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Abstract

Applying a combinatorial lemma a new sufficient condition for the indecomposability
of integer polynomials is established.
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1. Introduction

In [3], BILU and TICHY proved an explicit finiteness criterium for the
polynomial Diophantine equation f ðxÞ ¼ gðyÞ. Their result generalizes
a previous one due to SCHINZEL [8, Theorem 8], who gave a finiteness
criterium under the assumption ðdeg f ; deg gÞ ¼ 1, see also [9]. These
criteria are closely connected with decomposability properties of the
polynomials f and g. A polynomial f 2C½x� is called indecomposable
(over C) if f ¼ g � h, g; h2C½x� implies deg g ¼ 1 or deg h ¼ 1. Two
decompositions of f , say f ¼ g1 � h1 and f ¼ g2 � h2 are equivalent if
there exists a linear function L such that g2 ¼ g1 � L, h2 ¼ L�1 � h1

(see [8, pp. 14–15]).
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The criterium of BILU and TICHY has been already applied to sev-
eral Diophantine equations of the form fnðxÞ ¼ gmðyÞ, where ð fnÞ and
ðgnÞ are sequences of classical polynomials (see [1, 2, 5, 7, 10–12]).
In these results, the indecomposability of corresponding polynomials
was usually proved using some analytical properties of these poly-
nomials. In particular, in [5], the equation FmðxÞ ¼ FnðyÞ was con-
sidered, where ðFnÞ is the sequence of Fibonacci polynomials defined
by F0ðxÞ ¼ 0, F1ðxÞ ¼ 1, Fnþ1 ¼ xFnðxÞ þ Fn�1 for n � 1. It was
proved that Fn is indecomposable for even n, while for n odd there is
only one (up to equivalence) decomposition of Fn. In [4], general
criteria for indecomposability of polynomials were obtained in terms
of the degree and two leading coefficients. In particular, the above-
mentioned result from [5] now follows from the fact that FnðxÞ ¼
xn�1 þ ðn� 2Þxn�3 þ � � � and gcdðn� 1; n� 2Þ ¼ 1.

In this paper, we will show that from these assumptions on the degree
and on the leading coefficients it is possible to obtain much stronger
conclusions related to the indecomposability of the polynomial.

2. Results

Lemma 1. Let l � 2. Denote by Y the set of all l-tuples
� ¼ ð�1; �2; . . . ; �lÞ of nonnegative integers satisfying

�1 � 1 þ �2 � 2 þ � � � þ �l � l ¼ l; 1 � �1 þ �2 þ � � � þ �l � m:

ð2:1Þ
Then X

�2 Y

ðm� 1Þ!
ðm�

Pl
i¼1 �iÞ!

� l!Ql
i¼1 �i! �

Ql
i¼1ði!Þ

�i
¼ ml�1:

Proof. Let us denote by Sðl; jÞ the Stirling number of the second kind,
i.e. the number of ways to partition a set of l elements into j nonempty
subsets. If we denote by �i the number of subsets with i elements, we
immediately obtain the following formula:X

�2 Y
�1þ���þ�l¼j

l!Ql
i¼1 �i! �

Ql
i¼1ði!Þ

�i
¼ Sðl; jÞ: ð2:2Þ

It is well known (see e.g. [6, Sect. 6.1]) that the Stirling numbers
satisfy the recurrence

Sðl; 0Þ ¼ 0; Sðl; jÞ ¼ Sðl� 1; j� 1Þ þ jSðl� 1; jÞ for j � 1;
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and the summation formulaXl
j¼0

xðx� 1Þðx� 2Þ � � � ðx� jþ 1ÞSðl; jÞ ¼ xl: ð2:3Þ

Note that if x ¼ m, where m is a nonnegative integer, then the terms
with j>m in (2.3) vanish. Also, Sðl; jÞ ¼ 0 for j> l. Therefore, we haveXm

j¼0

m!

ðm� jÞ! Sðl; jÞ ¼ ml: ð2:4Þ

Applying formulas (2.2) and (2.4), we obtainX
�2 Y

ðm� 1Þ!
ðm�

Pl
i¼1�iÞ!

� l!Ql
i¼1�i! �

Ql
i¼1ði!Þ

�i
¼
Xm
j¼1

ðm� 1Þ!
ðm� jÞ! Sðl; jÞ ¼ml�1:

&

Theorem 1. Let f ðxÞ ¼ xn þ an�1x
n�1 þ � � � þ a0 2Z½x� and hðxÞ ¼

xk þ ck�1x
k�1 þ � � � þ c0 2C½x�, k � 2. Assume that

f ðxÞ ¼ ðhðxÞÞm þ b � ðhðxÞÞm�1 þ HðxÞ; ð2:5Þ
with b2C, HðxÞ2C½x� and degHðxÞ � n� k � 2. Then akþ1

n�1 � 0
ðmodmÞ.
Proof. Denote a :¼ an�1. By comparison of the coefficients, we find that

mck�1 ¼ a; ð2:6Þ
m

2

� �
c2
k�1 þ mck�2 2Z: ð2:7Þ

From (2.6) and (2.7), it follows that

ðm� 1Þa2 þ 2! � m2ck�2 2mZ

and

2! � m2ck�2 � a2 ðmodmÞ:
We claim that

l! � mlck�l � al ðmodmÞ for l ¼ 1; 2; . . . ; k � 1: ð2:8Þ
Consider the following system of equations

�0 � k þ �1 � ðk � 1Þ þ � � � ¼ mk � l;

�0 þ �1 þ � � � ¼ m; ð2:9Þ
�i2Z; �i � 0:
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Let X denote the set of all solutions of the system (2.9). Then the
coefficient with xn�l on the right-hand side of (2.5) is equal toX

ð�0;�1;...Þ 2 X

m!Q
�i!

c�1

k�1c
�2

k�2 � � � :

The solutions of system (2.9) correspond to the solutions of system
(2.1) from Lemma 1. Now we have that X

ð�1;...;�lÞ 2 Y

ð�1;...;�lÞ6¼ð0;...;0;1Þ

m!�
m�

Pl
i¼1 �i

�
!
Ql

i¼1 �i!
c�1

k�1c
�2

k�2 � � � c
�l

k�l

!
þ mck�l

ð2:10Þ

is an integer. If ð�1; . . . ; �lÞ 6¼ ð0; . . . ; 0; 1Þ, then �l ¼ 0 and, by in-
duction hypothesis, the summands in (2.10) have the form

ðm� 1Þ!�
m�

Pl
i¼1 �i

�
!
� al þ mTQl

i¼1 �i!
Ql

i¼1ði!Þ
�i � ml�1

for an integer T. Multiplying by l! ml�1, we obtain

X
ð�1;...;�lÞ6¼ð0;...;0;1Þ

ðm� 1Þ!�
m�

Pl
i¼1 �i

�
!
� l!alQl

i¼1 �i!
Ql

i¼1ði!Þ
�i
þ l!mlck�l2mZ:

Indeed, ðm� 1Þ!=ðm�
Pl

i¼1 �iÞ! is obviously an integer, and

l!=
Ql

i¼1 �i!
Ql

i¼1ði!Þ
�i is also an integer since it is the number of

all partitions of f1; . . . ; lg in �1 blocks of size 1, �2 blocks of size
2; . . . ; �l blocks of size l. Now the congruence (2.8) follows di-
rectly from Lemma 1 and the fact that for � ¼ ð0; . . . ; 0; 1Þ2Y, it
holds

ðm� 1Þ!�
m�

Pl
i¼1 �i

�
!
� l!Ql

i¼1 �i!
Ql

i¼1ði!Þ
�i
¼ 1:

By considering the coefficients with xn�k, we obtain

k!mkc0 þ bmk�1k! � ak ðmodmÞ: ð2:11Þ

From the coefficient with xn�ðkþ1Þ (and writing formally c�1 ¼ 0), we
obtain

m � c�1 þ mðm� 1Þck�1c0 þ ðterms without c0Þ þ ðm� 1Þbck�1 2Z:
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Using (2.6) and (2.11), we get

ðm� 1Þa
�

ak

k!mk
� b

m
þ ms

k!mk

�
þ ðterms without c0Þ þ

ðm� 1Þab
m

2Z

for an integer s. Multiplying this relation by ðk þ 1Þ!mk, the sum of
terms without c0, multiplied by ðk þ 1Þ!mk, is congruent to kakþ1

modulo m. Indeed, the corresponding sum from Lemma 1 does not
contain solutions ð0; . . . ; 0; 1Þ; ð1; 0; . . . ; 0; 1; 0Þ2Y , and the contribu-
tion of these solutions is

ðm� 1Þ!
ðm� 1Þ! �

ðk þ 1Þ!
ðk � 1Þ!þ

ðm� 1Þ!
ðm� 2Þ! �

ðk þ 1Þ!
k!

� �k ðmodmÞ:

Hence, we obtain

ðk þ 1Þðm� 1Þakþ1 þ kakþ1 � 0 ðmodmÞ;
which clearly implies akþ1 � 0 ðmodmÞ. &

Remark 1. Let us note that the assumption (2.5) of Theorem 1 im-

plies that in the Laurent series expansion of ð f ðxÞÞ1=m
(in powers of 1=x)

the coefficient of 1=x vanishes. On the other hand, from ð f ðxÞÞ1=m ¼
xkð1 þ an�1x

�1 þ � � �Þ1=m
one can show that this coefficient has the

form akþ1
n�1 þ Am=ð1 þ BmÞ, for integers A;B, which leads to the con-

clusion that akþ1
n�1 � 0 ðmodmÞ.

Corollary 1. If f ðxÞ ¼ xn þ an�1x
n�1 þ � � � 2Z½x� is a monic poly-

nomial satisfying gcdðan�1; nÞ ¼ 1, then f is indecomposable.

In [4], the first two authors considered also the decomposability
problem for even and odd polynomials. They have shown that a
decomposition of an odd polynomial is equivalent to a decomposition
of the form G � H, where G and H are odd polynomials. On the other
hand, let f ¼ g � h be a decomposition of an even polynomial f . Then
h is an even polynomial, or g ¼ G � L and h ¼ L�1 � H, where G is
even, H is odd and L is a linear polynomial. Furthermore, they proved
the following indecomposability results:

(i) Let f ðxÞ ¼ xn þ an�2x
n�2 þ � � � 2Z½x� be an odd polynomial.

If gcdðan�2; nÞ ¼ 1, then f is indecomposable.
(ii) Let f ðxÞ ¼ x2n þ an�2x

2n�2 þ � � � 2Z½x� be an even polynomial
and define gðxÞ ¼ f ð

ffiffiffi
x

p
Þ. Assume that gcdðan�2; nÞ ¼ 1. Then every

decomposition of f is equivalent to one of the following decomposi-
tions: f ¼ gðx2Þ, f ¼ ðxpðx2ÞÞ2

. The second case appears if and only

if gðxÞ ¼ xpðxÞ2
for some polynomial pðxÞ2Z½x�.
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Here we state generalizations of these results, which can be proved
in the same manner as Theorem 1. Alternatively, one can use the
Laurent series expansions, as in Remark 1. The only difference is that
if the polynomials f and h from Theorem 3 are even, then the as-
sumption of Theorem 3 implies vanishing of the coefficient of 1=x2,
instead of the coefficient of 1=x.

Theorem 2. Let f ðxÞ ¼ xn þ an�2x
n�2 þ � � � þ a1x2Z½x� be an odd

polynomial. Assume that

f ðxÞ ¼ ðhðxÞÞm þ HðxÞ;

with hðxÞ;HðxÞ2C½x�, deg hðxÞ ¼ k and degHðxÞ � n� k � 3. Then

the polynomial hðxÞ is odd and it holds a
ðkþ1Þ=2
n�2 � 0 ðmodmÞ.

Theorem 3. Let f ðxÞ ¼ xn þ an�2x
n�2 þ � � � þ a0 2Z½x� be an even

polynomial. Assume that

f ðxÞ ¼ ðhðxÞÞm þ HðxÞ;

with hðxÞ;HðxÞ2C½x�, deg hðxÞ ¼ k � 1 and degHðxÞ � n� k � 3.

If k is odd, that the polynomial hðxÞ is odd and a
ðkþ1Þ=2
n�2 � 0 ðmodmÞ,

and if k is even, then hðxÞ is even and a
ðkþ2Þ=2
n�2 � 0 ðmodmÞ.

As a corollary of Theorems 1–3, we obtain a new proof of the
characterization of all decompositions of Fibonacci polynomials.

Corollary 2. (i) The Fibonacci polynomials Fn cannot be represented
in the form FnðxÞ ¼ ðhðxÞÞm þ HðxÞ, where m � 2 and deg hþ degH
� n� 4.

(ii) The polynomial Fn is indecomposable for even n, while for odd
n the only decomposition (up to equivalence) of Fn is FnðxÞ ¼ fnðx2Þ,
where fnðxÞ ¼ Fnð

ffiffiffi
x

p
Þ.

Proof. The first statement of the corollary follows from Theorems 2
and 3. Indeed, if FnðxÞ ¼ ðhðxÞÞm þ HðxÞ, where m � 2 and
deg hþ degH � n� 4, then degH � degFn � deg h� 3. Therefore,
we may apply Theorems 2 and 3 to the polynomials FnðxÞ ¼ xn�1þ
ðn� 2Þxn�3 þ � � �. We get ðn� 2Þbðdeg hþ1Þ=2c � 0 ðmodmÞ, for a divi-
sor m>1 of n� 1, which is a contradiction.

Let us prove statement (ii). Assume first that n is even. Then Fn is
an odd polynomial. If Fn is decomposable, then by [4, Lemma 2] we
have Fn ¼ K � L, where K and L are odd monic polynomials and
degK, deg L � 3. Hence, FnðxÞ ¼ ðLðxÞÞm þ HðxÞ, where m ¼ degK
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and degH � ðm� 2Þdeg L ¼ degFn � 2 degL � n� deg L� 4, a
contradiction.

Assume now that n is odd. Then Fn is an even polynomial. Let
Fn ¼ K � L be a decomposition of Fn, where K and L are monic
polynomials. By [4, Lemma 3], we may assume that L is an odd or
even polynomial. If L is odd and deg L � 3, then K is even, and we
have FnðxÞ ¼ ðLðxÞÞdegK þ HðxÞ, where degH � n� deg L� 4, and
we get a contradiction, as before.

Assume finally that L is an even polynomial, and define lðxÞ ¼
Lð

ffiffiffi
x

p
Þ. Now we have fn ¼ K � l. Let KðxÞ ¼ xm þ bxm�1 þ � � �. If

deg l � 2, then fnðxÞ ¼ ðlðxÞÞm þ bðlðxÞÞm�1 þ HðxÞ, where degH �
ðm� 2Þ deg l ¼ deg fn � 2 deg l � deg fn � deg l� 2. Thus, we may
apply Theorem 1, and we obtain a contradiction. Hence, we conclude
that deg l ¼ 1 and deg L ¼ 2, and this implies that the decomposition
Fn ¼ K � L is equivalent to FnðxÞ ¼ fnðx2Þ. &
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