Mapping Convection using Pulsating White Dwarf Stars

M. H. Montgomery 1,2

 $^1\,\mathrm{Department}$ of Astronomy, University of Texas, Austin, TX 78712, USA $^2\,\mathrm{Delaware}$ Asteroseismic Research Center, Mt. Cuba Obs., Newark, DE, USA

Parametrization of Convection Zone

As shown by Montgomery (2005), the non-sinusoidal shape of the light curves of pulsating white dwarf stars can be used to constrain models of convection in these objects. In particular, τ , the timescale on which the convection zone responds to a change in input flux at its base, can be parametrized as

$$au = au_0 \left(rac{T_{
m eff}}{T_{
m eff0}}
ight)^{-N}$$
 ,

where τ_0 and $T_{\rm eff0}$ are the equilibrium values of τ and the effective temperature, respectively, $T_{\rm eff}$ is the *instantaneous* effective temperature, and N is an exponent which determines how rapidly the depth of the convection zone changes with $T_{\rm eff}$.

Figure 1: au_0 versus $T_{\rm eff}$ assuming the pure He (no H) $T_{\rm eff}$ values from Table 1.

Table 1: Derived convective parameters for two DBVs

star	$\theta_{i} \; (deg)$	$ au_0$ (sec)	Ν	$T_{ m eff}$ (no H)	$T_{ m eff}$ (with H)
GD 358	62	450	25	24 900 K	24 700 K
PG1351+489	58	87	21	26 100 K	22 600 K

Mapping the DBV Instability Strip

We currently have examined two stars in the DBV instability strip: PG 1351+489 and GD 358. In Table 1, we list the convective parameters of the fits to these stars, as well as the derived inclination angles, $\theta_{\rm i}$. In addition, we list the effective temperatures determined from spectroscopic fits (Beauchamp et al. 1999), both for the case of pure He atmospheres and for the case of H contamination.

In Fig. 1, we show the location and slopes of these stars in the $\log\tau_0-T_{\rm eff}$ plane, and we show the predictions of the Böhm & Cassinelli (1971) mixing length theory (ML2) for various values of α (dashed curves). ML2/ $\alpha=1.1$ provides a reasonable fit to the τ_0 of these stars. We note that if the effective temperatures assuming H contamination are used, we obtain the nonsensical result that the cooler star has the *thinner* convection zone (i.e., smaller value of τ_0), something which is not possible based on very general arguments.

Acknowledgments. This research was supported in part through National Science Foundation grant AST-0507639.

References

Beauchamp A., Wesemael F., Bergeron P., et al., 1999, ApJ, 516, 887 Böhm K.-H., Cassinelli J., 1971, A&A, 12, 21 Montgomery M. H., 2005, ApJ, 633, 1142

Orlagh Creevey, Travis Metcalfe (partly obscured), Dennis Stello and Mike Montgomery.