Sitzungsber. Abt. II (2005) 214: 101-109

Sitzungsberichte

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2006 Printed in Austria

Erweiterung eines ebenen Kollinearitätsproblems

Von

Oswald Giering

(Vorgelegt in der Sitzung der math.-nat. Klasse am 13. Oktober 2005 durch das k. M. Oswald Giering)

0. Problemstellung und Ergebnisse

Kollinearitätsaussagen wie der Satz von Pascal über die Pascal-Geraden [1, S. 208], der Satz von Wallace über die Wallace-Geraden [1, S. 154 f.] und der Satz von Euler über die Euler-Gerade eines Dreiecks [1, S. 148] zählen zum klassischen Bestand der Elementargeometrie. Eine weitere Kollinearitätsaussage ergab sich in [2] als Lösung des folgenden Kollinearitätsproblems:

In der reellen projektiven Ebene seien P_0 , P_1 , P_2 drei linear unabhängige Punkte (*Grundpunkte*) und g_0 , g_1 , g_2 drei paarweise verschiedene Geraden (*Leitgeraden*). Die Projektionen der Grundpunkte P_i (i = 0, 1, 2) aus einem laufenden Punkt P auf die Leitgeraden g_i seien die Punkte $S_i := g_i \cap PP_i$. Gesucht sind alle Punkte P mit *kollinearen* Schnittpunkten S_i . Als Ort der Punkte P stellte sich in [2] eine Kubik (Kurve 3. Ordnung) ein.

Wir studieren nun eine *Erweiterung* dieses Kollinearitätsproblems (Abb. 1): Wir ersetzen die Leitgeraden g_i durch drei paarweise verschiedene, nichtentartete Kegelschnitte (*Leitkegelschnitte*) k_i , betrachten zu einem laufenden Punkt P erneut die drei Geraden PP_i und sodann jeweils ihren Pol (k_i -Pol) S_i (i = 0, 1, 2) bezüglich des Leitkegelschnitts k_i . Gesucht seien alle Punkte P mit *kollinearen* k_i -Polen S_i . Ist die Kollinearitätsbedingung nicht identisch erfüllt, dann

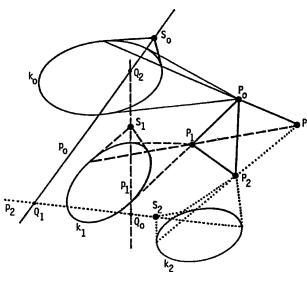


Abb. 1

stellt sich als Ort der Punkte P erneut eine (die Grundpunkte P_i durchlaufende) Kubik k ein. Unser weiteres Interesse gilt möglichst elementaren Kollinearitätsaussagen, die unter das erweiterte Kollinearitätsproblem fallen. Wir geben dafür drei Beispiele, in denen wir als Leitkegelschnitte Kreise wählen. Im ersten Beispiel sind die Seiten des Grundpunktedreiecks $P_0P_1P_2$ Durchmesser der Leitkreise. Die aus drei Ästen bestehende Kubik k durchläuft dann die Ecken, den Schwerpunkt und den Höhenschnittpunkt des Dreiecks $P_0P_1P_2$ (Abb. 2). Im zweiten und dritten Beispiel werden die Grundpunkte P_i und Leitkreise k_i derart gewählt, dass die Kubik k zerfällt (Abb. 3 und 5).

1. Projektive Behandlung des Problems

Die linear unabhängigen Grundpunkte P_i (i = 0, 1, 2) seien die Grundpunkte eines projektiven (x_0, x_1, x_2)-Koordinatensystems; ihre Koordinaten seien

$$P_0 = (1,0,0), \qquad P_1 = (0,1,0), \qquad P_2 = (0,0,1).$$
 (1)

Die Gleichungen der Leitkegelschnitte k_i seien

$$k_0: ax_0^2 + bx_1^2 + cx_2^2 + 2dx_0x_1 + 2ex_1x_2 + 2fx_2x_0 = 0,$$

$$k_1: \alpha x_0^2 + \beta x_1^2 + \gamma x_2^2 + 2\delta x_0x_1 + 2\varepsilon x_1x_2 + 2\varphi x_2x_0 = 0,$$

$$k_2: Ax_0^2 + Bx_1^2 + Cx_2^2 + 2Dx_0x_1 + 2Ex_1x_2 + 2Fx_2x_0 = 0. (2)$$

Da jeder Leitkegelschnitt k_i fünf wesentliche Koeffizienten besitzt, hängt das erweiterte Kollinearitätsproblem nach (2) von 15 wesentlichen Parametern ab. Berechnet man zu einem laufenden Punkt $P = (\xi_0, \xi_1, \xi_2)$ die Koordinaten (s_{00}, s_{01}, s_{02}) des k_0 -Pols S_0 der Geraden PP_0 , so erhält man

$$d_0 s_{00} = (bf - de)\xi_1 + (ef - cd)\xi_2,$$

$$d_0 s_{01} = (ae - df)\xi_1 + (ac - f^2)\xi_2,$$

$$d_0 s_{02} = (d^2 - ab)\xi_1 + (ae - df)\xi_2$$
(3)

mit

$$d_0 := \begin{vmatrix} a & d & f \\ d & b & e \\ f & e & c \end{vmatrix} \neq 0.^1$$

Für die Koordinaten (s_{10}, s_{11}, s_{12}) des k_1 -Pols S_1 und die Koordinaten (s_{20}, s_{21}, s_{22}) des k_2 -Pols S_2 findet man aus (2) analoge Linearformen in den Koordinaten ξ_i . Die k_i -Pole S_i (i = 0, 1, 2) sind genau dann kollinear, wenn gilt:

$$\det(s_{i0} \quad s_{i1} \quad s_{i2})$$

$$= \begin{vmatrix} (bf - de)\xi_1 + (ef - cd)\xi_2 & (ae - df)\xi_1 + (ac - f^2)\xi_2 \\ (\delta\varepsilon - \beta\varphi)\xi_0 + (\varepsilon^2 - \beta\gamma)\xi_2 & (\delta\varphi - \alpha\varepsilon)\xi_0 + (\gamma\delta - \varepsilon\varphi)\xi_2 \\ (CD - EF)\xi_0 + (BC - E^2)\xi_1 & (F^2 - AC)\xi_0 - (CD - EF)\xi_1 \\ (d^2 - ab)\xi_1 - (ae - df)\xi_2 \\ (\alpha\beta - \delta^2)\xi_0 - (\delta\varepsilon - \beta\varphi)\xi_2 \\ (AE - DF)\xi_0 - (DE - BF)\xi_1 \end{vmatrix}$$

$$= 0.$$
(4)

Man entnimmt aus (4) den folgenden Satz 1.

Satz 1 (Abb. 1). Die k_i -Pole S_i der Geraden PP_i bezüglich des Kegelschnitts k_i (i = 0, 1, 2) sind – wenn (4) nicht identisch erfüllt ist – genau dann kollinear, wenn P ein Punkt der durch (4) gegebenen Kubik k ist. Die Kubik k durchläuft die Grundpunkte P_0, P_1, P_2 . Die Kubik k kann zerfallen und wird auch als Kollinearitätskubik bezeichnet.

Bemerkungen: (1) Der k_i -Pol S_i der Geraden PP_i durchläuft die k_i -Polare p_i des Grundpunkts P_i , wenn P die Punkte der Ebene

¹ Mit $d_0 \neq 0$ ist k_0 ein nicht zerfallender (nicht entarteter) Kegelschnitt.

durchläuft. Die drei k_i -Polaren können zusammenfallen. In diesem Fall sind die k_i -Pole S_i für alle Punkte P der Ebene kollinear; (4) stellt dann keine Bedingung dar.

Wenn zwei der drei k_i -Polaren p_i zusammenfallen (etwa $p_1 = p_2$), dann liegen kollineare k_i -Pole S_0 , S_1 , S_2 stets auf $p_1 = p_2$, und es ist $S_0 = p_0 \cap p_1 = p_0 \cap p_2$. Die Punkte P mit kollinearen k_i -Polen S_0 , S_1 , S_2 sind dann die Punkte der Geraden PP_0 mit dem k_0 -Pol $S_0 = p_0 \cap p_1 = p_0 \cap p_2$.

Im allgemeinen Fall bilden die k_i -Polaren p_i (i = 0, 1, 2) ein Dreiseit $p_0 p_1 p_2$ mit den Ecken (Abb. 1)

$$Q_0 := p_1 \cap p_2, \qquad Q_1 := p_2 \cap p_0, \qquad Q_2 := p_0 \cap p_1.$$
 (5)

Das Dreiseit $p_0 p_1 p_2$ kann in drei (paarweise verschiedene) kopunktale Geraden entarten.

- (2) Nach Satz 1 liegen die Grundpunkte P_0 , P_1 , P_2 auf der Kollinearitätskubik k. Bilden die k_i -Polaren p_i ein nicht entartetes Dreiseit mit den Ecken Q_0 , Q_1 , Q_2 , dann findet man wie folgt drei weitere ausgezeichnete Punkte der Kubik k: Man fixiere zunächst jene Gerade h_0 durch P_0 , deren k_0 -Pol $S_0 = Q_2$ ist. Ebenso fixiere man jene Gerade h_1 durch P_1 , deren k_1 -Pol $S_1 = Q_2$ ist. Dann ist für $h_0 \neq h_1$ der Schnittpunkt $h_0 \cap h_1$ ein Punkt der Kubik k (denn wegen $S_0 = S_1 = Q_2$ sind S_0, S_1, S_2 kollinear). Für $h_0 = h_1$ liegt jeder Punkt der Geraden $h_0 = h_1$ auf k; k zerfällt in $h_0 = h_1$ und einen Kegelschnitt. Zwei weitere ausgezeichnete Punkte der Kubik k findet man bezüglich Q_0 und Q_1 .
- (3) Die Grundpunkte P_0 , P_1 , P_2 wurden bisher linear unabhängig vorausgesetzt. Sind P_0 , P_1 , P_2 linear abhängig und paarweise verschieden, dann lässt sich das erweiterte Kollinearitätsproblem in entsprechender Weise projektiv behandeln.

2. Beispiele

Wir diskutieren in diesem Abschnitt drei Beispiele des erweiterten Kollinearitätsproblems, die ein eigenes Interesse verdienen. Als Leitkegelschnitte wählen wir jeweils *Kreise*. Die auftretenden Kollinearitätskubiken lassen sich in einem (jedem Beispiel angepassten) kartesischen Koordinatensystem bequem berechnen.

2.1. Beispiel 1

Abb. 2 visualisiert den folgenden Satz 2.

Satz 2. Die Grundpunkte P_0 , P_1 , P_2 seien die Ecken eines nicht rechtwinkligen Dreiecks. Die Leitkreise k_0 , k_1 , k_2 seien die Kreise

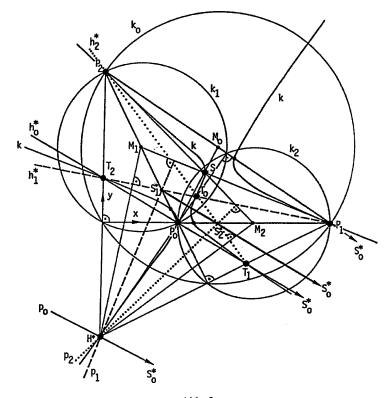


Abb. 2

über den Seiten des Grundpunktedreiecks; k_i (i = 0, 1, 2) sei der Kreis, der nicht durch P_i geht. Dann geht die (nicht zerfallende) Kollinearitätskubik k durch

- (1) die Grundpunkte P_0, P_1, P_2 ,
- (2) den Schwerpunkt S des Dreiecks $P_0P_1P_2$,
- (3) den Höhenschnittpunkt H^* des Dreiecks $P_0P_1P_2$,
- (4) die Ecken T_0, T_1, T_2 des Dreiseits $h_0^* h_1^* h_2^*$ aus den k_i -Polaren h_i^* (i = 0, 1, 2) von H^* .

Außerdem gilt:

- (5) Die Ecke T_i liegt auf der Höhe H^*P_i des Dreiecks $P_0P_1P_2$.
- (6) Die Kollinearitätskubik k berührt die Seitenhalbierende P_iM_i des Dreiecks $P_0P_1P_2$ in P_i ; M_i ist die Mitte der Gegenseite von P_i .
 - (7) Die k_i -Polaren p_i (siehe Abb. 1 und 2) sind kopunktal in H^* .

Beweis. Zu (1): Nach Satz 1 durchläuft die Kollinearitätskubik k die Grundpunkte P_0, P_1, P_2 .

Zu (2): Der k_i -Pol der Seitenhalbierenden SP_i (i = 0, 1, 2) des Dreiecks $P_0 P_1 P_2$ ist ein Fernpunkt F_i . Die drei Fernpunkte F_i sind kollinear auf der Ferngeraden, folglich ist S ein Punkt der Kubik k.

Zu (3): Gibt man den Grundpunkten P_i im (x, y)-Koordinatensystem der Abb. 2 die Koordinaten

$$P_0 = (a, 0), P_1 = (b, 0), P_2 = (0, c), (6)$$

so folgt $H^* = (0, -ab/c)$, und als Gleichung der Kollinearitätskubik k berechnet man

$$\begin{vmatrix} bc(a-x) - (c^2 + 2ab)y & b^2(a-x) + (2a-b)cy & c(a-x) - (2a-b)y \\ ac(b-x) - (c^2 + 2ab)y & a^2(b-x) + (2b-a)cy & c(b-x) - (2b-a)y \\ 4ab(c-y) - 2c(a+b)x & (a-b)^2x & (a+b)(c-y) - 2cx \end{vmatrix}$$

$$= 0.$$
 (7)

Die Koordinaten von H^* erfüllen (7).

Zu (4): Der Punkt $T_0 = h_1^* \cap h_2^*$ ist ein Punkt der Kubik k, wenn die drei k_i -Pole der Geraden T_0P_i (i=0,1,2) kollinear sind. Wegen $T_0 = h_1^* \cap h_2^*$ ist H^* der k_1 -Pol von T_0P_1 und zugleich der k_2 -Pol von T_0P_2 . Damit sind die drei k_i -Pole der Geraden T_0P_i kollinear. Ebenso sind $T_1 = h_2^* \cap h_0^*$ und $T_2 = h_0^* \cap h_1^*$ Punkte der Kubik k.

Zu (5): Berechnet man die Koordinaten von T_2 , so folgt

$$T_2 = \left(0, \frac{abc}{c^2 + 2ab}\right) \in H^* P_2. \tag{8}$$

Die zulässige zyklische Vertauschung $0 \to 1 \to 2 \to 0$ liefert $T_0 \in H^*P_0, T_1 \in H^*P_1$.

Zu (6): Diese Eigenschaft ergibt sich mit Hilfe von (7).

Zu (7): Eine einfache Rechnung zeigt: Die Koordinaten von H^* erfüllen die Gleichung jeder k_i -Polaren p_i (i = 0, 1, 2).

In Abb. 2 schneiden je zwei Leitkreise einander in einer Ecke und dem zugehörigen Höhenfußpunkt des Grundpunktedreiecks. Die k_i -Polare h_i^* von H^* und die Gerade H^*M_i sind in Abb. 2 (nach einer elementaren Eigenschaft der Polarentheorie der Kreise) orthogonal. Abb. 2 zeigt außerdem die wegen $H^* \in k$ kollinearen k_i -Pole S_i^* der Geraden H^*P_i (i = 0, 1, 2). Nach Satz 2 kennt man mit H^* , P_i , T_i (i = 0, 1, 2) die Schnittpunkte der Kollinearitätskubik k mit jeder Höhe des Grundpunktedreiecks; die Schnittpunkte von k mit den Seitenhalbierenden sind S_i und P_i (P_i nach Satz 2, Aussage (6) zweifach zählend).

2.2. Beispiel 2

Abb. 3 zeigt drei paarweise verschiedene Leitkreise k_i (i=0,1,2), eine jeden Leitkreis schneidende Gerade t mit kollinearen k_i -Polen T_i sowie drei paarweise verschiedene Grundpunkte $P_i \in t$; P_i liegt im Mittelpunkt der von t aus k_i ausgeschnittenen Sehne. Für jeden Punkt $P \in t$ ist T_i der k_i -Pol der Geraden $PP_i = t$. Die Gerade t ist daher ein Teil der Kollinearitätskubik t. Insgesamt t in die Gerade t und ein t in die Geraden t in die Geraden t in die Geraden t in die Geraden ein Pit in die Geraden paar t in die Geraden pa

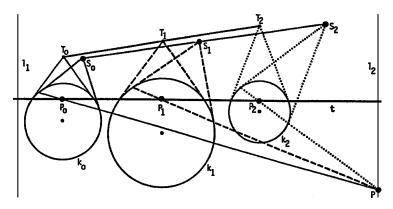


Abb. 3

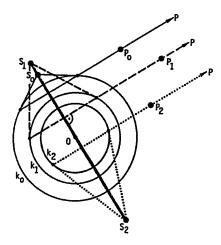
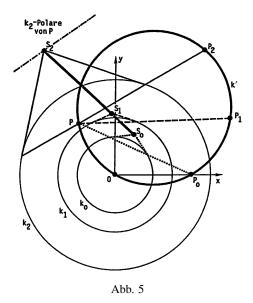


Abb. 4

2.3. Beispiel 3

Abb. 4 zeigt drei konzentrische Leitkreise k_i mit dem Mittelpunkt O und drei linear unabhängige Grundpunkte P_i (i=0,1,2). In diesem Fall sind die Geraden PP_i für jeden Fernpunkt P parallel. Ihre k_i -Pole S_i sind folglich kollinear und zugleich kollinear mit O; die Geraden PP_i und OS_i sind stets orthogonal. Die Kollinearitätskubik k zerfällt daher in die Ferngerade und einen Kegelschnitt k' (der den Mittelpunkt O und die Grundpunkte P_i enthält).

Bei geeigneter gegenseitiger Lage der Leitkreise k_i und der Grundpunkte P_i stellt sich als Kegelschnitt k' ein Kreis ein. Man findet dann unschwer den folgenden Satz 3 (Abb. 5), der sich unabhängig von dem bisher untersuchten Kollinearitätsproblem formulieren lässt:



Satz 3. Seien k_i (i = 0, 1, 2) konzentrische Kreise und k' ein Kreis durch ihren Mittelpunkt O. Auf k' seien P_0 und P_1 feste Punkte, P sei ein laufender Punkt auf k'. Dann gibt es auf k' einen eindeutig bestimmten Punkt P_2 , so dass für alle Punkte $P \in k'$ die k_i -Pole S_i der Kreissehnen PP_i kollinear sind.

² Sind zwei Grundpunkte P_i – etwa P_0 und P_1 – kollinear mit O, dann zerfällt k' in die Gerade P_0P_1 und eine Gerade durch P_2 .

Ausgehend von einem beliebig gewählten Punkt $P \in k'$ läßt sich der Punkt $P_2 \in k'$ in drei Schritten konstruieren (Abb. 5). Man bestimme (1) zu PP_0 den k_0 -Pol S_0 und zu PP_1 den k_1 -Pol S_1 , (2) den Schnittpunkt (= S_2) der Geraden S_0S_1 mit der k_2 -Polaren von P, (3) die k_2 -Polare von S_2 ; ihre Schnittpunkte mit k' sind P und P_2 .

Literatur

- [1] KOECHER, M., KRIEG, A. (2000) Ebene Geometrie, 2. Aufl. Springer, Berlin Heidelberg New York
- [2] GIERING, O. (2005) Ein ebenes Kollinearitätsproblem. IBDG 24(1): 23-32

Anschrift des Verfassers: Prof. Dr. Oswald Giering, Zentrum Mathematik, TU München, 85748 Garching, Deutschland.