w (cex®) - k- ! = ke W) () = kN(w(x))  (49)

ie., Eq. (43) is satisfied in some neighbourhood of 0, where
w(x) =k +---. So w(x) is the unique solution of (43) with
w(x) = cxxk 4 -+, Since ¢; € C is arbitrary (48) yields all local ana-
lytic solutions of (43). By Theorem 4a) there exists a unique p(x) =
x¥F 4. such that {w;w(x) = Wj(cxx*), cx €C, |x|<e(w)} is the
set of all local analytic solutions of (1). By Theorem 5a, N is the
unique function such that the set of all local analytic solutions of (43)
coincides with the set of such solutions of (1), so N = N,,.

Remark 7. The proof of Theorems 1 and 3 on the existence of local
analytic solutions of (1) and the structure of these solutions may be
entirely built on the corresponding results for Briot-Bouquet differ-
ential equations. This has the advantage that the proof of convergence
of formal solutions of a Briot-Bouquet differential equation by
Cauchy’s method of majorant, is rather short and elegant. So the
existence results (Theorem 1) and the results on the structure of solu-
tions (Theorem 3, Theorem 4) can be deduced for formal solutions of
(1), neglecting the convergence, and the same holds for the connec-
tion of (1) with Briot-Bouquet differential equations. From the con-
vergence of any formal solution of a Briot-Bouquet equation, provided
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the given series N = N,, is convergent, we obtain, going back, the
convergence of all formal solutions of (1).

5. Generalized Dhombres Equations
and Iteration Groups

There are also close relations of generalized Dhombres equations (1)
to iteration groups. In order to present these relations we recall the
basic definitions and properties of analytic iteration groups of local an-
alytic functions and their description by Aczél-Jabotinsky differential
equations (see [8], [9], [10], also [15]).

A family (Fi), ¢ ¢ of formal power series F;(x) = c;(1)x + - - - with

ci(t) #0 (te (C) is an analytic iteration group, if all coefficient
functlons t+ ¢, (1) are entire functions and if the translation equation
Fiis(x) = Fi(Fs(x),  (1,5€C) (50)

holds. In particular we will consider the case when each F; is a
convergent power series. Then for each (1,s€C?) there exists a
neighbourhood of z = 0 such that

Fii(z) = Fi(Fs(2)) (51)

holds in this neighbourhood. If ¢ (¢) = eV, t € C, with \ # 0, then the
family (F), . ¢ is an iteration group of type I. We have the following
characterization of iteration groups of type I of formal series.

If (F),cc is such an iteration group of type I, then there exists a
formal series H(x) = x + hpx?> + - - - such that the set of formal solu-
tions ®(x) =yx+ -+, 1 #0, of the Aczél-Jabotinsky differential
equation

o
H H(P 52
() - () = H(®(x)) (52)
is exactly the family (F;), . ¢, considered as a set. Conversely, the set

of all formal solutions ® of (52), with H(x) = x + hox* + - - - may be
parameterized as (F;), . o, Where (F;), . ¢ is an iteration group of type
I, uniquely determined if we take A = 1.

Furthermore, all series F, of an iteration group (F;),.. are
convergent if and only if the corresponding H is convergent. This
means that H is a convergent series if and only if all formal solutions
® of (52) are convergent. However, there need not exist a neigh-
bourhood of 0 where all formal solutions of (52) are convergent.

Now we explain the connection of Aczél-Jabotinsky differential
equations (54), where H(x) = x + hpx? + ---, with certain Briot-
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Bougquet differential equations, namely precisely those which were used
in Sect. 4. Let ¥’ be the derivative of an analytic function W.

Lemma 1. Let H(x) = x + hyx*> + - - - be analytic at x = 0. Let B be
the unique local analytic solution of

xB'(x) = H(B(x)) (53)
with B(x) =x+---. Then for each local analytic solution P,
P(x)=mx+--, of
H(x)®'(x) = H(®(x)) (54)
U .= ® o B is a solution of
xV'(x) = H(¥(x)). (55)

Conversely, if ¥(x) =vx+--- is a solution of (55), then ® :=
U o B~ is a solution of (54).

Proof. Let B be defined as above. Then, for a solution ¢ of (54),
U := & o B satisfies the differential equation

B'(x) = H(B(x)). (56)

Indeed, putting A = B~!, ® = W o A, we get from (54), using the chain
rule,

H(x) - (P)(A(x)) - A'(x) = H(®(A(x))), (57)

in a neighbourhood of 0. From A(B(x)) = x we obtain A’(B(x)) =
(B'(x))"", so that we have

-1

((B'(x))™ - H(B(x))) - ¥'(x) = H(®(x)). (58)
Since B is a solution of (56) we finally get (55). The converse is
proved in the same way which completes proof of Lemma 1.

Now, let again ¢(x) = x**! + ... be given. By Theorem 5a) we
associate to ¢ the local analytic function N, N,(x) =x+ --- such
that the set of all local analytic solutions of (1) (Theorem 3) is exactly
the set of solutions of (37). We may hence apply Lemma 1 to N, in
place of H and obtain the relation between equations (1) and iteration
groups.

Theorem 7. a) Let p(x) = x*!' 4 dy ox**2 + ... be analytic at
x = 0. The set of all nonzero local analytic solutions f, f(0) = 0, of
(1) can be described as a family

fH(t,x) == F(t, B(x")), (teC), (59)
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where B(x) =x+--- is analytic at x=0 and (F(t,-)),.c is an
analytic iteration of type 1, i.e.,

Flt,x)=éx+---, (1€C). (60)

b) Let N, be the local analytic function associated to (1) by
Theorem 5. Then the analytic iteration group representing the nonzero
solutions of (1) according to a) is given as the set of nonzero solutions
O, O(x) = vy1x + - - - of the Aczél-Jabotinsky equation

Ny(x) - ¢(x) = Ny (p(x)) (61)
with ¢(x) = F(t,x) for 1 = €', t € C. B is the unique solution of
x - B'(x) = Ny(B(x)) (62)

with B(x) =x+ - -

¢) There is only one analytic iteration group (F(t,x)),. with
F(t,x) =¢é'x+--- (t€C) and only one B such that the set of all
nontrivial analytic solutions of (1) has a representation (48).

Proof. a) and b) Under our hypothesis there exists, according to

Theorem 5, a unique N,, N,(x) =x+ ---, analytic at x = 0, such
that the set of nonzero solutions f of
~/ ~ ~
o (x) =No(f(x)),  f(0)=0, (63)

is the set of local analytic functions yielding the representation
flx) =f(x *) of nonzero solutions of (1). By Lemma 1, wr1t1ng now
N, for H, f for ¥ and f* for ®, there ex1stsf0,f0( ) =x+---, such

that fo is a solution of (63) and such that f* := f o f0 isa solutlon of
Np(x) - (f%) (x) = N (f* (x)). (64)

All local analytic solutions f* of (64) can be obtained in this form
from a solution f of (63). From the 1ntroducmg explanations of Sect.
5 we know that (61) determines a unique analytic iteration group of
type I of the form

F(t,x) =ée'x+--- (teC), (65)

where the local analytic functions F(z,x) yield all nonzero solutions
of (61). Going back we obtain the representation

¥ (t,x) == F(t, B(x")), (teC), (66)

for the set of nontrivial local analytic solutions of (1). Hence a) and b)
are proved.
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c¢) This follows from uniqueness results for Aczél-Jabotinsky and
Briot-Bouquet differential equations. We omit the details. This com-
pletes the proof of Theorem 7.

Remark 8. From Theorem 7 we deduce that the set of nontrivial local
analytic solutions of (1), when parametrized as in Theorem 7a) form a
perturbation of an analytic iteration group. We find, in the case k = 1,

fHe+s,0 =B (f(s,x)),  (,s€C) (67)

in some neighbourhood of x = 0, depending on ¢ and s.
Indeed, by (48) and since (F(t,x)),.c is a solution of the trans-
lation equation we get

fH(t+s,x) = F(t +5,B(x)) = F(t,F(s, B(x)))
= F(t, f*(s,%) =6, B (f*(s,x)))  (68)

in some neighbourhood of x = 0.
If £k > 1 we get, in a similar way,

F+sx) =B (), (nseC),  (69)

where any of the k-th roots of B~!(f*(s,x)), analytic at x = 0, may
be taken on the right-hand side.

Here we have again a converse problem: Let (F(t,x)),. be an
analytic iteration group of type I, F(z,x) = e¢'x+--- (t€C), whose
elements are local analytic at x = 0, and let k > 1. Does there exist
@(x) = x**! ..., such that the nontrivial solutions of (1) can be
represented by (66), using this iteration group and an appropriate B?
The answer is affirmative and given by

Theorem 8. Let k > 1 and let (F(t,x)),. ¢ be an analytic iteration
group of local analytic functions F(t,-), F(t,x) =e'x+--- (t€C).
Then there exists a unique @, o(x) = x*1 + di X2 + - -, analytic
at x =0, and a unique B(x) = x + - --, such that the nonzero solu-
tions of (1) can be presented in the form (66).

Proof. By what has been said at the beginning of Sect. 5, there exists
for (F(t,x)),.c a unique H(x) = x+ hpx> + - - -, analytic at x =0,
such that (54) has exactly the nontrivial local analytic solutions ®
of the form x+ F(t,x). By Lemma 1 there exists a (unique) B,
B(x) = x+ -+ - such that via ¥ := ® o B!, (54) is equivalent with
(55); note that B is the unique solution of (55) with B(x) =x+ ---.
Then, according to Theorem 6 and its proof there exists a unique local
analytic function ¢, p(x) = x**! 4 ..., such that the set of all local
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analytic solutions f := W of (55) yields the set of all local analytic
solutions of (1) in the form

@) =70, xl<els). (70)
Moreover, using the notation of Theorem 5 we have H = N,. Then,
going back to ®, we find altogether for f the representation (66).
The assertions refering to uniqueness follow from the arguments
used before. This completes the proof of Theorem 8.

In Remark 8 we found for the nonzero solutions of (1) in the case
©(x) = x> + - - - the composition law (68), in some neighbourhood of
0, depending on s and t. We may consider this as a perturbed trans-
lation equation. However, in this perturbation of the translation equa-
tion, B was not arbitrary, but was uniquely determined by . Now
let C, C(x) = x + cpx> + - - -, be an arbitrary local analytic function
and (f*(#,x)),.c be a family of invertible local analytic functions
satisfying

fretsx)=fCH(fFsx),  (s€C),  (T1)
in some neighbourhood of 0, depending on s and ¢. Then
F(t,x) :=f*(t,C"'(x)),  (t€C), (72)

is an iteration group. It is of the form F(z,x) = e'x+--- (t€C), if
and only if f*(#,x) = e'x 4 - -- (1€ C). We assume now that f*(, x) =
e'x + - - - and that all coefficient functions of (f*(z,x)), . are entire.
This implies that (F(t,x)), ¢ is an analytic iteration group of type L.
We associate with this iteration group, according to Theorem 8, the
unique ¢, @(x) = x>+ --- (since here k = 1) such that all nonzero
solutions of (1) are given by

f(t,x) = F(,B(x)),  (1€C), (73)
with an appropriate and unique B. From (1) for f(t,x) := g(x) we
obtain the functional equation

(D™ (D(x) - g(x))) = ¢(g(x)) (74)
with D = B~! o C. This is another generalization of the Dhombres
equation which coincides with (1) iff B = C.

These arguments may easily be extended to obtain

Remark 9. Let C, C(x) =x+ ---, be analytic at x =0, and let
(f*(t,x)), c ¢ withf*(z,x) = e'x + - - - and entire coefficient functions
be a solution of (71) in a neighbourhood of x = 0, depending on ¢ and
s (i.e., a solution of a perturbated translation equation).
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Then there exists a unique ¢, @(x) = x>+ ---, and a unique D,
D(x) = x + - - -, such that the set of nonzero local analytic solutions g
with g(0) = 0 of

g(D7(D(x) - g(x))) = p(g(x)) (75)
is given by the functions x s f*(t,x), for all t.

6. Relations Between Two Generalized
Dhombres Equations: An Application
of the Bottcher Functional Equation

The aim of this section is to give an explicit bijection of the set of
local analytic solutions of a generalized Dhombres equation (1) with
@ := ¢ to the set of local analytic solutions of another (1) with
@ == @, if p;(x) =x**1 ...  j=1,2 with the same k > 1. This
can be done by using the Bottcher functions B, of ¢;, for j = 1,2, and
will also give another way to solve (1) in the local analytic situation.

It is well known (see e.g. [16], pp. 60-61) that to ¢ (x) = x* 1 + ..,
analytic at x = 0, there exists a unique local analytic and invertible
By, B,(x) = x+ - -, such that

B, (B,(x)"") = ¢() (76)

in some neighbourhood of 0. We call B, Bottcher function of ¢.
Using B, we get another representation of the nontrivial local
analytic solutions of (1), namely,

Theorem 9. Let ¢(x) =x "' +... (k> 1) be analytic at x = 0.
Then the set of all nontrivial local analytic solutions [ of (1) with
f(0) =0 is given by
A IR A
—1 H < (k1) (77)
f(x) =B nx 1k~

¢ y=oB¢1(Zk(kH> )
for ne C\{0}, |x|<e(n). Here B, is the Bottcher function of ¢ and
[0(x)]"" denotes the inverse function of 6.

The proof of Theorem 9 will be given together with that of
Theorem 10 which establishes an explicit 1 : 1 correspondence between
the sets of nontrivial local analytic solutions of two generalized
Dhombres equations (1) for ¢ := ¢ and ¢ := ¢y, if

@i(x) = x4 (j=1,2), (78)
with the same k > 1.
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Theorem 10. Let ¢, p;(x) = x**1 ... (j=1,2) be analytic at
x=0,k>1.Let By, be the Bottcherﬂmcnon of yj, and denote by f
(resp. f>) the local analytic solutions of (1) with ¢ = ¢; and
@ 1= @y, respectively, with the same initial part nx (n # 0). Then we
have

o A
flx) = B (( %&’“k*””)'[(% £ ]>

v=0"¥2

k

(79)
in some neighbourhood of 0.

Proof of Theorems 9 and 10. Let (1) with ¢(x) = x**! + ... be given,
and let f be a solution of (1). Define g := B, o f. Then using (76) and
(1) we see that (1) is equivalent with

g(B, ' (g(x)) = (0" (30)

in some neighbourhood of 0. We know already from the proof of
Theorem 1 and from Theorem 2 that, to solve (80), it is sufficient to
put g(x) = T(x)" or g(x) = T(x*) since this leads to solve (1) and
hence also (80) because of g =B, of. Let us follow the first pos-
sibility g(x) = T(x)~. By well- known computations and arguments
we obtain for & = T~! the functional equation

B () - Ulx) = U (81)

with U(x) = ujx + - - -, equivalent with (1). The advantage of (81) lies
in the fact that the dependence on ¢ is now concentrated in the first
(known) factor on the left-hand side of (81), which holds in a
neighbourhood of 0. To (81) we may, as for the proof of Theorem 1,
apply the existence and uniqueness results for generalized Béttcher
equations (see [11]) which yields that to each u; € C there exists
a unique solution & with U(x) = u;x + ---. Now we consider two
generalized Dhombres equations (1), w1th p:=j, j=1,2, with
¢j(x) = x**! 4 ..., the corresponding Bottcher functions Bw and B,
and the assomated equations (81).
Let us denote by U/;(n; x) the unique local analytic solution of
B;jl(xk) Ui(x) = Ui (x*T), (82)
with Uj(n;x) =nx+---, n#0. Let E, be the quotient U /U,
which is, by holomorphic extension to x = 0, analytic in some neigh-
bourhood of 0, also E,(x) = 1 4 ---. Similarly, we see the quotient



24 L. Reich et al.

B! /B,_l as an analytic function around 0, and have
®2 ©1
—1

) =14
B!

Dividing (82), side by side, we obtain
-1
B—le(xk) CEy(x) = E,,(xk“) (83)
#1
in some neighbourhood of 0. Now, E;, does not depend on 7, since (83)
has only one solution with absolute term 1. So write E,, = E, where E
is uniquely determined by the pair (¢1, ¢2).
E can be calculated from (83) by the classical “iteration process’
for linear functional equations which gives
> B! p
E) = [[52 64 ) (84)
v=0"¢2
converging uniformly and absolutely in each compact subset of a
certain neighbourhood of x = 0. Using the definition £ = U, /U, we
get from (84)
K] B;ll k(k+1)"
Un(n,x) = | | | =y 700 Ui (). (85)
v=0"2
If we take here ¢;(x) =x*1, ©y(x) =t p(x), then B, (x) =1,
B, =:B,, U;(n,x) =nx. Hence (85), together with 7 = U,
g =Tk B;l o g = f leads to Theorem 9. In a similar way we obtain
Theorem 10.
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