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Abstract

We study local analytic solutions f of the generalized Dhombres equation f ðx f ðxÞÞ ¼
’ð f ðxÞÞ with f ð0Þ ¼ 0 in the complex domain. We give an existence result, describe
the structure of the set of all local analytic solutions and solve the converse problem,
i.e., we characterize those local analytic functions which are solutions of a generalized
Dhombres equation. Connections of generalized Dhombres equations with linear
functional equations and generalized Böttcher equations are used. Furthermore, we
establish relations of generalized Dhombres equations with Briot-Bouquet differential
equations and with iteration groups. Finally, as an application of Böttcher functions,
we describe the connections between two generalized Dhombres equations and the
representations of their solutions as infinite products.
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1. Introduction

Continuous solutions of a generalization of the Dhombres functional
equation (cf. [1]) on real intervals and their dynamics have been studied
in several papers (e.g., [4], [5], [12]), in particular recently in [13].



However, also the problem of the existence of analytic (holo-
morphic) solutions of such functional equations seems to be inter-
esting and promising, as well as the study of the dynamics of these
equations in the complex domain. As we will see in this note, the
generalized Dhombres functional equations are closely related to
certain generalized Böttcher equations which were recently investi-
gated in [11] by methods from complex analysis.

We are going to investigate functional equations of the type

f ðx f ðxÞÞ ¼ ’ð f ðxÞÞ; ð1Þ
where ’ is a given function and f denotes the solution. In the present
situation we will assume that

’ is holomorphic at x ¼ 0; ð2Þ

f is holomorphic at x ¼ 0 and f ð0Þ ¼ 0; ð3Þ

(i.e., 0 is a fixed point of the solution).
We are going to investigate local analytic solutions f of (1). If ’

is holomorphic for jxj<� (with some �>0), then by a local analytic
solution of (1) we understand a function f with f ð0Þ ¼ 0, analytic in
jxj<" (for some ">0), such that (1) holds for jxj<". This " may and
will depend on the particular solution f . We will not approach here
the problem to find an explicit estimate for " ¼ "ð f Þ.

We give now some necessary conditions on ’ and f which have to
be fulfilled if (1) has a local analytic solution f such that (2) and (3)
hold, and such that f 6¼ 0 (i.e., f is ‘‘nontrivial’’).

Remark 1. a) Let f be a local analytic solution of (1), i.e., (2) and (3)
are satisfied. Then ’ð0Þ ¼ 0.

b) If ’ ¼ 0, then f ¼ 0 is the only local analytic solution of (1) in
each neighbourhood of x ¼ 0.

c) Let f 6¼ 0 be a local analytic solution of (1) such that (2) and (3)
are satisfied. Then there exist an integer k � 1 and ck 2Cnf0g ¼: C�

such that

’ðxÞ ¼ x kþ1 þ dkþ2x
kþ2 þ � � � ; jxj<�; ð4Þ

and

f ðxÞ ¼ ckx
k þ ckþ2x

kþ2 þ � � � ; jxj<"; ð5Þ
for some �>0 and " ¼ "ð f Þ>0.

Proof. a) This is obvious. b) Let f be a local analytic solution of (1).
Assume that f 6¼ 0. This means f ð0Þ ¼ 0 and f ðx f ðxÞÞ ¼ 0 in some
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neighborhood of x ¼ 0 and there exists an integer k � 1 and ck 2C�

such that

f ðxÞ ¼ ckx
k þ � � � ; jxj<": ð6Þ

Then (1) gives

ckþ1
k x kðkþ1Þ þ � � � ¼ 0; jxj<" ð7Þ

with ckþ1
k 6¼ 0. Because of the identity theorem for analytic functions

this is a contradiction and hence, f ¼ 0.
c) Let f be a local analytic solution of (1) with f 6¼ 0. Then, by b),

’ 6¼ 0. Hence there exist l2N, dl2C�, k2N, ck 2C� such that

’ðxÞ ¼ dlx
l þ � � � ; jxj<�; ð8Þ

and

f ðxÞ ¼ ckx
k þ � � � ; jxj<"; ð9Þ

for some �>0, ">0. Then (1) yields that on the left-hand side f ðx f ðxÞÞ
has order kðk þ 1Þ at x ¼ 0, and f ðx f ðxÞÞ ¼ ckþ1

k xkðkþ1Þ þ � � � while, on
the right-hand side, ’ð f ðxÞÞ has order lk, and ’ð f ðxÞÞ ¼ dlc

l
kx

lk þ � � �.
Hence lk ¼ kðk þ 1Þ which gives l ¼ k þ 1 and ckþ1

k ¼ dkþ1c
kþ1
k .

Since ckþ1
k 6¼ 0 we have dkþ1 ¼ 1, and ’ðxÞ ¼ x kþ1 þ dkþ2x

kþ2 þ � � �,
for jxj<�. This proves c), and hence, the argument is complete.

The paper is organized as follows. In Sect. 2 we show the existence
of locally analytic solutions of (1), provided ’ðxÞ ¼ x kþ1 þ � � � is
analytic at x ¼ 0. We show that, for each ck 2C, there exists exactly
one local analytic solution f ðxÞ ¼ ckx

k þ � � � (Theorem 1). Then we
show that every formal solution f ðxÞ ¼ ckx

k þ � � � of (1) is convergent
by applying results on local analytic solutions of the generalized
Böttcher equation. A different representation of local analytic solu-
tions of (1) in our situation is given in Theorem 2, by using the clas-
sical iteration process for a linear functional equation to which (1) can
be reduced. This representation involves certain infinite products.

In Sect. 3 we give as a consequence of Theorem 1 and its proof a
result on the structure of the set of all local analytic solutions of (1),
for ’ 6¼ 0 (Theorem 3).

This structure theorem leads to the answer of a converse problem:
For which f 6¼ 0 there exist ’ such that f is a solution of (1)? The
answer is formulated in Theorem 4. Roughly speaking, the structure
derived for the set of local analytic solutions of (1) is also sufficient
to have a set of local analytic functions being the solutions of a
generalized Dhombres equation. This converse problem, in the real
case, was solved in [13].
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In Sect. 4 we characterize the set of local analytic solutions of (1)
as the set of all local analytic solutions of a certain Briot-Bouquet
differential equation, associated with (1) in a unique way (Theorem 5;
for Briot-Bouquet differential equations see [3], [7], [2]). Conversely,
we associate to each Briot-Bouquet differential equation of the form
xw0ðxÞ ¼ k � NðwðxÞÞ a unique generalized Dhombres equation (1) so
that the sets of local analytic solutions are the same.

In Sect. 5 we establish a connection between the set of all local
analytic solutions of (1) for ’ 6¼ 0, with analytic iteration groups of
first type. This gives a parametrization of the set of local analytic
solutions of (1) as members of such an iteration group (Theorem 7).
The proof is based on the characterization of iteration groups of type I
by certain Acz�eel-Jabotinsky differential equations which can be equiv-
alently transformed to the class of Briot-Bouquet differential equa-
tions occurring in Sect. 4.

Conversely, we associate with each analytic iteration group of type
I an equation (1) such that the set of local analytic solutions of this (1)
consists exactly of the members of the given iteration group.

Moreover, the group operation of the iteration group associated
with (1) induces a group operation on the set of local analytic solu-
tions of (1) which takes the form of a perturbed translation equation.

In Sect. 6 we apply Böttcher functions (i.e., the classical Böttcher
equation) to equations (1). This leads to another representation of the
non-trivial local solutions of (1) (Theorem 9), but also to the explicit
construction of a bijection between the sets of solutions of two
generalized Dhombres equations (1), with functions ’1 and ’2 on the
right-hand side, in the case when

’jðxÞ ¼ x kþ1 þ � � � ; j ¼ 1; 2; ð10Þ
with the same k � 1 (Theorem 10).

2. Local Analytic Solutions of Generalized Dhombres
Equations with Fixed Point 0

From Remark 1 we know that in a generalized Dhombres equation (1)
with non-trivial local analytic solutions f with f ð0Þ ¼ 0 we neces-
sarily have ’ðxÞ ¼ x kþ1 þ dkþ2x

kþ2 þ � � � ; jxj<� for some k � 1,
and that then necessarily f ðxÞ ¼ ckx

k þ � � � , with ck 6¼ 0 and jxj<".
The existence problem is solved by

Theorem 1. a) Let ’ðxÞ ¼ x kþ1 þ � � � with k � 1 be analytic at
x ¼ 0. Then to each ck2C there exists exactly one solution f of (1)
with f ðxÞ ¼ ckx

k þ � � � ; jxj<".
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b) All local analytic solutions f with f ð0Þ ¼ 0 of (1) are given by
a), ck ¼ 0 if and only if f ¼ 0.

Proof. Let f be a local analytic solution of (1) with f ð0Þ ¼ 0. If f 6¼ 0,
then by Remark 1 there exists k � 1 such that f ðxÞ ¼ ckx

k þ � � �, with
ck 6¼ 0. Hence f ¼ 0 means ck ¼ 0. Our proof is based on the follow-
ing two remarks.

Remark 2. Let k � 1, and f with f ðxÞ ¼ ckx
k þ � � � ; ck 6¼ 0, be ana-

lytic at x ¼ 0. Then there exist exactly k different local analytic
functions T ðlÞðxÞ, l ¼ 0; . . . ; k � 1, such that

ðT ðlÞðxÞÞk ¼ f ðxÞ ð11Þ
holds in some neighbourhood of x ¼ 0. We have T ðlÞðxÞ ¼ t

ðlÞ
1 xþ � � �

with t
ðlÞ
1 6¼ 0, for l ¼ 0; . . . ; k � 1. These functions TðlÞ may be

arranged so that T ðlÞðxÞ ¼ �lT ð0ÞðxÞ, where � ¼ e2�i=k. Each T ðlÞ is

uniquely determined by its linear part t
ðlÞ
1 ðxÞ, and ck ¼ ðtðlÞ1 Þk, for

l ¼ 0; . . . ; k � 1.
This result is kind of folklore (see [14], pp. 223–224) but we include

here a proof for the convenience of the reader. Assume that TðxÞ,
analytic at x ¼ 0, is a solution of TðxÞk ¼ f ðxÞ in a neighbourhood of 0.
Then TðxÞ ¼ t1xþ � � � with tk1 ¼ ck. Write TðxÞ ¼ t1xð1 þ~tt1xþ � � �Þ
and f ðxÞ ¼ ckx

kð1 þ ~cc1xþ � � �Þ. Then

tk1x
kð1 þ~tt1xþ � � �Þk ¼ ckx

kð1 þ ~cc1xþ � � �Þ ð12Þ
in a neighbourhood of 0, hence for x 6¼ 0,

ð1 þ~tt1xþ � � �Þk ¼ 1 þ ~cc1xþ � � � ; 0< jxj<": ð13Þ
This relation can be holomorphically continued to x ¼ 0, and the unique
solution 1 þ~tt1xþ � � � is obtained by substituting ~cc1xþ ~cc2x

2 þ � � �
into the binomial series ð1 þ yÞ1=k

. Since tk1 ¼ ck has exactly k dif-
ferent complex solutions t1, Remark 2 is proved.

Remark 3. Let k � 1, l � 1, and let FðxÞ ¼ xlk þ clkþ1x
lkþ1 þ � � �

be analytic at x ¼ 0. Then there exists a unique GðxÞ ¼ xlþ
Dlþ1x

lþ1 þ � � �, analytic at x ¼ 0, such that GðxÞk ¼ FðxÞ holds in
some neighbourhood of 0.

Now to prove a) let f be a solution of (1), f ðxÞ ¼ ckx
k þ � � � ; ck 6¼ 0.

Then, according to Remark 2 there exists TðxÞ ¼ t1xþ � � � with t1 6¼ 0
and analytic at x ¼ 0, such that FðxÞ ¼ TðxÞk holds in some neigh-
bourhood of 0. Substituting this into (1) we find, for sufficiently small jxj,

ðTðxTðxÞkÞÞk ¼ ’ðTðxÞkÞ: ð14Þ
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Since the local (analytic) inverse T�1 of T exists, we can substitute
T�1ðxÞ for x in the last relation and obtain

ðTðT�1ðxÞ � xkÞÞk ¼ ’ðxkÞ ð15Þ
in some neighbourhood of 0. TðT�1ðxÞxkÞ has a Taylor series in x
starting with x kþ1. Hence by Remark 3, TðT�1ðxÞxkÞ ¼  ðxÞ in some
neighbourhood of 0, where  is uniquely determined by

 ðxÞk ¼ ’ðxkÞ;  ðxÞ ¼ x kþ1 þ � � � ; ð16Þ
for sufficiently small jxj. Applying T�1 on both sides of (15) we get,
with U ¼ T�1,

x kUðxÞ ¼ Uð ðxÞÞ ð17Þ
in some neighbourhood of 0, with UðxÞ ¼ u1xþ � � � ; u1 6¼ 0. Then
(17) is locally equivalent with (1), and may be viewed either as a
linear functional equation (see [6]) or a generalized Böttcher equation
for U (cf. [11]).

We take now the second point of view. From Theorem 7 of [11]
it follows that for each u1 2C� there exists exactly one local analytic
solution UðxÞ ¼ u1xþ � � � of (17), and these are all such solutions with
Uð0Þ ¼ 0, U 6¼ 0. It is now clear that with T ¼ U�1, f ðxÞ ¼ ðTðxÞÞk
yields a nontrivial solution of (1), and f ðxÞ ¼ ð1=uk1Þxk þ � � �. By an
appropriate choice of u1 we get each value ck ¼ 1=uk1 in C�.

It remains to prove that a solution f of (1) with f ðxÞ ¼ ckx
k þ � � � is

uniquely determined by ck. Assume that f1 and f2 are both solutions of
(1) with

fjðxÞ ¼ ckx
k þ � � � ; ð j ¼ 1; 2Þ ð18Þ

with the same ck. Take T1 and T2 according to Remark 2, so that

ðTjðxÞÞk ¼ fjðxÞ; j ¼ 1; 2 ð19Þ
in some neighbourhood of 0, and such that T1 and T2 have the same
linear part t1x. Then U1 ¼ T�1

1 and U2 ¼ T�1
2 are solutions of (17)

with the same linear part, and hence U1 ¼ U2, T1 ¼ T2 and f1 ¼ f2.
This proves Theorem 1a).

Theorem 1b) is clear, since the representation f ¼ Tk is possible for
all local analytic solutions f of (1) with f 6¼ 0, f ð0Þ ¼ 0. This com-
pletes the proof of Theorem 1.

The essential step for the proof of Theorem 1 was to solve (17). We
now consider (17) as a linear functional equation. In order to con-
struct all local analytic solutions U 6¼ 0 of (17) we make some more
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preparatory transformations. We put UðxÞ ¼ u1x � ~UUðxÞ in a neighbour-
hood of x ¼ 0, so that ~UUðxÞ ¼ 1 þ � � �. Then (17) is equivalent with

~UUð ðxÞÞ ¼ x kþ1

 ðxÞ �
~UUðxÞ ð20Þ

in some neighbourhood of 0, where �: x 7! x kþ1= ðxÞ is, by holomorphic
extension to x ¼ 0, analytic at x ¼ 0, and x kþ1= ðxÞ ¼ 1 þ � � �.

Now the classical ‘‘iteration process’’ (cf. [6], Ch. 3) may be
applied to the linear equation (20) and yields

~UUðxÞ ¼
Y1
�¼0

 �þ1ðxÞ
ð �ðxÞÞkþ1

; ð21Þ

which converges uniformly and absolutely in each compact subset of
a certain neighbourhood of 0. Here  � is the �-th iterate of  , and
these iterates are analytic in a common neighbourhood of 0, since
 ðxÞ ¼ x kþ1 þ � � �, with k þ 1 � 2. Putting everything together we get

Theorem 2. Let ’ðxÞ ¼ x kþ1 þ � � � be analytic at x ¼ 0, k � 1. Then
the set of local analytic solutions f of (1), with f 6¼ 0 and f ð0Þ ¼ 0, is
given by

f ðxÞ ¼
��

u; x �
Y1
�¼0

 �þ1ðxÞ
ð �ðxÞÞkþ1

�½�1��k

ð22Þ

in some neighbourhood jxj<"ð f Þ. Here  � is the �-th iterate of  .
½�ðzÞ�½�1�

denotes the inverse of �.

3. The Structure Theorem. A Converse Problem

Let ’ðxÞ ¼ x kþ1 þ dkþ2x
kþ2 þ � � � be analytic in x ¼ 0, with k � 1.

Now we will prove that the set of all local solutions f ðxÞ ¼
ckx

k þ � � � ðck2CÞ has the following structure.

Theorem 3. Let ’ðxÞ ¼ x kþ1 þ dkþ2x
kþ2 þ � � � be analytic in x ¼ 0,

with k � 1. Then there exists exactly one local analytic function ~ff0,
with ~ff0ðxÞ ¼ xþ � � �, such that the set of all local analytic solutions
f ðxÞ ¼ ckx

k þ � � � of (1) has the form

f f j f ðxÞ ¼ ~ff0ðckxkÞ; ck2Cg ð23Þ
for jxj<"ð f Þ; "ð f Þ depending in general on f .

Proof. We know from Theorem 1 that under our hypothesis on ’ to
each ck 2C there exists exactly one local analytic solution f of (1)
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with f ðxÞ ¼ ckx
k þ � � � ðjxj<"ð f ÞÞ, and that these are all solutions of

(1). In order to obtain the solutions f 6¼ 0 we wrote f ðxÞ ¼ ðTðxÞÞk
and got for T�1 ¼ U the functional equation (17) in some neighbour-
hood of 0, where  ðxÞ was uniquely determined from  ðxÞk ¼ ’ðxÞk,
 ðxÞ ¼ x kþ1 þ � � �. We claim that  has the form

 ðxÞ ¼ z � ~  ðxkÞ ð24Þ
in a neighbourhood of 0 where ~  ðxÞ ¼ xþ � � �. To see this write
’ðxÞ ¼ x kþ1 ~’’ðxÞ with ~’’ðxÞ ¼ 1 þ � � �, and hence ’ðxkÞ ¼
xkðkþ1Þ ~’’ðxkÞ. Hence (using Remark 3)  ðxÞ ¼ x kþ1 ~’’ðxkÞ1=k

where
we now use the binomial series for the exponent 1=k to get  ðxÞ ¼
x � xk � ~~  ~  ðxkÞ ¼ x � ~  ðxkÞ with ~  ðxÞ ¼ xþ � � �. Using the form (24)
of  and substituting �x with � ¼ e2�i=k in (1) we find

xkUð�xÞ ¼ Uð�x ~  � ðxkÞÞ: ð25Þ
This means that x 7�!Uð�xÞ is a local analytic solution of (17) such
that Uð�xÞ ¼ �u1xþ � � �, if UðxÞ ¼ u1xþ � � �, u1 6¼ 0. Since (1) is a
linear functional equation for U and since a solution of (1) is uniquely
determined by its first coefficient we get Uð�xÞ ¼ �UðxÞ in some
neighbourhood of 0, hence

UðxÞ ¼
X1
�¼0

u�kþ1x
�kþ1: ð26Þ

Now we show that T ¼ U�1 has the same structure. T is characterized
by the relation TðUðxÞÞ ¼ x near 0. Again substituting �x for x by (26)
we get TðUð�xÞÞ ¼ Tð� UðxÞÞ ¼ �x. Again by substituting TðxÞ for x
we find, because of UðTðxÞÞ ¼ x, that Tð�xÞ ¼ �TðxÞ in some neigh-
bourhood of 0, hence

TðxÞ ¼
X1
�¼0

t�kþ1x
�kþ1 ¼ t1x � ~TTðxkÞ; ð27Þ

where t1 ¼ 1=u1 and ~TTðyÞ ¼ 1 þ � � �.
Now let Uð0Þ be the unique solution of (1) with Uð0ÞðxÞ ¼ xþ � � �,

and T ð0Þ ¼ ðUð0ÞÞ�1
. Since (1) is linear and each solution UðxÞ ¼

u1xþ � � � of (1) is determined by its first coefficient u1, we get
U ¼ u1Uð0Þ, and for T ¼ U�1

TðxÞ ¼ T ð0Þðt1xÞ ð28Þ
with t1 ¼ 1=u1. Indeed,

Tð0Þðt1UðxÞÞ ¼ T ð0Þ
�

1

u1

UðxÞ
�

¼ Tð0ÞðUð0ÞðxÞÞ ¼ x;
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in some neighbourhood of 0, so that the local inverse T of U is given
by (28). Now, since f ðxÞ ¼ ðTðxÞÞk we find by (27) and (28),

f ðxÞ ¼ ðTðxÞÞk ¼ ðTð0Þðt1xÞÞk ¼ ðt1x � ~TT ð0Þðt1xÞkÞ ¼ ~ff0ðckxkÞ; ð29Þ
where, using (27),T ð0ÞðxÞ ¼ x � ~TTð0ÞðxkÞ, ck ¼ tk1, and~ff0ðyÞ :¼ y � ~TT0ðyÞ,
which only depends on ’, but not on the individual solution
f . Moreover, ~ff0ðyÞ ¼ yþ � � �. It remains to prove that ~ff0 is uniquely
determined by ’, i.e., by the given functional equation (1). In fact, it is
uniquely determined by any non-trivial solution f ðxÞ ¼ ckx

k þ � � �,
k � 1, ck 6¼ 0, of (1). Assume, that in some neighbourhood of 0, we have

f ðxÞ ¼ ~ff0ðckxkÞ; f ðxÞ ¼ ~gg0ðckxkÞ; jzj<�; ð30Þ
with analytic functions ~ff0, ~gg0. Then ð~ff0 � ~gg0ÞðckxkÞ ¼ 0; jxj<�. Since
ck 6¼ 0, the values ckx

k cover a neighbourhood of 0, if x runs through
a neighbourhood of 0. So, by the identity theorem, we get ~ff0 ¼ ~gg0.
Now Theorem 3 is completely proved.

There is the following converse problem (in the real case, cf. [13]):
For which functions f 6¼ 0 does there exist a function ’ such that
f ðx f ðxÞÞ ¼ ’ð f ðxÞÞ holds in some domain? In our present situation f
is a local analytic function, f ðxÞ ¼ ckx

k þ � � � ; k � 1; ck 6¼ 0, in some
neighbourhood of 0. Theorem 3 allows us to answer this question
completely for local analytic functions. We have

Theorem 4. a) Let ~ff0, ~ff0ðyÞ ¼ yþ � � �, be analytic in some neigh-
bourhood of 0. Then there exists a unique local analytic ’, ’ðxÞ ¼
x kþ1 þ � � �, such that the set of all local analytic solutions of (1) is
given by

f f j f ðxÞ ¼ ~ff0ðckxkÞ; jxj<"ð f Þ; ck2Cg: ð31Þ
b) Let f ðxÞ ¼ ckx

k þ � � � with k � 1; ck 6¼ 0 be analytic in some
neighbourhood of 0. Then there exists a local analytic ’ with
’ð0Þ ¼ 0 such that f is a solution of (1) if and only if f has the form
f ðxÞ ¼ ~ff ðxkÞ in some neighbourhood of 0, where ~ff is analytic. If such
a ’ exists, then it is uniquely determined by f .

Proof. a) Assume that ’ is a local analytic function with ’ð0Þ ¼ 0,
such that each f with f ðxÞ ¼ ~ff0ðckxkÞ, jxj<"ð f Þ, is a solution of (1).

Then f ðx f ðxÞÞ ¼ ’ð f ðxÞÞ , ~ff0ðxk~ff0ðxkÞkÞ ¼ ’ð ~f0f0ðxkÞÞ in some neigh-
bourhood of x ¼ 0. Since xk covers a neighbourhood of 0, if x
runs through a neighbourhood of 0, we find from this equivalence:
f ðx f ðxÞÞ ¼ ’ð f ðxÞÞ in some neighbourhood of x ¼ 0 , ~ff0ðy~ff0ðyÞkÞ ¼
’ð~ff0ðyÞÞ in some neighbourhood of y ¼ 0.
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Putting ð~ff�1
0 ÞðyÞ in place of y in the last relation, we get:

f ðx f ðxÞÞ ¼ ’ð f ðxÞÞ in a neighbourhood of 0 ,
~ff0ð~ff�1

0 ðyÞ � ykÞ ¼ ’ðyÞ; in some neighborhood of 0: ð32Þ
This shows that ’ is uniquely determined by ~ff 0, if it exists. On the

other hand, if we define ’ by (32), then it obviously satisfies the
assertions of Theorem 4 a). So, for ’ defined according to (32), we
see that all functions x 7�!~ff 0ðckxkÞ, jxj<"ð f Þ, are solutions of (1).
These are, in fact, all local analytic solutions f of (1) with f ð0Þ ¼ 0.
Indeed, by Theorem 1, there is exactly one solution f ðxÞ ¼ ckx

k þ � � �
with given ck 2C. But since ~ff 0ðckxkÞ ¼ ckx

k þ � � � and is a solution of
(1), we got all solutions.

b) We only have to show the existence of ’ to a given f and its
uniqueness. But this is done with the same calculations as used in the
proof of a). This completes the proof of Theorem 4.

Remark 4. Theorems 3 and 4 show that for the local analytic solu-
tions f with f ð0Þ ¼ 0 of (1) there may not exist a common region con-
taining 0 where they all are analytic. Take, in Theorem 4a), ~ff 0 with
~ff 0ðyÞ ¼ yþ � � �, so that its radius of convergence is finite (but clearly
positive). Then the radius of convergence of ~ff 0ðckxkÞ tends to 0 with
lim jckj ¼ 1. But all functions x 7�!~ff 0ðckxkÞ are solutions of the
same (1).

Remark 5. One may ask for an explicit representation of the function
~ff 0 in Theorem 3, associated with a given ’. We may use a similar
approach as given in Theorem 2 for the solutions f of (1). Since ~ff 0ðxkÞ
is a solution of (1), namely the one with ~ff 0ðxkÞ ¼ xk þ � � � we get from
(1), by known calculations and arguments already used before,

~ff 0ðy~ff 0ðyÞkÞ ¼ ’ð~ff 0ðyÞÞ ð33Þ
in some neighbourhood of y ¼ 0 (cf. (32)) or, equivalently,

yk~gg0ðyÞ ¼ ~gg0ð’ðyÞÞ ð34Þ
in some neighbourhood of 0, for ~gg0 ¼ ~ff

�1

0 . Then (33) is a further
generalization of Dhombres’ equation, and (34) may be viewed as a
generalized Böttcher equation or as a linear functional equation for
~gg0, ~gg0ðyÞ ¼ yþ � � � . Then (34) is the functional equation (17) with ’
in place of  . Hence the usual ‘‘iteration process’’ yields

~gg0ðyÞ ¼ y
Y1
r¼0

’rþ1ðyÞ
ð’rðyÞÞkþ1

" #½�1�

: ð35Þ
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Remark 6. In order to describe the local analytic solutions of (1) in
our present situation, one could also follow another way:

(i) Show directly from (1), by comparing coefficients of powers x�

on both sides, that there is a unique formal solution f ðxÞ ¼ ckx
k þ � � �

with given ck (taking ’ðxÞ ¼ x kþ1 þ � � �).
(ii) Then put f ðzÞ ¼ ~ff ðzkÞ with some ~ff with ~ff ðyÞ ¼ ckyþ � � �. This

leads to the functional equation (34) for ~gg :¼ ~ff
�1

in place of ~gg0 which
is equivalent with (1) in some neighbourhood of 0. Then (34) is the
same as (1) with ’ instead of  , and we know already that such a
functional equation has a unique local analytic solution ~gg with
prescribed initial part �1y. Hence there exists a unique local analytic
solution f of (1) with f ðxÞ ¼ ~ff ðxkÞ and ~ff ðyÞ ¼ ckyþ � � �, where ck2C
is arbitrarily given. So we get directly to the representation of
Theorem 3.

4. Generalized Dhombres Equations
and Briot-Bouquet Differential Equations

We will now present a formulation of the equations (1) as certain dif-
ferential equations in complex domain, namely as special Briot-Bouquet
differential equations. For this type of differential equations we refer
the reader to [3], pp. 295–297, [2], pp. 402–407, [7], pp. 104–106 and
[8], pp. 160–162. First, we associate a given (1) with a Briot-Bouquet
differential equation.

Theorem 5. a) Let ’ðzÞ ¼ zkþ1 þ dkþ2z
kþ2 þ � � � ðk � 1Þ be analytic

in a neighbourhood of 0. Then there exists a unique local ana-
lytic function N’, N’ðzÞ ¼ zþ � � � such that the set of all local
analytic solutions of (1) with f ð0Þ ¼ 0 is the same as the set of
local analytic solutions w with wð0Þ ¼ 0 of the differential equation

zw0ðzÞ ¼ kN’ðwðzÞÞ ð36Þ
in a neighbourhood of 0.
b) If we represent, according to Theorem 3b), the solutions of (1) in

the form f ðzÞ ¼ ~ff ðzkÞ, then ~ff is a local analytic solution of the
differential equation

z~ww0ðzÞ ¼ N’ð~wwðzÞÞ ð37Þ
with ~wwð0Þ ¼ 0, and vice versa.

Proof. a) Let ’ be as in the assumption, then the set of all local analytic
solutions f of (1) with f ð0Þ ¼ 0 can, according to Theorem 3, be
represented in the form f ðxÞ ¼ ~ff 0ðckxkÞ, jxj<"ð f Þ, if f ðxÞ ¼ ckx

k þ � � �,
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where ~ff 0 is uniquely determined by ’ and ~ff 0ðyÞ ¼ yþ � � �. This
yields, by the chain rule,

x f 0ðxÞ ¼ ~ff 0ðckxkÞkckxk; ð38Þ

in some neighbourhood of 0. Since ~ff
�1

0 exists, we get

x f 0ðxÞ ¼ k~ff
0
0ð~ff

�1

0 ð f ðxÞÞÞ~ff�1

0 ð f ðxÞÞ; ð39Þ

and introducing N’ :¼ ð~ff 00 � ~ff
�1

0 Þ � ~ff�1

0 we obtain

x f 0ðxÞ ¼ kN’ð f ðxÞÞ; ð40Þ

i.e., Eq. (36), in some neighbourhood of 0, where N’ðyÞ þ � � � is local

analytic in y ¼ 0, since ~ff 0, ~ff
�1

0 and ~ff
�1

0 are so.
Now we have to prove that each local analytic solution w with

wð0Þ ¼ 0 of (36) is a solution of (1). An easy calculation shows that
each such solution w of (36) is of the form wðxÞ ¼ ckx

k þ � � � with
some ck 2C, and that w is uniquely determined by ck (we omit the
details). On the other hand, by the construction of (36) there exists a
solution w of (36) of the form wðxÞ ¼ ckx

k þ � � � , namely the solution
x 7!~ff 0ðckxkÞ of (1) from which we started.

It remains to show that there is only one N, such that (1) and

xw0ðxÞ ¼ kNðwðxÞÞ; wð0Þ ¼ 0 ð41Þ

have the same set of local analytic solutions.
Assume that

x0wðxÞ ¼ kNjðwðxÞÞ; j ¼ 1; 2; wð0Þ ¼ 0; ð42Þ

with local analytic functions Nj, such that NjðxÞ ¼ xþ � � � have
the same set of local analytic solutions as (1). Then there is a
local analytic function wðxÞ ¼ ckx

k þ � � �, k�1, ck 6¼ 0 which
satisfies both differential equations and hence we get by substitution,
kðN1 � N2ÞðwðxÞÞ ¼ 0 in some neighbourhood of 0. Since the values
wðxÞ cover a neighbourhood of 0, since w 6¼ 0, we find by the identity
theorem N1 � N2 ¼ 0.

b) The proof is similar as for a). This completes the proof of
Theorem 5.

There again an inverse problem arises: Given N, NðxÞ ¼ xþ � � �,
analytic in x ¼ 0. Does there exist a ’; ’ðxÞ ¼ x kþ1 þ � � �, such that
the set of local analytic solutions w of (41) is the same as the set of
local analytic solutions f of (1)? The answer is positive and given by
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Theorem 6. Let NðxÞ ¼ xþ � � � be analytic in x ¼ 0. Then there
exists a unique ’, local analytic at x ¼ 0, ’ðxÞ ¼ x kþ1 þ � � � such
that the Briot-Bouquet differential equation

xw0ðxÞ ¼ k � NðwðxÞÞ; wð0Þ ¼ 0 ð43Þ

has the same set of local analytic solutions as (1). The function N’,
associated with ’ according to Theorem 5, equals N.

Proof. From the theory of Briot-Bouquet differential equations (see
in particular [8], pp. 160–162) we deduce that all formal solutions
wðxÞ with wð0Þ of (43) are given by wðxÞ ¼ ckx

k þ � � � , where ck2C
can be arbitrarily prescribed, and that the formal solution
wðxÞ ¼ ckx

k þ � � � is uniquely determined by ck. Moreover, each
wðxÞ is convergent in some neighbourhood of 0, so that the formal
solutions of (43) yield all local analytic w solutions of (43) with
wð0Þ ¼ 0. For the convenience of the reader we give another, direct
approach to the local analytic solutions wðxÞ with wð0Þ ¼ 0 of (36).

First of all, it follows from (36) by comparing coefficients on both
sides that such a w has the form wðxÞ ¼ ckx

k þ � � �, where ck 2C is not
determined whereas the coefficients of c� , � � k þ 1, are uniquely
determined by ck and they exist. If ck ¼ 0 we obtain w ¼ 0. Now let
ck 6¼ 0. Then wðxÞ ¼ ckx

k~wwðxÞ with ~wwðxÞ ¼ 1 þ �1xþ � � �. Hence
(43) is in a neighbourhood of 0 equivalent with

ckx
kþ1~ww0ðxÞ ¼

X
��2

k��ðckxkÞ� ~wwðxÞ�; ð44Þ

where we use NðyÞ ¼ yþ �2y
2 þ � � �. If x 6¼ 0 we deduce from that

~ww0ðxÞ ¼
X
��2

k��c
��1
k xð��1Þk�1~wwðxÞ�; ~wwð0Þ ¼ 1; ð45Þ

which holds in a punctured neighbourhood of 0. We show that it holds
in a neighbourhood of x ¼ 0.

To see this we firstly prove that the function

ðx;wÞ 7�!
X
��2

k��c
��1
k xð��1Þk�1w� ð46Þ

is defined and holomorphic in some region jxj<"1, jw� 1j<"2. From
the convergence of NðyÞ ¼ yþ

P
��2 ��y

� we get, by simple estima-
tions, that the series in (46) is indeed absolutely convergent if jxj<�1

and jw� 1j<�2, for some �1; �2>0. Hence it is uniformly conver-
gent in each compact set contained in jxj<�1, jw� 1j<�2, and by
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Weierstrass’ theorem it represents a function holomorphic in jxj<�1,
jw� 1j<�2. Hence we are allowed to substitute for w the convergent
series ~wwðxÞ ¼ 1 þ ~��1xþ � � � for sufficiently small jxj into the series in
(46), and obtain an analytic function in some neighbourhood of 0.
This means that the differential equation for ~ww can be continued to
hold also in x ¼ 0, and that it allows the application of Cauchy’s
existence and uniqueness theorem. Hence, ~wwðxÞ is indeed analytic at
x ¼ 0, and the existence result for (43) holds.

Then we consider the Briot-Bouquet differential equation

x ~WW
0ðxÞ ¼ Nð ~WWðxÞÞ; ~WWð0Þ ¼ 0: ð47Þ

Here we get from the general theory [7] that (47) has exactly one
formal solution ~ww0 with ~ww0ðxÞ ¼ xþ � � � which is also convergent in
some neighbourhood of 0. We will now prove that, using this ~ww0, we
get the local analytic solutions of (47) in the form

wðxÞ ¼ ~ww0ðckxkÞ; ð48Þ

where jxj is sufficiently small and ck can be arbitrarily chosen in C.
We deduce from (48) and (47) that

x0wðxÞ ¼ x~ww0
0ðckxkÞ � k � ckxk�1 ¼ kckx

k~ww0
0ðckxkÞ ¼ kNðwðxÞÞ ð49Þ

i.e., Eq. (43) is satisfied in some neighbourhood of 0, where
wðxÞ ¼ ckx

k þ � � �. So wðxÞ is the unique solution of (43) with
wðxÞ ¼ ckx

k þ � � �. Since ck2C is arbitrary (48) yields all local ana-
lytic solutions of (43). By Theorem 4a) there exists a unique ’ðxÞ ¼
x kþ1 þ � � � such that fw;wðxÞ ¼ ~ww0

0ðckxkÞ; ck 2C; jxj<"ðwÞg is the
set of all local analytic solutions of (1). By Theorem 5a, N is the
unique function such that the set of all local analytic solutions of (43)
coincides with the set of such solutions of (1), so N ¼ N’.

Remark 7. The proof of Theorems 1 and 3 on the existence of local
analytic solutions of (1) and the structure of these solutions may be
entirely built on the corresponding results for Briot-Bouquet differ-
ential equations. This has the advantage that the proof of convergence
of formal solutions of a Briot-Bouquet differential equation by
Cauchy’s method of majorant, is rather short and elegant. So the
existence results (Theorem 1) and the results on the structure of solu-
tions (Theorem 3, Theorem 4) can be deduced for formal solutions of
(1), neglecting the convergence, and the same holds for the connec-
tion of (1) with Briot-Bouquet differential equations. From the con-
vergence of any formal solution of a Briot-Bouquet equation, provided
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the given series N ¼ N’ is convergent, we obtain, going back, the
convergence of all formal solutions of (1).

5. Generalized Dhombres Equations
and Iteration Groups

There are also close relations of generalized Dhombres equations (1)
to iteration groups. In order to present these relations we recall the
basic definitions and properties of analytic iteration groups of local an-
alytic functions and their description by Acz�eel-Jabotinsky differential
equations (see [8], [9], [10], also [15]).

A family ðFtÞt 2C of formal power series FtðxÞ ¼ c1ðtÞxþ � � � with
c1ðtÞ 6¼ 0 ðt2CÞ is an analytic iteration group, if all coefficient
functions t 7! c�ðtÞ are entire functions and if the translation equation

FtþsðxÞ ¼ FtðFsðxÞÞ; ðt; s2CÞ ð50Þ

holds. In particular we will consider the case when each Ft is a
convergent power series. Then for each ðt; s2C2Þ there exists a
neighbourhood of z ¼ 0 such that

FtþsðzÞ ¼ FtðFsðzÞÞ ð51Þ
holds in this neighbourhood. If c1ðtÞ ¼ e	t, t2C, with 	 6¼ 0, then the
family ðFtÞt 2C is an iteration group of type I. We have the following
characterization of iteration groups of type I of formal series.

If ðFtÞt 2C is such an iteration group of type I, then there exists a
formal series HðxÞ ¼ xþ h2x

2 þ � � � such that the set of formal solu-
tions �ðxÞ ¼ �1xþ � � �, �1 6¼ 0, of the Acz�eel-Jabotinsky differential
equation

HðxÞ d�
dx

ðxÞ ¼ Hð�ðxÞÞ ð52Þ

is exactly the family ðFtÞt 2C, considered as a set. Conversely, the set
of all formal solutions � of (52), with HðxÞ ¼ xþ h2x

2 þ � � � may be
parameterized as ðFtÞt 2C, where ðFtÞt 2C is an iteration group of type
I, uniquely determined if we take 	 ¼ 1.

Furthermore, all series Ft of an iteration group ðFtÞt 2C are
convergent if and only if the corresponding H is convergent. This
means that H is a convergent series if and only if all formal solutions
� of (52) are convergent. However, there need not exist a neigh-
bourhood of 0 where all formal solutions of (52) are convergent.

Now we explain the connection of Acz�eel-Jabotinsky differential
equations (54), where HðxÞ ¼ xþ h2x

2 þ � � �, with certain Briot-
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Bouquet differential equations, namely precisely those which were used
in Sect. 4. Let �0 be the derivative of an analytic function �.

Lemma 1. Let HðxÞ ¼ xþ h2x
2 þ � � � be analytic at x ¼ 0. Let B be

the unique local analytic solution of

xB0ðxÞ ¼ HðBðxÞÞ ð53Þ
with BðxÞ ¼ xþ � � �. Then for each local analytic solution �,
�ðxÞ ¼ �1xþ � � �, of

HðxÞ�0ðxÞ ¼ Hð�ðxÞÞ ð54Þ
� :¼ � � B is a solution of

x�0ðxÞ ¼ Hð�ðxÞÞ: ð55Þ
Conversely, if �ðxÞ ¼ �1xþ � � � is a solution of (55), then � :¼
� � B�1 is a solution of (54).

Proof. Let B be defined as above. Then, for a solution � of (54),
� :¼ � � B satisfies the differential equation

xB0ðxÞ ¼ HðBðxÞÞ: ð56Þ
Indeed, putting A ¼ B�1, � ¼ � � A, we get from (54), using the chain
rule,

HðxÞ � ð�0ÞðAðxÞÞ � A0ðxÞ ¼ Hð�ðAðxÞÞÞ; ð57Þ
in a neighbourhood of 0. From AðBðxÞÞ ¼ x we obtain A0ðBðxÞÞ ¼
ðB0ðxÞÞ�1

, so that we have

ððB0ðxÞÞ�1 � HðBðxÞÞÞ � �0ðxÞ ¼ Hð�ðxÞÞ: ð58Þ
Since B is a solution of (56) we finally get (55). The converse is
proved in the same way which completes proof of Lemma 1.

Now, let again 
ðxÞ ¼ xkþ1 þ � � � be given. By Theorem 5a) we
associate to ’ the local analytic function N’, N’ðxÞ ¼ xþ � � � such
that the set of all local analytic solutions of (1) (Theorem 3) is exactly
the set of solutions of (37). We may hence apply Lemma 1 to N’ in
place of H and obtain the relation between equations (1) and iteration
groups.

Theorem 7. a) Let ’ðxÞ ¼ x kþ1 þ dkþ2x
kþ2 þ � � � be analytic at

x ¼ 0. The set of all nonzero local analytic solutions f , f ð0Þ ¼ 0, of
(1) can be described as a family

f�ðt; xÞ :¼ Fðt;BðxkÞÞ; ðt2CÞ; ð59Þ
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where BðxÞ ¼ xþ � � � is analytic at x ¼ 0 and ðFðt; �ÞÞt 2C is an
analytic iteration of type I, i.e.,

Fðt; xÞ ¼ etxþ � � � ; ðt2CÞ: ð60Þ
b) Let N’ be the local analytic function associated to (1) by

Theorem 5. Then the analytic iteration group representing the nonzero
solutions of (1) according to a) is given as the set of nonzero solutions
�, �ðxÞ ¼ �1xþ � � � of the Acz�eel-Jabotinsky equation

N’ðxÞ � 
0ðxÞ ¼ N’ð’ðxÞÞ ð61Þ
with 
ðxÞ ¼ Fðt; xÞ for �1 ¼ et, t2C. B is the unique solution of

x � B0ðxÞ ¼ N’ðBðxÞÞ ð62Þ
with BðxÞ ¼ xþ � � �.
c) There is only one analytic iteration group ðFðt; xÞÞt 2C with

Fðt; xÞ ¼ etxþ � � � ðt2CÞ and only one B such that the set of all
nontrivial analytic solutions of (1) has a representation (48).

Proof. a) and b) Under our hypothesis there exists, according to
Theorem 5, a unique N’, N’ðxÞ ¼ xþ � � �, analytic at x ¼ 0, such
that the set of nonzero solutions ~ff of

x~ff
0ðxÞ ¼ N’ð~ff ðxÞÞ; ~ff ð0Þ ¼ 0; ð63Þ

is the set of local analytic functions yielding the representation
f ðxÞ ¼ ~ff ðxkÞ of nonzero solutions of (1). By Lemma 1, writing now

N’ for H, ~ff for � and f� for �, there exists ~ff 0, ~ff 0ðxÞ ¼ xþ � � �, such

that ~ff 0 is a solution of (63) and such that f� :¼ ~ff � ~ff�1

0 is a solution of

N’ðxÞ � ð f�Þ0ðxÞ ¼ N’ð f�ðxÞÞ: ð64Þ

All local analytic solutions f� of (64) can be obtained in this form
from a solution ~ff of (63). From the introducing explanations of Sect.
5 we know that (61) determines a unique analytic iteration group of
type I of the form

Fðt; xÞ ¼ etxþ � � � ðt2CÞ; ð65Þ
where the local analytic functions Fðt; xÞ yield all nonzero solutions
of (61). Going back we obtain the representation

f�ðt; xÞ :¼ Fðt;BðxkÞÞ; ðt2CÞ; ð66Þ
for the set of nontrivial local analytic solutions of (1). Hence a) and b)
are proved.
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c) This follows from uniqueness results for Acz�eel-Jabotinsky and
Briot-Bouquet differential equations. We omit the details. This com-
pletes the proof of Theorem 7.

Remark 8. From Theorem 7 we deduce that the set of nontrivial local
analytic solutions of (1), when parametrized as in Theorem 7a) form a
perturbation of an analytic iteration group. We find, in the case k ¼ 1,

f�ðt þ s; xÞ ¼ f�ðt;B�1ð f�ðs; xÞÞÞ; ðt; s2CÞ ð67Þ
in some neighbourhood of x ¼ 0, depending on t and s.

Indeed, by (48) and since ðFðt; xÞÞt 2C is a solution of the trans-
lation equation we get

f�ðt þ s; xÞ ¼ Fðt þ s;BðxÞÞ ¼ Fðt;Fðs;BðxÞÞÞ
¼ Fðt; f�ðs; xÞÞ ¼ f�ðt;B�1ð f�ðs; xÞÞÞ ð68Þ

in some neighbourhood of x ¼ 0.
If k � 1 we get, in a similar way,

f�ðt þ s; xÞ ¼ f�ðt; ðB�1ð f�ðs; xÞÞ1=kÞ; ðt; s2CÞ; ð69Þ

where any of the k-th roots of B�1ð f�ðs; xÞÞ, analytic at x ¼ 0, may
be taken on the right-hand side.

Here we have again a converse problem: Let ðFðt; xÞÞt 2C be an
analytic iteration group of type I, Fðt; xÞ ¼ etxþ � � � ðt2CÞ, whose
elements are local analytic at x ¼ 0, and let k � 1. Does there exist
’ðxÞ ¼ x kþ1 þ � � �, such that the nontrivial solutions of (1) can be
represented by (66), using this iteration group and an appropriate B?
The answer is affirmative and given by

Theorem 8. Let k � 1 and let ðFðt; xÞÞt 2C be an analytic iteration
group of local analytic functions Fðt; �Þ, Fðt; xÞ ¼ etxþ � � � ðt2CÞ.
Then there exists a unique ’, ’ðxÞ ¼ x kþ1 þ dkþ2x

kþ2 þ � � �, analytic
at x ¼ 0, and a unique BðxÞ ¼ xþ � � �, such that the nonzero solu-
tions of (1) can be presented in the form (66).

Proof. By what has been said at the beginning of Sect. 5, there exists
for ðFðt; xÞÞt 2C a unique HðxÞ ¼ xþ h2x

2 þ � � �, analytic at x ¼ 0,
such that (54) has exactly the nontrivial local analytic solutions �
of the form x 7!Fðt; xÞ. By Lemma 1 there exists a (unique) B,
BðxÞ ¼ xþ � � � such that via � :¼ � � B�1, (54) is equivalent with
(55); note that B is the unique solution of (55) with BðxÞ ¼ xþ � � �.
Then, according to Theorem 6 and its proof there exists a unique local
analytic function ’, ’ðxÞ ¼ x kþ1 þ � � �, such that the set of all local
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analytic solutions ~ff :¼ � of (55) yields the set of all local analytic
solutions of (1) in the form

f ðxÞ ¼ ~ff ðxkÞ; jxj<"ð f Þ: ð70Þ
Moreover, using the notation of Theorem 5 we have H ¼ N’. Then,
going back to �, we find altogether for f the representation (66).

The assertions refering to uniqueness follow from the arguments
used before. This completes the proof of Theorem 8.

In Remark 8 we found for the nonzero solutions of (1) in the case
’ðxÞ ¼ x2 þ � � � the composition law (68), in some neighbourhood of
0, depending on s and t. We may consider this as a perturbed trans-
lation equation. However, in this perturbation of the translation equa-
tion, B was not arbitrary, but was uniquely determined by ’. Now
let C, CðxÞ ¼ xþ c2x

2 þ � � �, be an arbitrary local analytic function
and ð f�ðt; xÞÞt 2C be a family of invertible local analytic functions
satisfying

f�ðt þ s; xÞ ¼ f�ðt;C�1ð f�ðs; xÞÞÞ; ðt; s2CÞ; ð71Þ
in some neighbourhood of 0, depending on s and t. Then

Fðt; xÞ :¼ f�ðt;C�1ðxÞÞ; ðt2CÞ; ð72Þ
is an iteration group. It is of the form Fðt; xÞ ¼ etxþ � � � ðt2CÞ, if
and only if f�ðt; xÞ ¼ etxþ � � � ðt2CÞ. We assume now that f�ðt; xÞ ¼
etxþ � � � and that all coefficient functions of ð f�ðt; xÞÞt 2C are entire.
This implies that ðFðt; xÞÞt 2C is an analytic iteration group of type I.
We associate with this iteration group, according to Theorem 8, the
unique ’, ’ðxÞ ¼ x2 þ � � � (since here k ¼ 1) such that all nonzero
solutions of (1) are given by

�ff ðt; xÞ ¼ Fðt;BðxÞÞ; ðt2CÞ; ð73Þ
with an appropriate and unique B. From (1) for �ff ðt; xÞ :¼ gðxÞ we
obtain the functional equation

gðD�1ðDðxÞ � gðxÞÞÞ ¼ ’ðgðxÞÞ ð74Þ
with D ¼ B�1 � C. This is another generalization of the Dhombres
equation which coincides with (1) iff B ¼ C.

These arguments may easily be extended to obtain

Remark 9. Let C, CðxÞ ¼ xþ � � �, be analytic at x ¼ 0, and let
ð f�ðt; xÞÞt 2C with f�ðt; xÞ ¼ etxþ � � � and entire coefficient functions
be a solution of (71) in a neighbourhood of x ¼ 0, depending on t and
s (i.e., a solution of a perturbated translation equation).
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Then there exists a unique ’, ’ðxÞ ¼ x2 þ � � � , and a unique D,
DðxÞ ¼ xþ � � �, such that the set of nonzero local analytic solutions g
with gð0Þ ¼ 0 of

gðD�1ðDðxÞ � gðxÞÞÞ ¼ ’ðgðxÞÞ ð75Þ
is given by the functions x 7! f�ðt; xÞ, for all t.

6. Relations Between Two Generalized
Dhombres Equations: An Application
of the Böttcher Functional Equation

The aim of this section is to give an explicit bijection of the set of
local analytic solutions of a generalized Dhombres equation (1) with
’ :¼ ’1 to the set of local analytic solutions of another (1) with
’ :¼ ’2, if ’jðxÞ ¼ x kþ1 þ � � � ; j ¼ 1; 2 with the same k � 1. This
can be done by using the Böttcher functions B’j

of ’j, for j ¼ 1; 2, and
will also give another way to solve (1) in the local analytic situation.

It is well known (see e.g. [16], pp. 60–61) that to ’ðxÞ ¼ x kþ1 þ � � �,
analytic at x ¼ 0, there exists a unique local analytic and invertible
B’, B’ðxÞ ¼ xþ � � �, such that

B�1
’

�
B’ðxÞkþ1

�
¼ ’ðxÞ ð76Þ

in some neighbourhood of 0. We call B’ Böttcher function of ’.
Using B’ we get another representation of the nontrivial local

analytic solutions of (1), namely,

Theorem 9. Let ’ðxÞ ¼ x kþ1 þ � � � ðk � 1Þ be analytic at x ¼ 0.
Then the set of all nontrivial local analytic solutions f of (1) with
f ð0Þ ¼ 0 is given by

f ðxÞ ¼ B�1
’ �x

Y1
y¼0

zkðkþ1Þ�

B�1
’ ðzkðkþ1Þ�Þ

" #½�1�
0
@

1
A

k0
@

1
A ð77Þ

for �2Cnf0g, jxj<"ð�Þ. Here B’ is the Böttcher function of ’ and
½�ðxÞ�½�1�

denotes the inverse function of �.

The proof of Theorem 9 will be given together with that of
Theorem 10 which establishes an explicit 1 : 1 correspondence between
the sets of nontrivial local analytic solutions of two generalized
Dhombres equations (1) for ’ :¼ ’1 and ’ :¼ ’2, if

’jðxÞ ¼ x kþ1 þ � � � ; ð j ¼ 1; 2Þ; ð78Þ
with the same k � 1.
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Theorem 10. Let ’j; ’jðxÞ ¼ x kþ1 þ � � � ð j ¼ 1; 2Þ be analytic at
x ¼ 0, k � 1. Let B’j

be the Böttcher function of ’j, and denote by f1
(resp. f2) the local analytic solutions of (1) with ’ :¼ ’1 and
’ :¼ ’2, respectively, with the same initial part �x ð� 6¼ 0Þ. Then we
have

f2ðxÞ ¼ B�1
’2

Y1
�¼0

B�1
’1

B�1
’2

ðzkðkþ1Þ�Þ
 !

� ðB’1
� f1ÞðxÞ1=k

h i½�1�
 !½�1�

0
@

1
A

k

ð79Þ
in some neighbourhood of 0.

Proof of Theorems 9 and 10. Let (1) with ’ðxÞ ¼ x kþ1 þ � � � be given,
and let f be a solution of (1). Define g :¼ B’ � f . Then using (76) and
(1) we see that (1) is equivalent with

gðxB�1
’ ðgðxÞÞÞ ¼ gðxÞkþ1 ð80Þ

in some neighbourhood of 0. We know already from the proof of
Theorem 1 and from Theorem 2 that, to solve (80), it is sufficient to
put gðxÞ ¼ TðxÞk or gðxÞ ¼ TðxkÞ since this leads to solve (1) and
hence also (80) because of g ¼ B’ � f . Let us follow the first pos-
sibility gðxÞ ¼ TðxÞk. By well-known computations and arguments
we obtain for U ¼ T�1 the functional equation

B�1
’ ðxkÞ � UðxÞ ¼ Uðx kþ1Þ ð81Þ

with UðxÞ ¼ u1xþ � � �, equivalent with (1). The advantage of (81) lies
in the fact that the dependence on ’ is now concentrated in the first
(known) factor on the left-hand side of (81), which holds in a
neighbourhood of 0. To (81) we may, as for the proof of Theorem 1,
apply the existence and uniqueness results for generalized Böttcher
equations (see [11]) which yields that to each u1 2C there exists
a unique solution U with UðxÞ ¼ u1xþ � � �. Now we consider two
generalized Dhombres equations (1), with ’ :¼ ’j, j ¼ 1; 2, with
’jðxÞ ¼ x kþ1 þ � � �, the corresponding Böttcher functions B’1

and B’2

and the associated equations (81).
Let us denote by U jð�; xÞ the unique local analytic solution of

B�1
’j
ðxkÞ � U jðxÞ ¼ U jðx kþ1Þ; ð82Þ

with U jð�; xÞ ¼ �xþ � � �, � 6¼ 0. Let E� be the quotient U1=U2

which is, by holomorphic extension to x ¼ 0, analytic in some neigh-
bourhood of 0, also E�ðxÞ ¼ 1 þ � � �. Similarly, we see the quotient
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B�1
’2
=B�1

’1
as an analytic function around 0, and have

B�1
’2

B�1
’1

ðxÞ ¼ 1 þ � � � :

Dividing (82), side by side, we obtain

B�1
’2

B�1
’1

ðxkÞ � E�ðxÞ ¼ E�ðx kþ1Þ ð83Þ

in some neighbourhood of 0. Now, E� does not depend on �, since (83)
has only one solution with absolute term 1. So write E� ¼ E, where E
is uniquely determined by the pair ð’1; ’2Þ.
E can be calculated from (83) by the classical ‘‘iteration process’’

for linear functional equations which gives

EðxÞ ¼
Y1
�¼0

B�1
’1

B�1
’2

ðxkðkþ1Þ�Þ ð84Þ

converging uniformly and absolutely in each compact subset of a
certain neighbourhood of x ¼ 0. Using the definition E ¼ U2=U1 we
get from (84)

U2ð�; xÞ ¼
Y1
�¼0

B�1
’1

B�1
’2

ðxkðkþ1Þ�Þ
 !

U1ð�; xÞ: ð85Þ

If we take here ’1ðxÞ ¼ x kþ1, ’2ðxÞ ¼: ’ðxÞ, then B’1
ðxÞ ¼ x,

B’2
¼: B’, U1ð�; xÞ ¼ �x. Hence (85), together with T ¼ U�1,

g ¼ Tk, B�1
’ � g ¼ f leads to Theorem 9. In a similar way we obtain

Theorem 10.
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