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Abstract

Implication algebras, originally introduced in order to study algebraic properties of
the implication operation in Boolean algebras, are generalized and it is shown that
these more general algebras are in one-to-one correspondence to semilattices with
1 the principal filters of which are posets with an antitone involution, respectively
to commutative directoids with 1 the principal filters of which are posets with a
switching involution.
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In order to study algebraic properties of the implication operation in
Boolean algebras J. C. ABBOTT introduced the notion of an impli-
cation algebra (cf. [1]). He showed that these algebras are in one-to-
one correspondence to join-semilattices with 1 the principal filters of
which are Boolean algebras. These algebras were generalized, e.g. in
[2], [8] and [9], where corresponding results were achieved.

Let us mention that also other types of implication in non-classical
logic were treated in the literature (see e.g. [4]–[7]). However, these
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can be unified by a more generalized approach which will be pre-
sented here.

The aim of this paper is to further generalize the concept of an
implication algebra to algebras satisfying weaker conditions. It turns
out that by the constructions originally used by J. C. ABBOTT these
more general algebras are in one-to-one correspondence to semi-
lattices with 1 the principal filters of which are posets with an an-
titone involution, respectively to directoids with 1 the principal filters
of which are posets with a switching involution.

1. Implication Algebras, Orthoimplication
Algebras and Orthomodular Implication Algebras

We start our investigations by repeating the definition of an impli-
cation algebra and its connection to certain join-semilattices having
an additional structure.

Definition 1.1. Let A ¼ ðA; �; 1Þ be an algebra of type ð2; 0Þ. A is
called an implication algebra (cf. [1]) if it satisfies

xx ¼ 1;

ðxyÞx ¼ x;

ðxyÞy ¼ ðyxÞx
and

xðyzÞ ¼ yðxzÞ:
Remark 1.2. The nullary operation 1 can be dropped from the family
of fundamental operations of an implication algebra since due to the
first identity in the definition it is an algebraic constant.

The following theorem was proved in [1]:

Theorem 1.3. Let A ¼ ðA; �; 1Þ be an implication algebra. Define

x _ y :¼ ðxyÞy and xy :¼ xy

for all x; y2A. Then SðAÞ :¼ ðA;_; ðx; x2AÞ; 1Þ is an algebra
such that ðA;_; 1Þ is a join-semilattice with greatest element 1 and
for every x2A ð½x; 1�;�; xÞ is a Boolean algebra. Conversely, let
S :¼ ðS;_; ðx; x2SÞ; 1Þ be an algebra such that ðS;_; 1Þ is a join-
semilattice with greatest element 1 and for every x2S ð½x; 1�;�; xÞ is
a Boolean algebra. Define

xy :¼ ðx _ yÞy
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for all x; y2S. Then AðSÞ :¼ ðS; �; 1Þ is an implication algebra.
Moreover, AðSðAÞÞ ¼ A and SðAðSÞÞ ¼ S for every implication al-
gebra A and every algebra S ¼ ðS;_; ðx; x2SÞ; 1Þ such that ðS;_; 1Þ
is a join-semilattice with greatest element 1 and for every x2S
ð½x; 1�;�; xÞ is a Boolean algebra.

The notion of an implication algebra was generalized to the notion
of an orthoimplication algebra, respectively orthomodular implication
algebra, as follows:

Definition 1.4. Let A ¼ ðA; �; 1Þ be an algebra of type ð2; 0Þ. A is
called an orthoimplication algebra (cf. [2]) if it satisfies

xx ¼ 1;

ðxyÞx ¼ x;

ðxyÞy ¼ ðyxÞx
and

xððyxÞzÞ ¼ xz:

Definition 1.5. Let A ¼ ðA; �; 1Þ be an algebra of type ð2; 0Þ. A is
called an orthomodular implication algebra (cf. [8] and [9]) if it
satisfies

xx ¼ 1;

ðxyÞx ¼ x;

ðxyÞy ¼ ðyxÞx;
ðððxyÞyÞzÞðxzÞ ¼ 1

and

ðððððððxyÞyÞzÞxÞxÞzÞxÞx ¼ ðððxyÞyÞzÞz:
In [2], [8] and [9] it was proved that orthoimplication algebras,

respectively orthomodular implication algebras, correspond to join-
semilattices with 1 the principal filters of which are orthomodular
lattices satisfying the compatibility condition (x � y � z implies
zy ¼ zx _ y) respectively to join-semilattices with 1 the principal
filters of which are orthomodular lattices. These correspondences are
one-to-one and completely analogous to that proved by J. C. ABBOTT

in [1] for implication algebras.

2. I-Algebras

We now define a new more general type of implication algebras:
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Definition 2.1. Let A ¼ ðA; �; 1Þ be an algebra of type ð2; 0Þ. A is
called a strong I-algebra if it satisfies

1x ¼ x; ðS1Þ
xx ¼ 1; ðS2Þ

xðyxÞ ¼ 1; ðS3Þ
ðxyÞy ¼ ðyxÞx ðS4Þ

and

ðððxyÞyÞzÞðxzÞ ¼ 1: ðS5Þ
Remark 2.2. The class of all strong I-algebras forms a variety.

For the following theorem we need the definition of an antitone
involution of a poset.

Definition 2.3. Let ðP;�Þ be a poset and f : P ! P. f is called an
antitone involution of ðP;�Þ if f ðxÞ � f ðyÞ whenever both x; y2P
and x � y and if f ðf ðxÞÞ ¼ x for all x2P.

Now the following result can be proved:

Theorem 2.4. Let A ¼ ðA; �; 1Þ be a strong I-algebra. Define

x _ y :¼ ðxyÞy and xy :¼ xy

for all x; y2A. Then SðAÞ :¼ ðA;_; ðx; x2AÞ; 1Þ is an algebra
such that ðA;_; 1Þ is a join-semilattice with greatest element 1 and
for every x2A ð½x; 1�;�; xÞ is a poset with an antitone involution
where � denotes the partial order induced by _. Conversely, let
S :¼ ðS;_; ðx; x2SÞ; 1Þ be an algebra such that ðS;_; 1Þ is a join-
semilattice with greatest element 1 and for every x2S ð½x; 1�;�; xÞ is
a poset with an antitone involution. Define

xy :¼ ðx _ yÞy

for all x; y2S. Then AðSÞ :¼ ðS; �; 1Þ is a strong I-algebra. Moreover,
AðSðAÞÞ ¼ A and SðAðSÞÞ ¼ S for every strong I-algebra A and
every algebra S ¼ ðS;_; ðx; x2SÞ; 1Þ such that ðS;_; 1Þ is a join-
semilattice with greatest element 1 and for every x2S ð½x; 1�;�; xÞ is
a poset with an antitone involution.

Proof. Assume ðA; �; 1Þ to be a strong I-algebra and for all x; y2A
define x � y if xy ¼ 1, x _ y :¼ ðxyÞy and xy :¼ xy. Because of (S2),
� is reflexive. If a � b and b � a then

a ¼ 1a ¼ ðbaÞa ¼ ðabÞb ¼ 1b ¼ b
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according to (S1) and (S4) proving antisymmetry of �. If a � b � c
then

ac ¼ 1ðacÞ ¼ ðbcÞðacÞ ¼ ðð1bÞcÞðacÞ ¼ ðððabÞbÞcÞðacÞ ¼ 1

according to (S1) and (S5), i.e., a � c. This shows transitivity of �.
Hence ðA;�Þ is a poset and according to (S2) and (S3), a1 ¼
aðaaÞ ¼ 1, i.e., a � 1 which means that 1 is the greatest element of
ðA;�Þ. According to (S4), _ is commutative. Because of (S1), (S2)
and (S5)

aða_bÞ¼ aððabÞbÞ¼ 1ðaððabÞbÞÞ¼ ðððabÞbÞððabÞbÞÞðaððabÞbÞÞ¼ 1;

i.e., a � a _ b. Hence b � b _ a ¼ a _ b. Because of (S1) and (S5),
a � b implies

ðbcÞðacÞ ¼ ðð1bÞcÞðacÞ ¼ ðððabÞbÞcÞðacÞ ¼ 1;

i.e., bc � ac. Therefore a; b � c implies cb � ab and hence

a _ b ¼ ðabÞb � ðcbÞb ¼ ðbcÞc ¼ 1c ¼ c

according to (S4) and (S1). Hence a _ b is the supremum of a and
b with respect to �. If b2½a; 1� then aba ¼ aðbaÞ ¼ 1 according
to (S3), i.e., ba2½a; 1�. Hence a is a unary operation on ½a; 1�. If
a � b � c then ca ¼ ca � ba ¼ ba, i.e., a is antitone. If a � b then
ðbaÞa ¼ ðbaÞa ¼ ðabÞb ¼ 1b ¼ b according to (S4) and (S1) and
hence a is an involution. Therefore ðA;_; ða; a2AÞ; 1Þ is an al-
gebra such that ðA;_; 1Þ is a join-semilattice with greatest ele-
ment 1 and for every x2A ð½x; 1�;�; xÞ is a poset with an antitone
involution with respect to the partial order induced by _. Moreover,
ððabÞbÞb ¼ ab _ b ¼ ab since b � ab according to bðabÞ ¼ 1 by
(S3).

Conversely, assume ðA;_; ða; a2AÞ; 1Þ to be an algebra such that
ðA;_; 1Þ is a join-semilattice with greatest element 1 and for every
x2A ð½x; 1�;�; xÞ is a poset with an antitone involution. Moreover, for
all x; y2A define xy :¼ ðx _ yÞy.

1a ¼ ð1 _ aÞa ¼ 1a ¼ a; ðS1Þ
aa ¼ ða _ aÞa ¼ aa ¼ 1; ðS2Þ

aðbaÞ ¼ ða _ ðb _ aÞaÞðb_aÞ
a

¼ ððb _ aÞaÞðb_aÞ
a

¼ 1; ðS3Þ
ðabÞb ¼ ðða _ bÞb _ bÞb ¼ ðða _ bÞbÞb ¼ a _ b ¼ b _ a

¼ ððb _ aÞaÞa ¼ ððb _ aÞa _ aÞa ¼ ðbaÞa; ðS4Þ
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ðððabÞbÞcÞðacÞ ¼ ðððða _ bÞb _ bÞb _ cÞc _ ða _ cÞcÞða_cÞ
c

¼ ðððða _ bÞbÞb _ cÞc _ ða _ cÞcÞða_cÞ
c

¼ ðða _ b _ cÞc _ ða _ cÞcÞða_cÞ
c

¼ ðða _ cÞcÞða_cÞ
c

¼ 1: ðS5Þ

Therefore ðA; �; 1Þ is a strong I-algebra. Moreover, ðða _ bÞb _ bÞb ¼
ðða _ bÞbÞb ¼ a _ b and if a � b then ðb _ aÞa ¼ ba. &

Next we define a generalization of the notion of a strong I-algebra:

Definition 2.5. Let A ¼ ðA; �; 1Þ be an algebra of type ð2; 0Þ. A is
called a weak I-algebra if it satisfies

1x ¼ x; ðW1Þ
xx ¼ 1; ðW2Þ

xðyxÞ ¼ 1; ðW3Þ
ðxyÞy ¼ ðyxÞx ðW4Þ

and

ððxyÞyÞz ¼ 1 implies xz ¼ 1: ðW5Þ

Remark 2.6. (S5) and (S1) imply (W5).

Theorem 2.7. Within the definition of a weak I-algebra (W3) and
(W5) may be replaced by the laws

ððxyÞyÞy ¼ xy ðW30Þ

and

xððððxyÞyÞzÞzÞ ¼ 1; ðW50Þ
respectively, and hence weak I-algebras form a variety.

Proof. (W4), (W3) and (W1) imply (W30):

ððxyÞyÞy ¼ ðyðxyÞÞðxyÞ ¼ 1ðxyÞ ¼ xy:

(W2) and (W5) imply (W50):

ððððxyÞyÞzÞzÞððððxyÞyÞzÞzÞ ¼ 1

and hence

ððxyÞyÞððððxyÞyÞzÞzÞ ¼ 1
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whence

xððððxyÞyÞzÞzÞ ¼ 1:

(W30), (W4) and (W2) imply (W3):

xðyxÞ ¼ ððxðyxÞÞðyxÞÞðyxÞ ¼ ðððyxÞxÞxÞðyxÞ ¼ ðyxÞðyxÞ ¼ 1:

Finally, (W1) and (W50) imply (W5):

ððxyÞyÞz ¼ 1 implies xz ¼ xð1zÞ ¼ xððððxyÞyÞzÞzÞ ¼ 1: &

Remark 2.8. The variety of weak I-algebras was characterized by
the axioms (W1), (W2), (W30), (W4) and (W50) in [3] where weak
I-algebras were called d-implication algebras.

For the next theorem we need some definitions.

Definition 2.9. An algebra ðA;tÞ of type (2) is called a directoid (cf.
[10]) if there exists a partial order relation � on A such that for
all a; b2A, a t b is an upper bound of a and b that coincides with
maxða; bÞ if a and b are comparable. � is uniquely determined by t
by x � y if and only if x t y ¼ y (x; y2A). ðA;tÞ is called commuta-
tive if t is commutative. Let ðP;�Þ be a poset with smallest element 0
and greatest element 1 and f : P ! P. f is called a switching involution
of ðP;�Þ if f ð0Þ ¼ 1, f ð1Þ ¼ 0 and f ðf ðxÞÞ ¼ x or all x2P.

Now we can prove

Theorem 2.10. Let A ¼ ðA; �; 1Þ be a weak I-algebra. Define

x t y :¼ ðxyÞy and xy :¼ xy

for all x; y2A. Then SðAÞ :¼ ðA;t; ðx; x2AÞ; 1Þ is an algebra such
that ðA;t; 1Þ is a commutative directoid with greatest element 1 and
for every x2A ð½x; 1�;�; xÞ is a poset with a switching involution
where � denotes the partial order induced by t. Conversely, let
S :¼ ðS;t; ðx; x2SÞ; 1Þ be an algebra such that ðS;t; 1Þ is a
commutative directoid with greatest element 1 and for every x2S
ð½x; 1�;�; xÞ is a poset with a switching involution with respect to the
partial order induced by t. Define

xy :¼ ðx t yÞy

for all x; y2S. Then AðSÞ :¼ ðS; �; 1Þ is a weak I-algebra. Moreover,
AðSðAÞÞ ¼ A and SðAðSÞÞ ¼ S for every weak I-algebra A and
every algebra S ¼ ðS;t; ðx; x2SÞ; 1Þ such that ðS;t; 1Þ is a com-
mutative directoid with greatest element 1 and for every x2S
ð½x; 1�;�; xÞ is a poset with a switching involution.
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Proof. First assume A ¼ ðA; �; 1Þ to be a weak I-algebra and for all
x; y2A define x � y if xy ¼ 1, x t y :¼ ðxyÞy and xy :¼ xy. Reflexivity
and antisymmetry of � follow as in the proof of Theorem 2.4. If
a � b � c then ððabÞbÞc ¼ ð1bÞc ¼ bc ¼ 1 according to (W1) whence
ac ¼ 1 by (W5), i.e., a � c. This shows transitivity of �. Hence ðA;�Þ
is a poset. That 1 is the greatest element of ðA;�Þ and t is commutative
follows as in the proof of Theorem 2.4. Because of (W2) we have
ððabÞbÞððabÞbÞ ¼ 1 whence by (W5) it follows aððabÞbÞ ¼ 1, i.e., a �
a t b. Hence b � b t a ¼ a t b. If a � b then a t b ¼ ðabÞb ¼ 1b ¼ b
according to (W1). This shows that ðA;t; 1Þ is a commutative directoid
with 1. That for all a2A, a is an involution of ½a;1� follows as in the
proof of Theorem 2.4. Finally, aa ¼ aa ¼ 1 according to (W2) and
1a ¼ 1a ¼ a according to (W1) showing that a is switching. Therefore
SðAÞ ¼ ðA;t; ða;a2AÞ; 1Þ is an algebra such that ðS;t;1Þ is a com-
mutative directoid with greatest element 1 and for every x2S ð½x;1�;
�; xÞ is a poset with a switching involution. Moreover, ððabÞbÞb ¼ ab
follows as in the proof of Theorem 2.4 showing that AðSðAÞÞ ¼ A.

Conversely, assume S ¼ ðA;t; ða; a2AÞ; 1Þ to be an algebra such
that ðS;t; 1Þ is a commutative directoid with greatest element 1 and
for every x2S ð½x; 1�;�; xÞ is a poset with a switching involution.
Moreover, for all x; y2A define xy :¼ ðx t yÞy.

(W1)–(W4) follow as in the proof of Theorem 2.4.
(W5) If ððabÞbÞc ¼ 1 then

a � a t b � ða t bÞ t c ¼ ðððða t bÞbÞb t cÞcÞc

¼ ðððða t bÞb t bÞb t cÞcÞc ¼ ðððabÞbÞcÞc ¼ 1c ¼ c;

which implies ac ¼ ða t cÞc ¼ cc ¼ 1. Therefore AðSÞ ¼ ðA; �; 1Þ is
a weak I-algebra. ðða t bÞb t bÞb ¼ a t b follows as in the proof of
Theorem 2.4 and, moreover, a � b implies ðb t aÞa ¼ ba showing
that SðAðSÞÞ ¼ S. &
Remark 2.11. In [3] commutative directoids with greatest element 1
such that for every x2S ð½x;1�;�; xÞ is a poset with a switching involution
were called commutative directoids with sectional antitone involutions.

3. Congruence Kernels

The aim of this section it to characterize congruence kernels of weak
I-algebras having certain additional properties. First we observe that
weak I-algebras are weakly regular which means that congruences are
determined by the class of 1:

Lemma 3.1. Let A ¼ ðA; �; 1Þ be a weak I-algebra and �2ConA.
Then � ¼ fðx; yÞ2A2 j xy; yx2½1��g.

40 I. Chajda and H. Länger



Proof. If for a; b2A it holds a � b then ab � aa ¼ 1 and ba � aa ¼
1 and if, conversely, ab � 1 and ba � 1 then a ¼ 1a � ðbaÞa ¼
ðabÞb � 1b ¼ b. &

Next we define the notion of a congruence kernel of a weak I-algebra:

Definition 3.2. A subset K of the base set A of a weak I-algebra A is
called a congruence kernel of A if there exists a congruence �2ConA
with ½1�� ¼ K. Let KerA denote the set of all congruence kernels of A.

Theorem 3.3. The mappings � 7! ½1�� and K 7! fðx; yÞ2A2 j xy,
yx2Kg are mutually inverse isomorphisms between ðConA;�Þ and
ðKerA;�Þ and hence the latter is a complete lattice.

Proof. The proof follows immediately from Lemma 3.1. &

Certain subsets of weak I-algebras have a nice property which will
be used in the proof of the final theorem of this section. In the
following for a subset K of a weak I-algebra ðA; �; 1Þ and an element a
of A define Ka :¼ fka j k2Kg. More generally, for subsets K; L of A
we define KL :¼ fkl j k2K; l2Lg.

Lemma 3.4. Let A ¼ ðA; �; 1Þ be a weak I-algebra, K a subset of A,
a2K and b2A and assume ab2K and ðKðKxÞÞx � K for all x2A.
Then b2K.

Proof. b ¼ 1b ¼ ðaððbaÞaÞÞb ¼ ðaððabÞbÞÞb2ðKðKbÞÞb � K. &

Now we can state and prove the characterization of congruence
kernels of certain weak I-algebras:

Theorem 3.5. Let A ¼ ðA; �; 1Þ be a weak I-algebra satisfying

xðyzÞ ¼ ðxyÞðxzÞ and ðxyÞððyzÞðxzÞÞ ¼ 1

and let K be a subset of A. Then K is a congruence kernel of A if and
only if 12K, AK � K and ðKðKxÞÞx � K for all x2A.

Proof. Let a; b; c2A and d; e2K.
First assume K 2KerA. Then there exists a �2ConA with

½1�� ¼ K and hence

12½1�� ¼ K;

ad2 ½a1�� ¼ ½aðaaÞ�� ¼ ½1�� ¼ K

and

ðdðeaÞÞa2½ð1ð1aÞÞa�� ¼ ½ð1aÞa�� ¼ ½aa�� ¼ ½1�� ¼ K

proving 12K;AK � K and ðKðKxÞÞx � K for all x2A.
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Conversely, assume 12K, AK � K and ðKðKxÞÞx � K for all
x2A. Put � :¼ fðx; yÞ2A2 j xy; yx2Kg.

Since 12K, � is reflexive.
Obviously, � is symmetric.
If a � b � c then ab; ba; bc; cb2K and hence aðbcÞ2AK � K and

ðaðbcÞÞðacÞ¼ððabÞðacÞÞðacÞ¼ð1ððabÞðacÞÞÞðacÞ2 ðKðKðacÞÞÞðacÞ�
K whence ac2K according to Lemma 3.4. Interchanging the roles
of a and c yields ca2K and hence a � c. This shows transitivity of �.

If a � b then ab; ba2K and hence ðabÞððbcÞðacÞÞ ¼ 12K whence
ðbcÞðacÞ2K according to Lemma 3.4. Interchanging the roles of a
and b yields ðacÞðbcÞ2K and hence ac � bc. This shows that � is a
right congruence on A.

If, finally, a � b then ab; ba2K and hence ðcaÞðcbÞ ¼ cðabÞ2
AK � K. Interchanging the roles of a and b yields ðcbÞðcaÞ2K and
hence ca � cb. This shows that � is a left congruence on A.

Altogether we have proved �2ConA. Since, obviously, ½1�� ¼ K,
the proof of the theorem is complete. &

4. Varieties of Implication Algebras

In this section we prove that the different varieties of implication
algebras mentioned within the paper form a strictly increasing chain
with respect to inclusion.

Definition 4.1. Let V1, V2, V3, V4 and V5 denote the variety of all
implication algebras, orthoimplication algebras, orthomodular impli-
cation algebras, strong I-algebras and weak I-algebras, respectively.

Theorem 4.2. V1 � V2 � V3 � V4 � V5.

Proof. The orthoimplication algebra corresponding to MO2 :¼ 22þ
22 belongs to V2nV1 since ½0; 1� is not a Boolean algebra. (Here þ
denotes the horizontal sum.) The orthomodular implication algebra
corresponding to MO2�21 with the Hasse diagram
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and with ða0Þc :¼ d0 and ðb0Þc :¼ e0 belongs to V3nV2 since ða0Þc ¼
d0 6¼ b0 ¼ a _ c ¼ ða0Þ0 _ c. The strong I-algebra corresponding to
the three-element chain belongs to V4nV3 since ½0; 1� is not an
orthomodular lattice. The weak I-algebra corresponding to the poset
with the Hasse diagram

with a t b :¼ 1 belongs to V5nV4 since it is not a join-semilattice. &
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