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Abstract

We discuss space-like and light-like polynomial cubic curves in Minkowski (or
pseudo-Euclidean) space R2;1 with the property that the Minkowski-length of the first
derivative vector (or hodograph) is the square of a polynomial. These curves, which
are called Minkowski Pythagorean hodograph (MPH) curves, generalize a similar
notion from the Euclidean space (see FAROUKI [3]). They can be used to represent the
medial axis transform (MAT) of planar domains, where they lead to domains whose
boundaries are rational curves. We show that any MPH cubic (including the case of
light-like tangents) is a cubic helix in Minkowski space. Based on this result and on
certain properties of tangent indicatrices of MPH curves, we classify the system of
planar and spatial MPH cubics.
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1. Introduction

Cubic curves with constant slope in Euclidean space have thoroughly
been investigated by WUNDERLICH [13]. For any given slope �, there
exists exactly one cubic curve in three-dimensional Euclidean space –
which is called the cubic helix – for which the ratio of curvature to
torsion equals �. Its normal form for � ¼ �=4 is given by

cðtÞ ¼ ð3t2; t � 3t3; t þ 3t3Þ>: ð1Þ
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Cubic helices for other slopes � are obtained by a uniform scaling
of the z-coordinate. According to WAGNER and RAVANI [11], cubic
helices are the only cubics which are equipped with a rational Frenet-
Serret motion. More precisely, the unit tangent, normal and binormal
of the curve can be described by rational functions.

Pythagorean hodograph (PH) curves in Euclidean space were in-
troduced by FAROUKI and SAKKALIS [4]. While the only planar PH
cubic is the so-called Tschirnhausen cubic, FAROUKI and SAKKALIS [5]
proved later that spatial PH cubics are helices, i.e. curves of constant
slope. A classification of PH cubics in Euclidean space can be ob-
tained by combining these results: Any PH cubic can be constructed
as a helix with any given slope ‘‘over’’ the Tschirnhausen cubic.

Later, this notion was generalized to Minkowski (pseudo-Euclidean)
space. As observed by MOON [10] and by CHOI et al. [1], Minkowski
Pythagorean hodograph (MPH) curves are very well suited for
representing the so-called medial axis transforms (MAT) of planar
domains.

Recall that the MAT of a planar domain is the closure of the set
containing all points ðx; y; rÞ, where the circle with center ðx; yÞ and
radius r touches the boundary in at least two points and is fully contained
within the domain. When the MAT is an MPH curve, the boundary
curves of the associated planar domain admit rational parameteriza-
tions. Moreover, rational parameterizations of their offsets exist too,
since the offsetting operations correspond to a translation in the di-
rection of the time axis, which clearly preserves the MPH property.

These observations served to motivate constructions for MPH
curves. Interpolation by MPH quartics was studied by KIM and AHN

[6]. Recently, it was shown that any space-like MAT can approx-
imately be converted into a G1 cubic MPH spline curve (KOSINKA

and J€UUTTLER [7]).
This paper analyzes the geometric properties of MPH cubics. As

the main result, it is shown that these curves are again helices and can
be classified, similarly to the Euclidean case.

The remainder of this paper is organized as follows. Section 2 sum-
marizes some basic notions and facts concerning three-dimensional
Minkowski geometry, MPH curves, and the differential geometry of
curves in Minkowski space. Section 3 recalls some properties of
helices in Euclidean space and it discusses helices in Minkowski
space. Section 5 presents a classification of planar MPH cubics.
Based on these results and using the so-called tangent indicatrix of a
space-like curve we give a complete classification of spatial MPH
cubics. Finally, we conclude the paper.
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2. Preliminaries

In this section we summarize some basic concepts and results con-
cerning Minkowski space, MPH curves and differential geometry of
curves in Minkowski space.

2.1. Minkowski Space

The three-dimensional Minkowski space R2;1 is a real linear space with
an indefinite inner product given by the matrix G ¼ diagð1; 1;�1Þ.
The inner product of two vectors u ¼ ðu1; u2; u3Þ>, v ¼ ðv1; v2; v3Þ>,
u; v2R2;1 is defined as

hu; vi ¼ u>Gv ¼ u1v1 þ u2v2 � u3v3: ð2Þ
The three axes spanned by the vectors e1 ¼ ð1; 0; 0Þ>, e2 ¼ ð0; 1; 0Þ>
and e3 ¼ ð0; 0; 1Þ> will be denoted as the x-, y- and r-axis, respectively.

Since the quadratic form defined by G is not positive definite as in
the Euclidean case, the square norm of u defined by kuk2 ¼ hu;ui
may be positive, negative or zero. Motivated by the theory of rela-
tivity one distinguishes three so-called ‘‘causal characters’’ of vectors.
A vector u is said to be space-like if kuk2>0, time-like if kuk2<0,
and light-like (or isotropic) if kuk2 ¼ 0.

Two vectors u; v2R2;1 are said to be orthogonal if hu; vi ¼ 0. The
cross-product in the Minkowski space can be defined analogously to
the Euclidean case as

w ¼ u ffl v ¼ ðu2v3 � u3v2; u3v1 � u1v3;�u1v2 þ u2v1Þ>: ð3Þ

Clearly, hu;u ffl vi ¼ 0 for all u; v2R2;1.
A vector u2R2;1 is called a unit vector if kuk2 ¼ � 1. The

hyperboloid of one sheet given by x2 þ y2 � r2 ¼ 1 spanned by the
endpoints of all unit space-like vectors will be called the unit hyper-
boloid H.

Let u, v and w be three vectors in R2;1. A scalar triple product of u,
v and w is defined as

½u; v;w� ¼ hu; v ffl wi: ð4Þ
The scalar triple product in Minkowski space is the same as in
Euclidean space, since the sign change in Minkowski inner and cross
product cancels out. Therefore ½u; v;w� ¼ detðu; v;wÞ.

A plane in Minkowski space is called space-, time- or light-
like if the restriction of the quadratic form defined by G on this
plane is positive definite, indefinite nondegenerate or degenerate,
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respectively. The type of a plane � can be characterized by the
Euclidean angle � included between � and the xy plane. For light-
like planes, � ¼ �=4.

2.2. Lorentz Transforms

A linear transform L: R2;1 ! R2;1 is called a Lorentz transform if it
maintains the Minkowski inner product, i.e. hu; vi ¼ hLu; Lvi for all
u; v2R2;1. The group of all Lorentz transforms L ¼ Oð2; 1Þ is called
the Lorentz group.

Let K ¼ ðki; jÞi; j¼1;2;3 be a Lorentz transform. Then the column vec-

tors k1, k2 and k3 satisfy hki; kji ¼ Gi; j, i; j2f1; 2; 3g, i.e. they form

an orthonormal basis of R2;1.
From hk3; k3i ¼ G3;3 ¼ �1 one obtains k2

33 � 1. A transform K is
said to be orthochronous if k33 � 1. The determinant of any Lorentz
transform K equals to � 1, and special ones are characterized by
detðKÞ ¼ 1.

The Lorentz group L consists of four components. The special
orthochronous Lorentz transforms form a subgroup SOþð2; 1Þ of
L. The other components are T1 � SOþð2; 1Þ, T2 � SOþð2; 1Þ and
T1 � T2 � SOþð2;1Þ, where T1 ¼ diagð1;1;�1Þ and T2 ¼ diagð1;�1;1Þ.

Let

Rð�Þ ¼
cos� �sin� 0

sin� cos� 0

0 0 1

0
@

1
A

and

Hð�Þ ¼
1 0 0

0 cosh� sinh�
0 sinh� cosh�

0
@

1
A ð5Þ

be a rotation of the spatial coordinates x, y, and a hyperbolic rota-
tion with a hyperbolic angle �, respectively. Any special ortho-
chronous Lorentz transform L2SOþð2; 1Þ can be represented as
L ¼ Rð�1ÞHð�ÞRð�2Þ.

The restriction of the hyperbolic rotation to the time-like yr-plane
(i.e. to Minkowski space R1;1) is given by

hð�Þ ¼ cosh� sinh�
sinh� cosh�

� �
: ð6Þ
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2.3. MPH Curves

A curve segment cðtÞ2R2;1, t2½a; b� is called space-, time- or light-
like if its tangent vector c0ðtÞ, t2½a; b� is space-, time- or light-like,
respectively.

Recall that a polynomial curve in Euclidean space is said to
be a Pythagorean hodograph (PH) curve (cf. FAROUKI [3]), if
the norm of its first derivative vector (or ‘‘hodograph’’) is a (possi-
bly piecewise) polynomial. Following MOON [10], a Minkowski
Pythagorean hodograph (MPH) curve is defined similarly, but with
respect to the norm induced by the Minkowski inner product. More

precisely, a polynomial curve c2R2;1, c ¼ ðx; y; rÞ> is called an
MPH curve if

x0
2 þ y0

2 � r0
2 ¼ �2 ð7Þ

for some polynomial �.

Remark 1. As observed by MOON [10] and CHOI et al. [1], if the
medial axis transform (MAT) of a planar domain is an MPH curve,
then the coordinate functions of the corresponding boundary curves
and their offsets are rational.

Remark 2. As an immediate consequence of the definition, the
tangent vector c0ðtÞ of an MPH curve cannot be time-like. Also,
light-like tangent vectors c0ðtÞ correspond to roots of the polynomial
� in (7).

2.4. Frenet Formulas in Minkowski Space

This section introduces several facts from the differential geometry of
curves in Minkowski space, cf. WALRAVE [12]. We consider a curve
segment cðtÞ2R2;1. In order to rule out straight line and inflections,
we suppose that the first two derivative vectors c0ðtÞ and c00ðtÞ are
linearly independent. More precisely, points with linearly dependent
vectors c0ðtÞ and c00ðtÞ correspond to inflections in the sense of pro-
jective differential geometry, which will be excluded. We distinguish
three different cases.

Case 1. Consider a space-like curve cðsÞ2R2;1, i.e. kc0ðsÞk>0.
We may assume that the curve is parameterized by its arc length,
i.e. kc0ðsÞk ¼ 1. Then we define a (space-like) unit tangent vector
T ¼ c0ðsÞ of cðsÞ.
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Subcase 1.1. If the vector T0 is space-like or time-like on some
parameter interval, the Frenet formulas take the form

T0 ¼ �N;

N0 ¼ �hN;Ni�Tþ �B;

B0 ¼ �N: ð8Þ

The unit vectors N and B are the unit normal and binormal vector,
�>0 and � are the Minkowski curvature and torsion of cðsÞ,
respectively. The three vectors T, N and B form an orthonormal
basis.

Subcase 1.2. The vector T0 of a space-like curve may be light-like at
an isolated point, or within an entire interval. The two cases will be
called Minkowski inflections and inflected segments, respectively. The
Frenet formulas of a space-like curve within an inflected segment
take the form

T0 ¼ N;

N0 ¼ �N;

B0 ¼ �T� �B; ð9Þ

where hT;Ni ¼ hT;Bi ¼ 0, hN;Ni ¼ hB;Bi ¼ 0 and hN;Bi ¼ 1. In
this situation, the Minkowski curvature evaluates formally to � ¼ 1.
This subcase covers curves lying in light-like planes.

Case 2. Consider a light-like curve cðsÞ2R2;1, i.e. hc0ðsÞ; c0ðsÞi ¼ 0.
It follows that hc0ðsÞ; c00ðsÞi ¼ 0 and thus c00ðsÞ lies in a light-like
plane. Therefore c00ðsÞ is space-like (light-like vector c00ðsÞ leads to an
inflection). We may assume that the curve is parameterized by its so-
called pseudo arc length, i.e. kc00ðsÞk ¼ 1. Then we have

T0 ¼ N;

N0 ¼ �T� B;

B0 ¼ ��N; ð10Þ

where hN;Ti ¼ hN;Bi ¼ 0, hT;Ti ¼ hB;Bi ¼ 0 and hT;Bi ¼ 1.
Again, the Minkowski curvature evaluates to � ¼ 1.

Case 3. Let us consider a time-like curve cðsÞ2R2;1 parameterized by
its arc length, i.e. kc0ðsÞk ¼ �1. Then we define a (time-like) unit
tangent vector T ¼ c0ðsÞ. As hT;T0i ¼ 0, the vector T0 lies in a space-
like plane. Therefore, T0 is always space-like. The Frenet formulas
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take the form

T0 ¼ �N;

N0 ¼ �Tþ �B;

B0 ¼ ��N; ð11Þ
where N and B are the unit normal and binormal vector, �>0 and �
are the Minkowski curvature and torsion of cðsÞ, respectively. The
three vectors T, N and B form an orthonormal basis.

Remark 3. In the remainder of the paper, the notion of inflection also
includes Minkowski inflections.

The next result characterizes inflections.

Proposition 4. Let cðtÞ2R2;1 be a space-like curve. Then cðtÞ has an
inflection corresponding to t2 I if and only if kc0ðtÞ ffl c00ðtÞk2 ¼ 0
for t2 I. This includes the case of an isolated inflection point, where
I ¼ ft0g.

Proof. For the sake of brevity, we will omit the dependence on the
parameter t. Let T and � be the unit tangent vector and the curvature
of c. As in the Euclidean case, the Frenet formulas imply

kc0 ffl c00k2 ¼ kc0k6kT ffl T0k2: ð12Þ
Firstly, let c have an inflection. Then T0 is a light-like vector. As
hT;Ti ¼ 1, by differentiating we obtain hT;T0i ¼ 0. One can easily
check that hT;T0i ¼ 0 implies kT ffl T0k2 ¼ 0 (the geometric argu-
ment is that the vectors T, T0 define a light-like plane). Finally, (12)
yields that kc0 ffl c00k2 ¼ 0.

Secondly, let kc0 ffl c00k2 ¼ 0. From (12) we get that kTffl T0k2 ¼ 0
or �¼ 0 has to hold. Again, since hT;T0i ¼ 0, we can conclude that
the vector T0 is light-like. &

The formulas

�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhc0ðtÞ ffl c00ðtÞ; c0ðtÞ ffl c00ðtÞij

p
kc0ðtÞk3

ð13Þ

and

�ðtÞ ¼ ½c0ðtÞ; c00ðtÞ; c000ðtÞ�
jhc0ðtÞ ffl c00ðtÞ; c0ðtÞ ffl c00ðtÞij ð14Þ

for the curvature and torsion of a space-like curve cðtÞ without in-
flections can be derived from Frenet formulas. The proof is similar to
the Euclidean case.
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2.5. Curves of Zero Curvature or Torsion

Let us take a closer look at curves in Minkowski space with curvature
or torsion identically equal to zero. One can verify that a curve cðtÞ in
Euclidean or Minkowski space, whose curvature vanishes identically,
is contained within a straight line.

Definition 5. A curve in R3 or R2;1 is called a spatial curve if and
only if it does not lie in a plane.

In the Euclidean space R3, a curve, which is not a straight line, is
planar (non-spatial) if and only if its torsion is identically equal to zero.
Analogously, one may ask for curves in R2;1 with vanishing torsion.

The answer to this question is not the same as in Euclidean case. In
fact, � � 0 is neither a necessary nor a sufficient condition for a curve
to be planar in Minkowski space.

On the one hand, it can be shown that curves lying in light-like
planes consist only of Minkowski inflections, hence they are planar
without having vanishing torsion. (The Minkowski curvature formally
evaluates to 1, and the torsion plays the role of the curvature.) These
curves correspond to Subcase 1.2 of the Frenet formulas.

On the other hand, curves with vanishing torsion are described by
the following result.

Proposition 6 (WALRAVE [12]). If a curve cðtÞ2R2;1 has vanishing
torsion, then it is a planar curve or a curve similar to the so-called
W-null-cubic

wðsÞ ¼ 1

6
ffiffiffi
2

p ð6s� s3; 3
ffiffiffi
2

p
s2; 6sþ s3Þ>: ð15Þ

Proof (Sketch, see WALRAVE [12] for details). Consider a curve
cðsÞ2R2;1 such that � � 0, � 6¼ 0. When cðsÞ is space-like or time-
like, one can easily verify that the third derivative c000ðsÞ of cðsÞ
is a linear combination of c0ðsÞ and c00ðsÞ, which implies that cðsÞ
is a planar curve. When cðsÞ is light-like, � � 0 yields cðsÞ ¼
ð1=6

ffiffiffi
2

p
Þð6s� s3; 3

ffiffiffi
2

p
s2; 6sþ s3Þ>.

Therefore, the only spatial curve in R2;1 (up to Minkowski simi-
larities) with torsion identically equal to zero is the light-like curve
(15), which we will refer to as the W-null-cubic. Note that wðsÞ is
parameterized by its pseudo arc length. &

Remark 7. (1) The W-null-cubic is also an MPH curve, since any
polynomial light-like curve is an MPH curve.

(2) Throughout this paper, similar refers to the Minkowski geometry,
i.e., it means equal up to Lorentz transforms, translations, and scaling.
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3. Helices in Minkowski Space

We start with a brief summary of some basic results from Euclidean
space.

A helix in R3 is a spatial curve for which the tangent makes a
constant angle with a fixed line. Any such line is called the axis of the
helix. Lancret’s theorem states that a necessary and sufficient con-
dition for a spatial curve to be a helix in R3 is that the ratio of its
curvature to torsion is constant. The proof of this theorem uses Frenet
formulas and can be found in many textbooks on classical differential
geometry, e.g. KREYSZIG [8].

In the Euclidean version of the Lancret’s theorem the restriction
to spatial curves rules out curves with vanishing torsion. However,
as shown in Section 2.5, this is generally not the case in Minkowski
space.

Definition 8. A curve cðtÞ2R2;1 is called a helix if and only if there
exists a constant vector v 6¼ ð0; 0; 0Þ> such that hTðtÞ; vi is constant,
where TðtÞ is the unit tangent vector of cðtÞ. Any line, which is
parallel to the vector v, is called an axis of the helix cðtÞ.
Proposition 9 (Lancret’s Theorem in R2;1). A spatial curve cðtÞ2R2;1

is a helix if and only if � ¼ ��, where � is a real constant and �, �
are the Minkowski curvature and torsion of cðtÞ.
Proof. Recall that � ¼ 0 (i.e. � � 0) corresponds to the W-null-cubic
as shown in Proposition 6. From the Frenet formulas for light-like
curves it follows that the binormal vector B of the W-null-cubic is a
constant vector and hT;Bi ¼ 1. This implies that the W-null-cubic is
a helix in R2;1.

Now, let us suppose that � 6¼ 0. As the proof is analogous for
all five different cases of curves and corresponding Frenet formulas,
we provide the proof of Lancret’s theorem for two of the cases only.

Let c0ðtÞ be space-like and c00ðtÞ not light-like and let cðtÞ be
a helix in R2;1. Then there exists a constant vector v 6¼ ð0; 0; 0Þ>
such that hT; vi ¼ �, �2R. By differentiating this equation with
respect to t and using Frenet formulas we obtain hN; vi ¼ 0 and
thus v ¼ aTþ bB, where a; b2R. Again, by differentiating we get
Nða�þ b�Þ ¼ 0, which gives � ¼ �ða=bÞ� (b ¼ 0 implies that cðtÞ
is a straight line).

Conversely, let � ¼ ��. Then we choose the vector v ¼ T� ð1=�ÞB.
By differentiating this equation with respect to t one obtains that
v0 ¼ ð0; 0; 0Þ>, i.e. v is a constant vector. Moreover, hT; vi ¼
hT;T� ð1=�ÞBi ¼ 1, which proves that cðtÞ is a helix in R2;1. &
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Remark 10. For the remainder of the paper we restrict ourselves to
space-like and light-like helices only. In order to avoid confusion, we
will call these curves SL-helices.

Proposition 11. Any polynomial SL-helix in Minkowski space is an
MPH curve.

Proof. Let cðtÞ be a polynomial light-like helix. Clearly, any poly-
nomial light-like curve is an MPH curve.

Now, let cðtÞ be a polynomial space-like helix. Then there exists
a constant vector v such that hT; vi ¼ �, where � is a real constant.
One can easily verify that � ¼ 0 leads to a contradiction with cðtÞ
being a helix, since the torsion of cðtÞ would be identically equal to
zero (cf. Proposition 6). Therefore � 6¼ 0.

The unit tangent vector of cðtÞ can be obtained from

T ¼ c0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc0ðtÞ; c0ðtÞi

p :

By substituting T in the first equation we obtain

hc0ðtÞ; vi
�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc0ðtÞ; c0ðtÞi

p
: ð16Þ

As the curve cðtÞ is a polynomial curve, the left-hand side of (16) is a
polynomial. Consequently, the right-hand side of (16) is a polynomial
as well and hence cðtÞ is an MPH curve. &

4. Spatial MPH Cubics

In this section we discuss the connection between polynomial helices
in Minkowski space and MPH curves.

4.1. Space-Like MPH Cubics

Proposition 12. The ratio of curvature to torsion of a spatial space-
like MPH cubic is constant. Consequently, spatial space-like MPH
cubics are helices in R2;1.

Proof. We will prove the proposition by a direct computation. Let
cðtÞ ¼ ðxðtÞ; yðtÞ; rðtÞÞ> 2R2;1 be a spatial space-like MPH cubic.
Then there exist four linear polynomials (cf. MOON [10])

uðtÞ ¼ u0ð1 � tÞ þ u1t; vðtÞ ¼ v0ð1 � tÞ þ v1t;

pðtÞ ¼ p0ð1 � tÞ þ p1t; qðtÞ ¼ q0ð1 � tÞ þ q1t; ð17Þ
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such that

x0ðtÞ ¼ uðtÞ2 � vðtÞ2 � pðtÞ2 þ qðtÞ2;

y0ðtÞ ¼ �2ðuðtÞvðtÞ þ pðtÞqðtÞÞ;
r0ðtÞ ¼ 2ðuðtÞqðtÞ þ vðtÞpðtÞÞ;
�ðtÞ ¼ uðtÞ2 þ vðtÞ2 � pðtÞ2 � qðtÞ2: ð18Þ

Since cðtÞ is a space-like curve, we may (without loss of generality)
assume that c0ð0Þ ¼ ð1; 0; 0Þ>, which implies u0 ¼ 0, p0 ¼ 0 and
q2

0 � v2
0 ¼ 1. Expressing the curve cðtÞ in B�eezier form and computing

the following scalar triple product yields that cðsÞ is a planar curve if

½c0ð0Þ; c0ð1Þ; cð1Þ � cð0Þ� ¼ ðu1 � p1Þðu1 þ p1Þðv1q0 � q1v0Þ ¼ 0:

ð19Þ
According to Proposition 4, cðtÞ has an inflection point if

ðu1 � p1Þðu1 þ p1Þ�ðtÞ ¼ 0: ð20Þ
One can observe from (19) and (20) that cðtÞ has an inflection if it has
a light-like tangent (or it is a planar curve). Thus spatial space-like
MPH cubics have no inflections.

Applying formulas (13) and (14) to the curve cðtÞ gives that the
curvature and torsion of cðtÞ are given by

�ðtÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðu1 � p1Þðu1 þ p1Þj

p
�2ðtÞ ; �ðtÞ ¼ 2ðv1q0 � q1v0Þ

�2ðtÞ : ð21Þ

Consequently, the ratio of �ðtÞ to �ðtÞ does not depend on t. &

4.2. Light-Like MPH Cubics

Proposition 13. Any spatial light-like cubic is similar to the
W-null-cubic.

Proof. Consider a spatial light-like polynomial curve cðtÞ of degree 3.
Let t ¼ tðsÞ be a reparameterization of cðtÞ such that cðtðsÞÞ is
parameterized by the pseudo arc length and let TðsÞ, NðsÞ and BðsÞ be
the tangent, normal and binormal vector and �ðsÞ the torsion of cðtÞ.
We denote by c0 and _cc the first derivative of c with respect to t and s,
respectively. For the sake of brevity we omit the dependence on s.
Then we have

T ¼ c0ðtÞ dt
ds

: ð22Þ
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Three consecutive differentiations of (22) with respect to s and
simplifications using Frenet formulas yield

N ¼ c00ðtÞ dt

ds

� �2

þ c0ðtÞ d
2t

ds2
;

�T� B ¼ c000ðtÞ dt

ds

� �3

þ 3c00ðtÞ dt
ds

d2t

ds2
þ c0ðtÞ d

3t

ds3
;

_��c0ðtÞ dt
ds

¼ _��T ¼ c0000ðtÞ dt

ds

� �4

þ a3ðsÞc000ðtÞ þ a2ðsÞc00ðtÞ þ c0ðtÞ d
4t

ds4
;

ð23Þ

where

a3ðsÞ ¼
�
dt

ds

�2
d2t

ds2
¼ ð_ttÞ2€tt

and a2ðsÞ is a function of s.
Consider the scalar triple product ½T;N; �T� B�. Using (22) and

(23) one obtains

½T;N; �T� B� ¼ ½T;N;�B� ¼ ½c0ðtÞ; c00ðtÞ; c000ðtÞ�
�
dt

ds

�6

: ð24Þ

Since the vectors TðsÞ, NðsÞ and BðsÞ are linearly independent,
the vectors c0ðtÞ, c00ðtÞ and c000ðtÞ are linearly independent as well.
Consequently, by comparing coefficients and due to the fact that

c0000ðtÞ ¼ ð0; 0; 0Þ>, the third equation of (23) implies

a3ðsÞ ¼ 0; a2ðsÞ ¼ 0; _��
dt

ds
¼ d4t

ds4
: ð25Þ

From a3ðsÞ ¼ 0 one may conclude that t ¼ �sþ � and therefore the
last equation of (25) implies that � is constant.

Finally, we express the binormal vector B using the second equation
of (23):

B ¼ �T� �3c000ðtÞ;
_BB ¼ _��Tþ � _TT� �4c0000ðtÞ ¼ �N: ð26Þ

On the other hand, from the Frenet formulas we have that _BB ¼ ��N.
Therefore, the torsion � is identically equal to zero. Proposition 6 con-
cludes the proof. &
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4.3. Summary

In this section we will summarize the previously obtained results
(see the scheme in Fig. 1).

Theorem 14. A spatial curve in Minkowski space is an MPH cubic if
and only if it is a space-like or light-like cubic helix.

Proof. From Propositions 12 and 13 it follows that any spatial MPH
cubic satisfies the assumptions of the Lancret’s theorem (Theorem 9)
and therefore any such curve is a helix in Minkowski space. On the
other hand, we have proved (cf. Proposition 11) that any polynomial
SL-helix is an MPH curve. &

5. Classification of Planar MPH Cubics

In order to prepare the discussion of spatial helices, we present a
classification of planar MPH cubics.

5.1. MPH Cubics in Space-Like and Light-Like Planes

A thorough discussion of planar MPH cubics in space-like planes was
given in FAROUKI and SAKKALIS [4], since these curves are planar PH

Fig. 1. Summary of obtained results concerning spatial MPH cubics
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cubics. It turns out that any planar PH cubic (which is not a straight
line) is similar to the so-called Tschirnhausen cubic (see Fig. 2) given
by TðtÞ ¼ ð3t2; t � 3t3Þ>.

Let us consider a polynomial planar curve cðtÞ ¼ ðxðtÞ; yðtÞÞ>. The
MPH condition in a light-like plane degenerates to x02ðtÞ ¼ �2ðtÞ and
hence any polynomial curve in a light-like plane is an MPH curve.
Therefore the only case remaining to consider is the case of a time-
like plane.

5.2. MPH Cubics in Time-Like Planes

An MPH curve cðtÞ ¼ ðxðtÞ; yðtÞÞ> lying in a time-like plane is
nothing else but a curve in Minkowski plane R1;1 whose hodograph
satisfies x02ðtÞ � y02ðtÞ ¼ �2ðtÞ, where �ðtÞ is a polynomial in t.

Proposition 15. Any MPH cubic in Minkowski plane R1;1 with
exactly one point with a light-like tangent is similar to the curve
q1ðtÞ ¼ ðt3 þ 3t; t3 � 3tÞ> (depicted in Fig. 3).
Any MPH cubic in Minkowski plane R1;1 with exactly two different

points with light-like tangents is similar (in Minkowski sense) to the
curve q2ðtÞ ¼ ðt3 þ 3t; 3t2Þ> (see Fig. 4).
There are no MPH cubics in R1;1 except for the curves q1ðtÞ, q2ðtÞ

and straight lines.

Fig. 2. Tschirnhausen cubic

Fig. 3. MPH cubic in R1;1 with exactly one point with a light-like tangent (marked
by the grey circle)
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Proof. Let us suppose that cðtÞ ¼ ðxðtÞ; yðtÞÞ> is an MPH cubic in
R1;1. Then there exist two linear polynomials uðtÞ ¼ u0ð1 � tÞ þ u1t,
vðtÞ ¼ v0ð1 � tÞ þ v1t (cf. KUBOTA [9]) such that

x0ðtÞ ¼ u2ðtÞ þ v2ðtÞ;
y0ðtÞ ¼ 2uðtÞvðtÞ;
�ðtÞ ¼ u2ðtÞ � v2ðtÞ; ð27Þ

where � is the parametric speed

� ¼ ðat � u0 � v0Þðbt � u0 þ v0Þ;

where

a ¼ u0 � u1 þ v0 � v1; b ¼ u0 � u1 � v0 þ v1: ð28Þ

Depending on the number of light-like tangents of cðtÞ we will
distinguish the following four cases.

Case 1. The curve cðtÞ has infinitely many light-like tangents. This
case occurs when �ðtÞ � 0, which implies that cðtÞ is a part of a light-
like straight line.

Case 2. The curve cðtÞ has no light-like tangents. This means that �ðtÞ
has no roots, i.e. a ¼ 0 and b ¼ 0, see Eq. (28). One can easily verify
that cðtÞ is a part of a straight line.

Case 3. The curve cðtÞ has exactly one light-like tangent. The limit
case, when the two roots of � degenerate into one, gives again straight
lines only. Let us (without loss of generality) suppose that a 6¼ 0 and
b ¼ 0. Then cðtÞ has a light-like tangent at t0 ¼ ðu0 þ v0Þ=a. We may
assume that t0 ¼ 0 (otherwise we would reparameterize cðtÞ) and
therefore u0 þ v0 ¼ 0. A simple calculation reveals that

cðtÞ ¼ ð�t3 þ �t; �t3 � �tÞ>; � ¼ 2
3
ðu0 þ v1Þ2; � ¼ 2u2

0: ð29Þ

Fig. 4. MPH cubic in R1;1 with exactly two different points with light-like tangents
(marked by the grey circles)
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By a reparameterization t ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
�=3�

p
of cðtÞ given in (29) (the equal-

ity � ¼ 0 yields a straight line) and a scaling by factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27�=�3

p
we

obtain the curve q1ðtÞ.
Case 4. The curve cðtÞ has exactly two different light-like tangents
corresponding to t1 ¼ ðu0 þ v0Þ=a and t2 ¼ ðv0 � u0Þ=b, a 6¼ 0, b 6¼ 0
and t1 6¼ t2. Let us consider the following transformation of the curve
cðtÞ ¼ ðxðtÞ; yðtÞÞ> consisting of a reparameterization t ¼ t þ �, a
scaling by factor 	, a hyperbolic rotation with a hyperbolic angle ’
and a translation given by the vector ð%1; %2Þ>:

pðtÞ ¼ 	
cosh’ sinh’
sinh’ cosh’

� �
cðt þ �Þ þ %1

%2

� �
: ð30Þ

A straightforward but long computation gives that for the values

’ ¼ 1

2
ln
b2

a2
; � ¼ u2

0 � u0u1 þ v0v1 � v2
0

ab
; 	 ¼ 3a2

ffiffiffiffiffi
b2

a2

r
ð31Þ

and %1, %2 such that pð0Þ ¼ ð0; 0Þ>, the curve becomes

pðtÞ ¼ ða2b2t3 þ 3c2t; 3abct2Þ>; c ¼ u1v0 � v1u0: ð32Þ

A reparameterization t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=a2b2

p
of pðtÞ given in (32) and a scal-

ing by factor ð1=c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2=c2

p
gives the curve q2ðtÞ. The equality

c ¼ 0 obviously leads to a straight line. &

6. Classification of Spatial Space-Like MPH Cubics

The following classification of spatial space-like MPH cubics is based
on the notion of tangent indicatrix, i.e., the curve on the unit hyper-
boloid describing the variation of the unit tangent vector.

6.1. Orthogonal Projections into Planes Perpendicular

to the Axis

Let cðtÞ be a space-like MPH cubic with curvature � 6¼ 0 and torsion
� 6¼ 0 and let T and B be the unit tangent and binormal vector of cðtÞ.
From the proof of Lancret’s theorem (cf. Proposition 9) it follows that
the direction of the axis of cðtÞ (considered as a helix in R2;1) is given
by the vector v ¼ T� ð�=�ÞB.

One can easily verify that hT;vi ¼ 1 and kvk2 ¼ 1þ ð�2=�2ÞkBk2
.

Therefore, when B is space-like, the vector v is space-like as well.
In the case when B is time-like, the causal character of v may be
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arbitrary, e.g. the axis of cðtÞ is light-like if and only if kBk2 ¼ �1
and � ¼ ��.

In the Euclidean space one can use the following approach for
constructing spatial PH cubics (cubic helices). It is obvious that an
orthogonal projection of a PH cubic to a plane perpendicular to its
axis is a planar PH cubic (since the length of the tangent vector of the
projection is a constant multiple of the length of the tangent vector of
the original curve), i.e. the Tschirnhausen cubic. Therefore all PH
cubics can be obtained as helices ‘‘over’’ the Tschirnhausen cubic by
choosing its slope (or equivalently the constant ratio of its curvature
to torsion). Consequently, there exists only one spatial PH cubic up
to orthogonal transforms and 1D scalings in R3, see FAROUKI and
SAKKALIS [5]. Unfortunately, in Minkowski space, this approach does
not include the case of light-like axes.

Remark 16. Let cðtÞ ¼ ðxðtÞ; yðtÞ; rðtÞÞ> be a spatial space-like
MPH cubic whose axis is space-like. We can suppose without loss
of generality that its axis is the y axis. Then its hodograph satis-
fies x02ðtÞ þ y02ðtÞ � r02ðtÞ ¼ �2ðtÞ for some polynomial �ðtÞ and
the orthogonal projection of cðtÞ to the xr plane is the curve
c0ðtÞ ¼ ðxðtÞ; 0; rðtÞÞ>. As

j�ðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02ðtÞ þ y02ðtÞ � r02ðtÞ

p
¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx02ðtÞ � r02ðtÞj

p
ð33Þ

for some constant 	 6¼ 0, there exists a polynomial �0ðtÞ such that
x02ðtÞ � r02ðtÞ ¼ � �2

0ðtÞ. Therefore, the orthogonal projection of
a spatial space-like MPH cubic in the direction of its axis is either
a planar MPH cubic or a planar time-like MPH cubic satisfying
x02ðtÞ � r02ðtÞ ¼ ��2

0ðtÞ. The notion of time-like MPH curve can be
generalized to space, however, there is no application for it so far.
In the planar case, one can think of time-like MPH curves as of space-
like MPH curves, but with swapped space and time axis. Consequently,
for the remainder of the paper we include planar time-like MPH
curves into planar MPH curves, as no confusion is likely to arise.

In the case of a time-like axis (the r axis) of a spatial space-like
MPH cubic the orthogonal projection in the direction of its axis is a
planar PH cubic, i.e. the Tschirnhausen cubic.

6.2. Classification and Normal Forms

In particular, these results concerning the tangent indicatrices apply
to space-like MPH cubics (with up to two points with light-like
tangents). However, in this special case of MPH curves of degree 3,
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more can be achieved. As (space-like) MPH cubics are curves of a
constant slope (see Proposition 9), their tangent indicatrix is a planar
(conic) section of the unit hyperboloid.

Lemma 17. Depending on its causal character, any plane � can be
mapped using Lorentz transforms to one of the canonical positions
shown in Table 1.

Proof. Let us consider a plane � given by kyþ lr þ m ¼ 0, k � 0,
l 	 0, ðk; lÞ 6¼ ð0; 0Þ, m>0 (otherwise we rotate it about the time-axis
and/or mirror it with respect to the xy plane). Depending on its causal
character we transform � using hyperbolic rotations introduced in
Table 1, cf. Fig. 5. &

Theorem 18. Any spatial space-like MPH cubic is similar to one of
the curves listed in Table 2.

Proof. We distinguish two cases depending on whether the axis of the
MPH cubic is light-like or not.

Table 1. Canonical positions of a plane �, see Fig. 5. The abbreviations sl., tl., and ll.
stand for space-, time- and light-like, respectively

� Condition Hyperbolic
angle

Canonical
position

Conic section
(Euclid. classif.)

sl. k < �l 1
2 ln

�
� kþl

k�l

�
�s: r ¼ r0 ‘circle’

tl. k > �l; k2 � l2 6¼ k2 1
2 ln

�
kþl
k�l

�
�t: y ¼ y0 6¼ �1 ‘hyperbola’

k > �l; k2 � l2 ¼ k2 1
2 ln

�
kþl
k�l

�
~��t: y ¼ �1 2 int. lines

ll. k ¼ �l;m 6¼ 0 ln m
k �l: y� rþ 1 ¼ 0 ‘parabola’

k ¼ �l;m ¼ 0 0 ~��l: y� r ¼ 0 2 par. lines

Fig. 5. The unit hyperboloid H, canonical positions of a plane � and corresponding
conic sections (Euclidean classification): a) space-like plane �s and a ‘circle’ Ks, b)
time-like plane �t and a ‘hyperbola’ Kt, c) light-like plane �l and a ‘parabola’ Kl
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Case 1. Let pðtÞ be a spatial space-like MPH cubic whose axis is not
light-like. Its orthogonal projection in the direction of its axis is a
planar MPH cubic (cf. Remark 16). Now, we make use of the
classification of planar MPH cubics described in Section 5.

Subcase 1.1. The axis is time-like. We have to analyze the MPH
cubics ‘‘over’’ the Tschirnhausen cubic TðtÞ ¼ ð3t2; t � 3t3Þ>.

Let pðtÞ ¼ ð3t2; t � 3t3; rðtÞÞ>, where rðtÞ ¼ at3 þ bt2 þ ct. Then
we have p0ðtÞ ¼ ð6t; 1 � 9t2; 3at2 þ 2bt þ cÞ> and

jjp0ðtÞjj2 ¼ ð�t2 þ �t þ 
Þ2 ð34Þ
must hold for some constants �, � and 
. Comparing the coefficients
in (34) gives the following system of equations:

�2 þ 9a2 � 81 ¼ 0; �� þ 6ab ¼ 0;

�2 þ 2�
 þ 4b2 þ 6ac� 18 ¼ 0;

�
 þ 2bc ¼ 0; 
2 þ c2 � 1 ¼ 0: ð35Þ
All solutions of the form ða; b; cÞ of (35) are found to be
ð�3	; 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 	2

p
; 	Þ and ð3	; 0; 	Þ, j	j<1. However, as the first fam-

ily of solutions gives only planar cubics, the only spatial space-like
MPH cubics with time-like axis are given by

pðtÞ ¼ ð3t2; t � 3t3; 	ð3t3 þ tÞÞ>; j	j<1; 	 6¼ 0: ð36Þ
Note that there exists only one spatial space-like MPH cubic with
time-like axis up to Minkowski similarities and 1D scalings given by
the factor 	. For 	 ¼ 0 one obviously obtains a planar MPH cubic and
the limit cases 	 ¼ �1 give the W-null-cubic.

Subcase 1.2. The axis is space-like. All spatial space-like MPH
cubics with space-like axes can be found analogously with the help of
the planar MPH cubics presented in Proposition 15. For the sake of
brevity we omit the details.

Table 2. Normal forms of spatial space-like MPH cubics

Axis Normal form 1D scaling factor �, �

Space-like ðt3 þ 3t; 	ðt3 � 3tÞ; 3t2Þ> 	 6¼ 0 � ¼ �	�

ð3t2; 	ðt3 � 3tÞ; t3 þ 3tÞ> j	j>1 � ¼ �	�

Time-like ð3t2; t� 3t3; 	ð3t3 þ tÞÞ> j	j<1, 	 6¼ 0 � ¼ 	�

Light-like 1
6 ð3t2; t3 � 6t; t3Þ> � ¼ �� ¼ 1

ð3t2; t3 � 6t; 6tÞ> � ¼ ��
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Case 2. On the other hand, let qðtÞ be a spatial space-like MPH cubic
whose axis is light-like. Since the previous construction (based on
Remark 16) cannot be used in this case, we turn our attention to the
so-called tangent indicatrix

rðtÞ ¼ q0ðtÞ
jjq0ðtÞjj : ð37Þ

Since the axis is light-like, the tangent indicatrix is contained in
the intersection of a certain light-like plane with the unit hyperboloid
H. Without loss of generality we consider the light-like plane �l:
y� r þ 1 ¼ 0, cf. Table 1, Fig. 5c. (The other case of light-like planes
can be omitted, since the tangent indicatrix would be contained in one
of two parallel lines. This is only possible for planar curves.)

The tangent indicatrix Kl ¼ �l \H has the parametric representation

rðtÞ ¼
�
t;
t2

2
� 1; t2

�>
:

All other rational biquadratic parameterizations are obtained by the
bilinear reparameterizations t ¼ ða� þ bÞ=ðc� þ dÞ, ad � bc 6¼ 0 (cf.
FARIN [2]) of rðtÞ,

~rrð�Þ ¼
�
a� þ b

c� þ d
;
ða� þ bÞ2 � 2ðc� þ dÞ2

2ðc� þ dÞ2
;
ða� þ bÞ2

2ðc� þ dÞ2

�>
: ð38Þ

Each reparameterization leads to an MPH cubic, which is obtained by
integrating the numerator, after introducing a common denominator,

~qqð�Þ ¼
�ð2ca�2 þ 3�daþ 3�cbþ 6dbÞ

�ða2�2 þ 3a�bþ 3b2 � 2c2�2 � 6c�d � 6d2Þ
ð1=aÞða� þ bÞ3

0
@

1
A

>

: ð39Þ

Subcase 2.1. c 6¼ 0. A straightforward computation shows that we have

4c4

ðbc� adÞ3
L~qq

�
ad � bc

2c2
t � d

c

�
þ ð�1; �2; �3Þ> ¼ ð3t2; t3 � 6t; 6tÞ>;

ð40Þ
where L is a Lorentz transform

L ¼ 1

2c2

2c2 2ca �2ca

�2ca 2c2 � a2 a2

2ca a2 �2c2 � a2

0
@

1
A ð41Þ

and ð�1; �2; �3Þ> is a translation vector computed from qð0Þ ¼ ð0;0;0Þ>.
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Subcase 2.2. c ¼ 0. In this case one obtains that

a

d3
q

�
d

a
t � b

a

�
þ ð~��1; ~��2; ~��3Þ> ¼ ð3t2; t3 � 6t; t3Þ>: ð42Þ

This completes the proof. &

The results are summarized in Table 2 including the ratios of cur-
vatures to torsions of the spatial space-like MPH cubics. In the case
of a space-like or time-like axis, two families or one family of space-
like MPH cubics exist, respectively. In addition, there are two space-
like MPH cubics with light-like axis.

7. Spatial Light-Like MPH Cubics: The W-Null-Cubic

We have already shown that the only spatial light-like MPH cubic is
the W-null-cubic wðtÞ ¼ ð3t2; t � 3t3; t þ 3t3Þ>, compare with (1) and
(15). According to WUNDERLICH [13], it is the normal form of the
only cubic helix (for constant slope � ¼ �=4) in Euclidean space.
Moreover, as shown by WAGNER and RAVANI [11], it is also the only
so-called cubic RF curve, i.e. a polynomial cubic with rational
Frenet-Serret motion (of degree 5) in Euclidean space.

Fig. 6. The W-null-cubic and its projections into the coordinate planes
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The orthogonal projections of the W-null-cubic into the xy, yr
and xr planes are again PH or (time-like) MPH curves (see Fig. 6).

The projections are similar to the Tschirnhausen cubic TðtÞ2R2 (see
Section 5, Fig. 2), to the curve with one light-like tangent q1ðtÞ2R1;1

(cf. Proposition 15, Fig. 3) and to the curve with two light-like
tangents q2ðtÞ2R1;1 (cf. Proposition 15, Fig. 4), respectively.

8. Conclusion

In this paper we investigated a relation between MPH cubics and cu-
bic helices in Minkowski space. Among other results we proved that
any polynomial space-like or light-like helix in R2;1 is an MPH curve.
The converse result holds for cubic MPH curves, i.e. spatial MPH
cubics are helices in R2;1. Based on these results and properties of
tangent indicatrices of MPH curves we presented a complete clas-
sification of planar and spatial MPH cubics.

Acknowledgement

The authors thank the Austrian Science Fund (FWF) for supporting this research
through project P17387-N12.

References

[1] CHOI, H. I., HAN, CH. Y., MOON, H. P., ROH, K. H., WEE, N. S. (1999) Medial
axis transform and offset curves by Minkowski Pythagorean hodograph curves.
Comput. Aided Des. 31: 59–72

[2] FARIN, G. (1997) Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, New York

[3] FAROUKI, R. T. (2002) Pythagorean-hodograph curves. In: HOSCHEK, J.,
FARIN, G., KIM, M.-S. (eds.) Handbook of Computer Aided Geometric Design,
pp. 405–427. Elsevier, Amsterdam

[4] FAROUKI, R. T., SAKKALIS, T. (1990) Pythagorean hodographs. IBM J. Res. Dev.
34: 736–752

[5] FAROUKI, R. T., SAKKALIS, T. (1994) Pythagorean-hodograph space curves.
Adv. Comput. Math. 2: 41–66

[6] KIM, G.-I., AHN, M.-H. (2003) C1 Hermite interpolation using MPH quartic.
Comput. Aided Geom. Des. 20: 469–492

[7] KOSINKA, J., J€UUTTLER, B. (2006) G1 Hermite interpolation by Minkowski
Pythagorean hodograph cubics. Comput. Aided Geom. Des. 23: 401–418

[8] KREYSZIG, E. (1991) Differential Geometry. Dover, New York
[9] KUBOTA, K. K. (1972) Pythagorean triples in unique factorization domains.

Amer. Math. Month. 79: 503–505
[10] MOON, H. P. (1999) Minkowski Pythagorean hodographs. Comput. Aided Geom.

Des. 16: 739–753

34 J. Kosinka and B. Jüttler
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