Sitzungsber. Abt. II (2006) 215: 155-171

Sitzungsberichte

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2007 Printed in Austrig

Die Linienelemente des \mathbb{P}^3

Von

Boris Odehnal

(Vorgelegt in der Sitzung der math.-nat. Klasse am 16. November 2006 durch das k. M. Hellmuth Stachel)

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Abbildung der Linienelemente des \mathbb{P}^3 auf die Punkte einer fünfdimensionalen rationalen Fläche M^5 , die in den \mathbb{P}^9 eingebettet ist. Ferner wird der Zusammenhang der SEGRE-Varietät $S_{3,5}$ und der Mannigfaltigkeit M^5 untersucht. Auf der Modellfläche erscheinen einfache Linienelementmannigfaltigkeiten als projektive Unterräume wieder. Das Dualitätsprinzip der projektiven Geometrie gestattet die Übertragung der Ergebnisse über Linienelemente auf ihre dualen Gegenstücke.

Mathematics Subject Classification (AMS 2000): 51A25, 51A45.

Key words: Linienelement, SEGRE-Varietät, GRASSMANN-Varietät, Punktmodell, algebraische Fläche, rationale Fläche, Linienelementmannigfaltigkeit.

1. Einleitung

Die k-dimensionalen projektiven Unterräume eines n-dimensionalen projektiven Raumes \mathbb{P}^n können bijektiv auf die Punkte einer algebraischen Varietät $G_{n,k}$ abgebildet werden [5, 6]. Die Varietät $G_{n,k}$ heißt GRASSMANN-Varietät und spannt einen projektiven Raum \mathbb{P}^m von $m = \binom{n+1}{k+1} - 1$ Dimensionen auf. Die in ihr enthaltenen projektiven Unterräume entsprechen den linearen Mannigfaltigkeiten k-dimensionaler projektiver Unterräume. Die projektiven Kollineationen des \mathbb{P}^n induzieren im Raum \mathbb{P}^m projektive Kollineationen, die $G_{n,k}$ als Ganzes, aber nicht punktweise festhalten.

Naheliegend scheint nun die Verallgemeinerung der Geometrie k-dimensionaler Unterräume des \mathbb{P}^n dahingehend, dass man etwa

ein Punktmodell der Menge aller geordneten s-Tupel ($\mathbb{P}_1^{k_1}, \ldots, \mathbb{P}_s^{k_s}$) k_i -dimensionaler projektiver Unterräume $\mathbb{P}_i^{k_i}$ des \mathbb{P}^n konstruieren möchte. Dies führt zu den so genannten SEGRE-Varietäten S_{k_1,\ldots,k_s} , die in einem $(k_1+1)\cdot\cdots\cdot(n_k+1)-1$ -dimensionalen projektiven Raum enthalten sind. Die Reihenfolge der Parameterräume $\mathbb{P}_i^{k_i}$ ist willkürlich, siehe [5]. Nehmen wir nun an, es gelte dim $\mathbb{P}_1^{k_1}=k_1<\cdots< k_s=\dim \mathbb{P}_s^{k_s}$, so bilden $\mathbb{P}_i^{k_i}$ eine aufsteigende Kette $\mathbb{P}_1^{k_1}\subset\cdots\subset \mathbb{P}_s^{k_s}$ von Unterräumen des \mathbb{P}^n , und man nennt ein solches s-Tupel v-rallgemeinertes v-Raumelement oder v-Raumelement

Die Geometrie der verallgemeinerten Raumelemente sowie ihr Zusammenhang mit der Darstellungstheorie der endlichen Gruppen war bereits Gegenstand zahlreicher Untersuchungen, siehe hierzu etwa [1–4, 7].

Da sich in letzter Zeit Anwendungen für Geometrien dieser Art, insbesondere für die Geometrie der Linienelemente des euklidischen Dreiraumes, etwa in der Flächenerkennung und -rekonstruktion fanden [8], war die Geometrie der Linienelemente des euklidischen \mathbb{R}^3 Gegenstand neuerer Untersuchungen [10]. Auch die Geometrie der Flaggen des euklidischen Dreiraumes wurde erst kürzlich beleuchtet und in Verbindung zur Kinematik euklidischer und zur Geometrie nichteuklidischer Räume gebracht [9].

Im Folgenden soll ein Punktmodell für die Menge der Linienelemente des projektiven Raumes \mathbb{P}^3 über einem beliebigen kommutativen Körper K der Charakteristik 0 konstruiert werden, das im Gegensatz zur Segre-Varietät S_{3.5} in einen neundimensionalen projektiven Raum eingebettet ist. Dazu werden zunächst in Abschnitt 2 grundlegende Tatsachen aus der analytischen und der projektiven Geometrie sowie der Liniengeometrie aufbereitet. Im darauffolgenden Abschnitt 3 werden Koordinaten für Linienelemente des \mathbb{P}^3 erklärt. Linienelemente des \mathbb{P}^3 werden auf Punkte einer fünfdimensionalen Fläche $M^5 \subset \mathbb{P}^9$ abgebildet. Diese gestattet rationale Parametrisierungen und ist vom Grad 5. Anschließend werden in Abschnitt 4 die Bilder einfacher Linienelementmannigfaltigkeiten bestimmt. Es sind diese im Wesentlichen Geraden oder Ebenen, von denen jedoch bestimmte Punkte auszunehmen sind. Das Dualitätsprinzip der projektiven Geometrie gestattet in Abschnitt 5, die Ergebnisse der Untersuchungen über die Linienelemente auf ihre dualen Gegenstücke, die Paare bestehend aus einer Ebene und einer in ihr enthaltenen Geraden, zu übertragen. Das dabei entstehende Punktmodell unterscheidet sich von Ersterem weder in den geometrischen noch in den algebraischen Eigenschaften.

2. Linienelemente des \mathbb{P}^3

2.1. Grundlagen, Koordinaten für Punkte, Geraden und Ebenen

Um unserem Ziel, der Koordinatisierung der Linienelemente des \mathbb{P}^3 , näherzukommen, beschreiben wir Punkte X des durch projektiven Abschluss erzeugten \mathbb{P}^3 durch ihre homogenen Koordinaten $X = (x, x_0) \mathbb{K} = (x_1, x_2, x_3; x_0) \mathbb{K}$, wobei \mathbb{K} ein beliebiger kommutativer Körper der Charakteristik 0 sein soll. Die vierte, homogenisierende Koordinate wird in dieser Arbeit absichtlich an die letzte Stelle gesetzt. Dies vereinfacht später die Notation.

Die Ebenen des \mathbb{P}^3 bilden gleichfalls einen projektiven Dreiraum, den wir mit \mathbb{P}^{3*} bezeichnen und Dualraum nennen wollen. Eine Ebene E werde durch ihren homogenen Koordinatenvektor $E = (e, e_0)\mathbb{K} = (e_1, e_2, e_3; e_0)\mathbb{K}$ beschrieben.

Einer Geraden G des \mathbb{P}^3 , die Verbindung zweier Punkte X und Y ist, ordnen wir homogene PLÜCKER-Koordinaten $(g_1, g_2, g_3; g_4, g_5, g_6)$ \mathbb{K} zu, wie dies etwa in [11, 13] beschrieben ist. Wir fassen die Koordinaten der Punkte X und Y in der Matrix

$$\begin{bmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{bmatrix} \tag{1}$$

zusammen und berechnen der Reihe nach die Determinanten der Untermatrizen mit den Spaltenindizes [(0,1),(0,2),(0,3),(2,3),(3,1),(1,2)].

Die PLÜCKER-Koordinaten einer Geraden G sind zum einen unabhängig von der Wahl der Punkte $X \in G$ und $Y \in G$ und zum anderen homogen. Letzteres ermöglicht die Interpretation dieser Sextupel als homogene Koordinaten von Punkten eines fünfdimensionalen projektiven Raumes \mathbb{P}^5 .

Die Abbildung $\gamma: G \to (g_1, \dots, g_6) \mathbb{K}$ heißt KLEINsche Abbildung. Sie ist nicht surjektiv. Fasst man die Koordinaten von G zu Vektoren $g = (g_1, g_2, g_3)$ und $\overline{g} = (g_4, g_5, g_6)$ zusammen, dann überzeugt man sich leicht, dass

$$\langle g, \overline{g} \rangle = g_1 g_4 + g_2 g_5 + g_3 g_6 = 0 \tag{2}$$

gilt. Hier und im Folgenden soll $\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$ gelten. In Gl. (2) ist 0 als $0_{\mathbb{K}}$ zu lesen. Im Folgenden wird der besseren Lesbarkeit wegen auf den verzierenden Index $_{\mathbb{K}}$ verzichtet. Auch der Nullvektor des \mathbb{K}^n wird nur als 0 geschrieben.

Offensichtlich werden von γ nur jene Punkte des \mathbb{P}^5 getroffen, die auf der durch (2) beschriebenen Quadrik M_2^4 liegen. Diese Quadrik ist die GRASSMANN-Mannigfaltigkeit $G_{3,1}$ [5] und wird gelegentlich auch

PLÜCKER- oder KLEIN-Quadrik genannt. Umgekehrt ist jedes nichttriviale Sextupel $(g_1, \ldots, g_6) \in \mathbb{K}^6$, das (2) erfüllt, ein Koordinatenvektor genau einer Geraden G des \mathbb{P}^3 .

2.2. Die Segre-Varietät $S_{3,5}$ und Linienelemente in \mathbb{P}^3

Wir benötigen folgenden Begriff:

Definition 2.1. Ein Linienelement ist ein Paar (P, G), bestehend aus einem Punkt P und einer Geraden G mit $P \in G$.

Um zunächst die Gesamtheit aller Paare, bestehend aus Punkt und Gerade des \mathbb{P}^3 , zu beschreiben, folgen wir [5]. Wir identifizieren die Punkte des \mathbb{P}^3 beziehungsweise des \mathbb{P}^5 mit den eindimensionalen Unterräumen des \mathbb{K}^4 beziehungsweise \mathbb{K}^6 und bilden das Tensorprodukt $\mathbb{K}^4 \otimes \mathbb{K}^6 =: V$.

Sind $(p_1,p_2,p_3;p_0)$ Koordinaten in \mathbb{K}^4 und sind (g_1,\ldots,g_6) Koordinaten in \mathbb{K}^6 , dann erklären wir

$$w_{ij} := p_i g_j, \qquad i \in \{0, 1, 2, 3\}, \quad j \in \{1, 2, 3, 4, 5, 6\}$$
 (3)

als Koordinaten in V. Man sieht sofort, dass dim V = 24 gilt. Da nun sowohl die Punkt- als auch die Geradenkoordinaten homogen sind, sind auch die Koordinaten w_{ij} homogen. Sie können folglich als homogene Punktkoordinaten in einem projektiven Raum \mathbb{P}^{23} gedeutet werden.

Wohl gibt es zu allen Paaren (P,G) gemäß Konstruktion einen entsprechenden Punkt in \mathbb{P}^{23} , die Umkehrung aber gilt nicht. Bei der Tensorproduktbildung wurden alle Vektoren des \mathbb{K}^6 verwendet, auch jene, die nicht zu Punkten von M_2^4 zeigen. Diese Punkte entsprechen den Gewinden, siehe [11], womit in V auch die Paare bestehend aus Punkten und Gewinden enthalten sind. Um diese auszuschließen, sind den Koordinaten w_{ii} die aus (2) folgenden Bedingungen

$$w_{i_11}w_{j_14} + w_{i_22}w_{j_25} + w_{i_33}w_{j_36} = 0, (4)$$

aufzuerlegen. Dabei sind die Indizes i_1 , i_2 , i_3 , j_1 , j_2 und j_3 so mit Werten aus $\{1,2,3\}$ zu belegen, dass nach Einsetzen der Definitionsgleichungen (3) der Koordinaten w_{ij} in (4) sich stets der Faktor $p_i p_j$ oder eben (2) abspaltet. Es gibt, wie man nach kurzer Überlegung feststellen kann, 128 Gleichungen vom Typ (4), die aber nicht völlig unabhängig sind.

Die siebendimensionale Untermannigfaltigkeit des \mathbb{P}^{23} , die durch (4) beschrieben wird, heißt SEGRE-Mannigfaltigkeit $S_{3,5}$. Sie ist ein Punktmodell für die Paare von Punkten und Geraden des \mathbb{P}^3 .

Die Mannigfaltigkeit \mathcal{L} der Linienelemente ist eine fünfdimensionale Teilmannigfaltigkeit der $S_{3,5}$, da ihr nur jene Paare (P,G) von Punkten und Geraden angehören, für die $P \in G$ gilt. Mit Hilfe der Inzidenzbedingungen für Punkte und Geraden gelingt es, diese Mannigfaltigkeit einzugrenzen. Ist $P = (p,p_0)\mathbb{K}$ ein Punkt auf $G = (g,\overline{g})\mathbb{K}$, so gilt (wie etwa in [11] nachzulesen ist)

$$\langle p, \overline{g} \rangle = 0$$
 und $-p_0 \overline{g} + p \times g = 0,$ (5)

wobei $p \times g$ das Kreuzprodukt der Vektoren p und g bezeichnet. Die vier linearen Gleichungen (5) können mit (3) in der Form

$$w_{14} + w_{25} + w_{36} = 0,$$

$$-w_{04} + w_{23} - w_{32} = 0,$$

$$-w_{05} + w_{31} - w_{13} = 0,$$

$$-w_{06} + w_{12} - w_{21} = 0$$
(6)

angeschrieben werden. Es gilt daher:

Satz 2.1. Die Mannigfaltigkeit \mathcal{L} der Linienelemente des \mathbb{P}^3 ist im Schnitt der SEGRE-Varietät $S_{3,5}$ mit einem \mathbb{P}^{19} enthalten.

Beweis. Die Gln. (6) beschreiben jede für sich eine Hyperebene des \mathbb{P}^{23} . Der Durchschnitt dieser vier Hyperebenen ist ein \mathbb{P}^{19} , wie man leicht nachrechnet.

Es ist bekannt, dass eine n-dimensionale Mannigfaltigkeit M mit höchstens abzählbar vielen Zusammenhangskomponenten stets in einen \mathbb{R}^{2n} eingebettet werden kann, siehe [14].

Wir wollen im nächsten Abschnitt zeigen, dass es möglich ist, die Linienelementmannigfaltigkeit \mathcal{L} in einen projektiven Raum \mathbb{P}^9 von neun Dimensionen so einzubetten, dass in ihr enthaltene projektive Unterräume, die linearen Mannigfaltigkeiten von Linienelementen entsprechen, weitestgehend erhalten bleiben. Darüber hinaus wird es mit der hier gezeigten Koordinatisierung der Linienelementmannigfaltigkeit möglich sein, Paare von Linienelementen zu kennzeichnen.

Das dabei entstehende Punktmodell wird nicht wie im obigen Falle durch Tensorproduktbildung der beteiligten Vektorräume, sondern durch Summenbildung erzeugt: Wir betten $\mathbb{K}^6 \setminus 0 \cong \mathbb{P}^5$ in \mathbb{K}^{10} als Unterraum $x_7 = x_8 = x_9 = x_{10} = 0$ ein. $\mathbb{K}^4 \setminus 0 \cong \mathbb{P}^3$ betten wir in den Komplementärraum $x_1 = \cdots = x_6 = 0$ ein. Folglich gilt $\mathbb{K}^6 \oplus \mathbb{K}^4 = \mathbb{K}^{10}$ oder eben $\mathbb{P}^5 \vee \mathbb{P}^3 = \mathbb{P}^9$.

3. Ein anderes Modell

Es seien $(g, \overline{g})\mathbb{K}$ homogene PLÜCKER-Koordinaten einer Geraden G in \mathbb{P}^3 und ferner $(\widehat{g}, g_0)\mathbb{K}$ homogene Koordinaten eines Punktes P in \mathbb{P}^3 . P liegt genau dann auf G, wenn

$$\langle \widehat{\mathbf{g}}, \overline{\mathbf{g}} \rangle = 0 \quad \text{und} \quad -g_0 \overline{\mathbf{g}} + \widehat{\mathbf{g}} \times \mathbf{g} = 0$$
 (7)

gilt. Wir erklären nun Koordinaten für Linienelemente des \mathbb{P}^3 auf folgende Weise:

Definition 3.1. Der Vektor $(g,\overline{g},\widehat{g},g_0) \in \mathbb{K}^{10}$ ist Koordinatenvektor eines Linienelements (P,G) des \mathbb{P}^3 , wobei $(g,\overline{g})\mathbb{K}$ homogene PLÜCKER-Koordinaten der Geraden $G \subset \mathbb{P}^3$ und $(\widehat{g},g_0)\mathbb{K} \in \mathbb{P}^3$ homogene Koordinaten des Punktes P sind und Gln. (2) und (7) gelten. Auszuschließen sind jene Vektoren, für die $g=\overline{g}=0$ oder $\widehat{g}=0$ und $g_0=0$ gilt.

Bemerkung 3.1. Die Punkte des vierdimensionalen Unterraumes $g=\overline{g}=0\subset\mathbb{K}^{10}$ und die Punkte des sechsdimensionalen Unterraumes $\widehat{g}=0,\ g_0=0$ entsprechen keinem Linienelement, da $g=\overline{g}=0$ keine Gerade und $\widehat{g}=0,\ g_0$ keinen Punkt beschreiben.

Da die Koordinaten der Punkte und der Geraden homogen sind, sind nach Konstruktion auch die Koordinaten der Linienelemente homogen. Sie können daher als Punktkoordinaten in einem \mathbb{P}^9 interpretiert werden. Wir bezeichnen mit B_1, \ldots, B_9 und B_0 die zehn Basispunkte. Sie entsprechen im analytischen Modell den kanonischen Basisvektoren des \mathbb{K}^{10} .

Bemerkung 3.2. Die in Bemerkung 3.1 genannten Unterräume des Vektorraumes \mathbb{K}^{10} bestimmen komplementäre projektive Unterräume \mathbb{A}^3 und \mathbb{A}^5 des \mathbb{P}^9 .

Bemerkung 3.3. Die in Definition 3.1 erklärten Koordinaten für Linienelemente des \mathbb{P}^3 sind auf merkwürdige Weise homogen: Zum einen verändert das Multiplizieren des Vektors $(g,\overline{g},\widehat{g},g_0)$ mit einem Faktor $\lambda \in \mathbb{K} \setminus \{0\}$ nichts am geometrischen Objekt. Zum anderen kann man die beiden Bestandteile $(g_0,\widehat{g})\mathbb{K}$ und $(g,\overline{g})\mathbb{K}$ mit unterschiedlichen Faktoren $\lambda,\mu \in \mathbb{K}^2 \setminus \{0,0\}$ multiplizieren und erhält mit $(\lambda g,\lambda \overline{g},\mu \widehat{g},\mu g_0)$ wieder Koordinaten, die dasselbe geometrische Objekt beschreiben. Die Inzidenzbedingungen (7) und die Bedingung (2) an die PLÜCKER-Koordinaten von G bleiben erfüllt.

Die Abbildung $(P,G)\mapsto (g,\overline{g},\widehat{g},g_0)\mathbb{K}$ der Linienelemente des \mathbb{P}^3 auf die Punkte des \mathbb{P}^9 ist nicht surjektiv. Die Mannigfaltigkeit M^5

der Linienelemente ist durch die Gln. (2) und (7) mit den in Definition 3.1 genannten Ausnahmen beschrieben. Wir können folgendes Resultat beweisen:

Satz 3.1. Die Linienelemente des \mathbb{P}^3 können auf Punkte einer fünfdimensionalen algebraischen Fläche M^5 abgebildet werden. Die Fläche M^5 ist im Durchschnitt der durch die Gln. (2) und (7) beschriebenen Mannigfaltigkeit enthalten, ist vom Grad 5 und gestattet eine rationale Parametrisierung.

Beweis. Die Dimension von M^5 ist leicht zu klären: Vier Freiheitsgrade besitzt die Geradenkomponente G des Linienelements, ein weiterer steht für den Punkt P auf G zur Verfügung.

Wir konstruieren nun eine rationale Parametrisierung: Es sei zunächst $g=(2x_1,2x_2,1-x_1^2-x_2^2)N^{-1}$ mit $N=1+x_1^2+x_2^2$. Nun gilt neben $\langle g,g\rangle=1$ auch $\|g_1\|=\|g_2\|=2N^{-1}$ und $\langle g_1,g_2\rangle=0$, wobei vereinfachend $(g,g)=(1-x_3^2)(1+x_3^2)^{-1}$ und $(g,g)=(1-x_3^2)(1+x_3^2)^{-1}$. Den Momentenvektor von $(g,g)=(1-x_3^2)(1+x_3^2)^{-1}$. Den Momentenvektor von $(g,g)=(1-x_3^2)(1+x_3^2)^{-1}$.

$$\overline{g} = x_4 \left(\frac{c_3}{\|g_{,1}\|} g_{,1} + \frac{s_3}{\|g_{,2}\|} g_{,2} \right)$$

angeben. Für die Punktkomponente (\hat{g}, g_0) setzen wir zunächst $g_0 = 1$ und erhalten

$$\widehat{g} = g \times \overline{g} + \gamma g = x_4 \left(\frac{c_3}{\|g_2\|} g_{,2} - \frac{s_3}{\|g_1\|} g_{,1} \right) + x_5 g.$$

Wir führen mit $x_i = u_i u_0^{-1}$ $(i \in \{1, 2, 3, 4, 5\})$ homogene Parameter ein und erhalten nach anschließender Erweiterung mit dem gemeinsamen Nenner $u_0(u_0^2 + u_3^2)(u_0^2 + u_1^2 + u_2^2)$ die rationale Parametrisierung $\mathcal{M} \colon \mathbb{P}(\mathbb{K}^6) \to \mathbb{P}(\mathbb{K}^{10})$ als

$$\mathcal{M}(u_0: u_1: u_2: u_3: u_4: u_5)$$

$$= (2u_0^2u_1(u_0^2 + u_3^2), 2u_0^2u_2(u_0^2 + u_3^2), u_0(u_0^2 + u_3^2)(u_0^2 - u_1^2 - u_2^2);$$

$$u_4(u_0^2 - u_3^2)(u_0^2 - u_1^2 + u_2^2) - 4u_0u_1u_2u_3u_4, -2u_1u_2u_4(u_0^2 - u_3^2)$$

$$+ 2u_0u_3u_4(u_0^2 + u_1^2 - u_2^2), -2u_0u_1u_4(u_0^2 - u_3^2) - 4u_0^2u_2u_3u_4;$$

$$- 2u_1u_2u_4(u_0^2 - u_3^2) - 2u_0u_3u_4(u_0^2 - u_1^2 + u_2^2) + 2u_0u_1u_5(u_0^2 + u_3^2),$$

$$u_4(u_0^2 - u_3^2)(u_0^2 + u_1^2 - u_2^2) + 4u_0u_1u_2u_3u_4 + 2u_0u_2u_5(u_0^2 + u_3^2),$$

$$- 2u_0u_2u_4(u_0^2 - u_3^2) + 4u_0^2u_1u_3u_4 + u_5(u_0^2 + u_3^2)(u_0^2 - u_1^2 - u_2^2);$$

$$u_0(u_0^2 + u_3^2)(u_0^2 + u_1^2 + u_2^2)) \mathbb{K}.$$
(8)

Der algebraische Grad von M^5 wird ausgehend von den fünf quadratischen Formen (2) und (7) mit Hilfe des HILBERT-Polynoms [12] bestimmt. (Computeralgebrasysteme, wie zum Beispiel Maple, stellen Algorithmen zur Berechnung des HILBERT-Polynoms zur Verfügung.) Wir erhalten

$$p(t) = \frac{1}{144}t^6 + \frac{5}{48}t^5 + \frac{91}{144}t^4 + \frac{95}{48}t^3 + \frac{121}{36}t^2 + \frac{35}{12}t + 1.$$
 (9)

Ist nun $p(t) = c_n t^n + \sum_{k=0}^{n-1} a_k t^k$ das HILBERT-Polynom einer algebraischen Varietät V, dann gilt deg $V = n!c_n$, was also im gegenständlichen Fall zu deg $M^5 = 5$ führt.

Dass die Vorgabe eines Vektors $(g, \overline{g}, \widehat{g}, g_0) \in \mathbb{K}^{10}$, der sowohl (2) als auch (7) erfüllt, zwingend zu einem Linienelement führt, ist sofort einzusehen: $(g, \overline{g})\mathbb{K}$ gehören in diesem Fall wegen (2) zu genau einer Geraden des \mathbb{P}^3 und $(g_0, \widehat{g})\mathbb{K}$ beschreibt genau einen Punkt des \mathbb{P}^3 , soferne $(g, \overline{g})\mathbb{K} \neq (0, 0)$ und $(g_0, \widehat{g})\mathbb{K} \neq (0, 0)$ gilt. Die Gln. (7) garantieren $P \in G$.

Punkte, die in \mathbb{A}^5 beziehungsweise in \mathbb{A}^3 liegen, sind natürlich auszunehmen. Erstere gehören einer zur PLÜCKER-Quadrik kollinearen Quadrik an, letztere füllen den ganzen \mathbb{A}^3 , der M^5 zur Gänze angehört. Er ist der Spitzenraum eines quadratischen Kegels durch M^5 (siehe weiter unten).

Die angegebene rationale Darstellung ist naturgemäß nicht die einzige. Jede rationale isotherme Parametrisierung der euklidischen Einheitskugel kann auf die gezeigte Weise zur Konstruktion einer rationalen Parametrisierung von M^5 verwendet werden.

Bemerkung 3.4. Die Fläche M^5 liegt im Durchschnitt von fünf quadratischen Kegeln. Der algebraische Grad müsste nach dem Satz von BEZOUT $2^5 = 32$ sein.

Bezeichnet man die quadratischen Kegel, die durch die Gln. (2) und (7) beschrieben werden, der Reihe nach mit $\Gamma_1, \ldots, \Gamma_5$, dann sind ihre dreidimensionalen Spitzenräume $S_1 = [B_0, B_7, B_8, B_9]$, $S_2 = [B_0, B_1, B_2, B_3]$, $S_3 = [B_1, B_5, B_6, B_7]$, $S_4 = [B_2, B_4, B_6, B_8]$ und $S_5 = [B_3, B_4, B_5, B_9]$, wobei $[B_{i_1}, \ldots, B_{i_k}]$ den von den Punkten B_{i_1}, \ldots, B_{i_k} aufgespannten projektiven Unterraum von \mathbb{P}^9 bezeichnet.

Je zwei verschiedene Spitzenräume S_i und S_j haben genau einen Punkt gemeinsam. Abb. 1 ist als Inzidenztabelle zu sehen, die die Gemeinsamkeiten und Unterschiede der Spitzenräume der Kegel Γ_i darstellt. Es handelt sich dabei um einen Zentralriss aus dem \mathbb{P}^9 in den \mathbb{P}^2 .

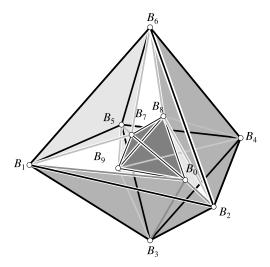


Abb. 1. Die Anordnung der Spitzenräume der quadratischen Kegel Γ_i : Die Ebenen $[B_1,B_2,B_3], [B_2,B_4,B_6], [B_3,B_4,B_5]$ und $[B_1,B_5,B_6]$ liegen in A^5 . Der Spitzenraum $S_1=[B_7,B_8,B_9,B_0]$ ist identisch mit \mathbb{A}^3

3.1. M^5 als projektives Bild der $S_{3.5}$

Wir zeigen nun, welcher Zusammenhang zwischen M^5 und $S_{3.5}$ besteht:

Satz 3.2. Es gibt mindestens eine Projektion (singuläre Kollineation) $\mathbb{P}^{23} \to \mathbb{P}^9$, die das in der Segre-Mannigfaltigkeit enthaltene Modell der Linienelemente des \mathbb{P}^3 in das in Abschnitt 3 beschriebene Modell überführt.

Beweis. Die Projektion $\pi\colon \mathbb{P}^{23}\to \mathbb{P}^9$ sei durch ihre Abbildungsgleichungen

$$\pi(w_{01},\ldots,w_{36})\mathbb{K} = (w_{01},w_{02},w_{03},w_{04},w_{05},w_{06};w_{11},w_{21},w_{31};w_{01})\mathbb{K}$$
(10)

gegeben. Die linke Seite von (10) wird nun mit (3) vereinfacht, und es ergibt sich für den Bildpunkt

$$(w_{01}, w_{02}, w_{03}, w_{04}, w_{05}, w_{06}; w_{11}, w_{21}, w_{31}; w_{01}) \mathbb{K}$$

$$= (p_0 g_1, p_0 g_2, p_0 g_3, p_0 g_4, p_0 g_5, p_0 g_6; g_1 p_1, g_1 p_2, g_1 p_3; g_1 p_0) \mathbb{K}$$

$$= (p_0 g, p_0 \overline{g}; g_1 \widehat{g}, g_1 p_0) \mathbb{K} = (g, \overline{g}, \widehat{g}, g_0) \mathbb{K},$$

wobei im letzten Schritt von der eigenartigen Homogenität der in Definition 3.1 erklärten Koordinaten für Linienelemente Gebrauch

gemacht wurde. Die Projektion ist keineswegs die einzige Abbildung $S_{3.5} \rightarrow M^5$.

3.2. Die projektiven Transformationen des \mathbb{P}^3

Die projektiven Kollineationen des \mathbb{P}^3 induzieren projektive Kollineationen des Modellraumes. Eine Kollineation $\kappa\colon \mathbb{P}^3\to \mathbb{P}^3$ transformiert Punkte X gemäß

$$X'\mathbb{K} = TX\mathbb{K},\tag{11}$$

wobei $T \in GL(\mathbb{K}^4)$ gilt. Wir wollen hier nur reguläre Kollineationen betrachten. Für die von der Gruppe $PGL(\mathbb{P}^3)$ induzierten Kollineationen des Modellraumes gilt nun:

Lemma 3.1. Die projektiven Kollineationen des \mathbb{P}^3 aus (11) induzieren automorphe Kollineationen der Mannigfaltigkeit M^5 . Dabei gilt für die Transformation der Linienelementkoordinaten

$$\begin{bmatrix} g' \\ \overline{g}' \\ \widehat{g}' \\ \gamma' \end{bmatrix} = \begin{bmatrix} T \wedge T & 0 \\ 0^T & T \end{bmatrix} \begin{bmatrix} g \\ \overline{g} \\ \widehat{g} \\ \gamma \end{bmatrix}, \tag{12}$$

wobei $T \wedge T$ die Matrix der durch κ im Kleinschen Bildraum induzierten Kollineation ist und 0 die Nullmatrix aus $\mathbb{K}^{6\times 4}$ bezeichnet.

Beweis. Das Bild des Punktes $P = (\widehat{g}, g_0) \mathbb{K}$ unter der durch (11) beschriebenen Kollineation des \mathbb{P}^3 ist der Punkt $TP\mathbb{K}$. Die von (11) induzierte automorphe Kollineation der PLÜCKER-Quadrik ist durch $G' = T \wedge TG$ gegeben. Die Blockmatrixschreibweise liefert (12).

4. Lineare Mannigfaltigkeiten von Linienelementen und ihre Bilder

In diesem Abschnitt betrachten wir lineare Mannigfaltigkeiten von Linienelementen und deren Bilder auf der Fläche M^5 . Wir beschränken uns darauf, die Bilder konkreter Linienelementmengen zu untersuchen, da diese durch projektive Kollineationen des \mathbb{P}^3 in jede andere Linienelementmenge gleichen Typs übergeführt werden können.

4.1. Punktreihe

Die Punktreihe ist eine 1-parametrige Mannigfaltigkeit von Linienelementen, deren Punkte auf einer festen Geraden G variieren.

Abb. 2. Einfache Linienelementmannigfaltigkeiten: 1. Punktreihe, 2. Geradenbüschel, 3. Geradenbündel

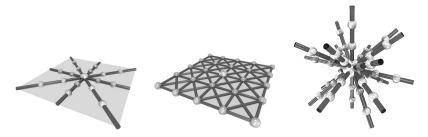


Abb. 3. Einfache Linienelementmannigfaltigkeiten: 4. Linienelementenbüschel, 5. Linienelementenfeld, 6. Linienelementenbündel

Es sei $G = (1,0,0;0,0,0)\mathbb{K}$ und ferner $P = (t_1/t_0,0,0;1)\mathbb{K}$. Dann sind alle Linienelemente der Punktreihe durch $B(t_0,t_1) = (t_0,0,0;0,0,0;t_1,0,0;t_0)\mathbb{K}$ beschrieben. Offensichtlich handelt es sich hierbei um eine Gerade in M^5 . Von dieser ist der zu $t_0 = 0$ gehörende Schnittpunkt B_7 mit \mathbb{A}^3 auszunehmen. Zu \mathbb{A}^5 liegt diese Gerade windschief.

4.2. Geradenbüschel

Das Geradenbüschel ist ebenfalls eine 1-parametrige Mannigfaltigkeit von Linienelementen. Die Punktkomponente *P* ist fix. Die durch *P* gehenden Geraden variieren innerhalb einer festen Ebene durch *P*.

Ohne Einschränkung der Allgemeinheit können wir annehmen, dass $P = (0,0,0;1)\mathbb{K}$ gilt und $E = (0,0,1;0)\mathbb{K}$ die Ebene ist. Die Geraden des Büschels seien durch $G = (1,t_1/t_0,0;0,0,0)\mathbb{K}$ gegeben, und wir haben dann insgesamt $B(t_0,t_1) = (t_0,t_1,0;0,0,0;0,0,0;t_0)\mathbb{K}$. Auch hierbei handelt es sich um eine Gerade in M^5 . Der Schnittpunkt mit \mathbb{A}^5 ist B_2 , er entspricht keinem Linienelement. Mit \mathbb{A}^3 existiert kein Schnittpunkt.

4.3. Geradenbündel

Das Geradenbündel ist eine 2-parametrige Mannigfaltigkeit von Linienelementen, die die Punktkomponente *P* teilen. Die Geraden durchlaufen das Bündel um *P*.

Wir nehmen daher $P=(0,0,0;1)\mathbb{K}$ als Punktkomponente an. Für die Geraden haben wir dann $G=(1,t_1/t_0,t_2/t_0;0,0,0)\mathbb{K}$ und damit für das Bündel die Bildmenge $B(t_0,t_1,t_2)=(t_0,t_1,t_2;0,0,0;0,0,0;t_0)\mathbb{K}$ in M^5 . Von dieser Ebene des \mathbb{P}^9 ist die Gerade $[B_1,B_2]\subset \mathbb{A}^5$, die $t_0=0$ entspricht, auszuschließen. Sie trägt keine Punkte, die Linienelementen des \mathbb{P}^3 entsprechen. Ferner gilt $\mathbb{A}^3\cap B(t_0,t_1,t_2)=\emptyset$.

4.4. Linienelementenbüschel

Das Linienelementenbüschel besteht aus allen Linienelementen, deren Geraden einem Büschel angehören. Es handelt sich dabei offenbar um eine zweidimensionale Mannigfaltigkeit von Linienelementen.

Mit $P = (t_1/t_0, t_2/t_0, 0; 1) \mathbb{K}$ und $G = (t_1/t_0, t_2/t_0, 0; 0, 0, 0) \mathbb{K}$ erhält man $B(t_0, t_1, t_2) = (t_1, t_2, 0; 0, 0, 0; t_1, t_2, 0; t_0) \mathbb{K}$ als Beschreibung dieser Linienelementenfamilie. Es ist dies eine Ebene in M^5 . Sie schneidet \mathbb{A}^5 gar nicht und \mathbb{A}^3 im Punkt B_0 .

4.5. Linienelementenfeld

Das Linienelementenfeld besteht aus allen Linienelementen, die in einer Ebene *E* liegen. Es handelt sich dabei um eine 3-parametrige Mannigfaltigkeit von Linienelementen.

Es sei also $E = (0,0,1;0)\mathbb{K}$. Die Punkte sind durch $P = (t_1/t_0,t_2/t_0,0;1)\mathbb{K}$ beschrieben und die Geraden folglich durch $G = (t_0^2,t_3t_0,0;0,0,t_1t_3-t_2t_0)\mathbb{K}$, womit sich für das Feld $B(t_0,t_1,t_2,t_3) = (t_0^2,t_0t_3,0;0,0,t_1t_3-t_0t_2;t_0t_1,t_0t_2,0;t_0^2)\mathbb{K}$ ergibt. Es handelt sich hierbei um eine ringartige Quadrik in M^5 . Ihre Erzeugenden entsprechen den Punktreihen und Geradenbüschel, die im Linienelementenfeld enthalten sind. Von dieser ist einzig der Punkt $B_6 \in \mathbb{A}^5$ auszunehmen.

4.6. Linienelementenbündel

Das Linienelementenbündel ist die Menge aller Linienelemente, deren Geraden einem Bündel angehören. Die Punktkomponenten durchlaufen alle Geraden des Bündels. Es handelt sich hierbei um eine 3-parametrige Mannigfaltigkeit von Linienelementen.

Auch hier genügt es, ein spezielles Geradenbündel zu betrachten: Wir wählen das Geradenbündel um den Punkt $B_0 = (1, 0, 0, 0) \mathbb{K} \in \mathbb{P}^3$.

Dann ist $P = (t_0, t_1, t_2, t_3) \mathbb{K}$, und das Linienelementenbündel ist durch $B(t_0, t_1, t_2, t_3) = (t_1, t_2, t_3; 0, 0, 0; t_1, t_2, t_3, t_0) \mathbb{K}$ beschrieben. Als Bild im Modellraum erscheint ein dreidimensionaler Unterraum des \mathbb{P}^9 , vermindert um den in \mathbb{A}^3 gelegenen Punkt B_0 . Der Durchschnitt mit \mathbb{A}^5 ist leer.

Zusammenfassend gilt daher:

Satz 4.1. Die Abbildung der Linienelemente auf Punkte der $M^5 \subset \mathbb{P}^9$ bildet

- 1. die Punktreihe auf eine in M^5 gelegene und um einen Punkt des \mathbb{A}^3 verminderte Gerade,
- 2. das Geradenbüschel auf eine in M^5 gelegene und um einen Punkt des \mathbb{A}^5 verminderte Gerade.
- 3. das Geradenbündel auf eine in M^5 gelegene und um eine Gerade des \mathbb{A}^5 verminderte Ebene,
- 4. das Linienelementenbüschel auf eine in M^5 gelegene und um einen Punkt des \mathbb{A}^3 verminderte Ebene,
- 5. das Linienelementenbündel auf einen in M^5 gelegenen und um einen Punkt des \mathbb{A}^5 verminderten dreidimensionalen projektiven Unterraum und
- 6. das Linienelementenfeld auf eine in M^5 gelegene und um einen Punkt des \mathbb{A}^5 verminderte ringartig Quadrik ab.

4.7. Kennzeichnung der Linienelementpaare

Wir betrachten Paare $((P,G),(\underline{Q},\underline{H}))$ von Linienelementen mit den Koordinaten $(g,\overline{g},\widehat{g},g_0)$ und $(h,\overline{h},\overline{h},h_0)$. Im projektiven Raum können diese Paare hinsichtlich des Schnittverhaltens beziehungsweise der Inzidenz von Punkten und Geraden unterschieden werden. Dies kann mit Hilfe der den Linienelementen zugeordneten Koordinaten auch analytisch geschehen. Dabei sind die folgenden sechs Fälle zu unterscheiden:

- $Fall\ 1$. Die Geraden G und H sind windschief. Dies kann als der allgemeine Fall bezeichnet werden. Er besitzt keinerlei analytische Kennzeichnung.
- Fall 2. Die Geraden G und H schneiden einander in einem von P und Q verschiedenen Punkt. Die KLEINschen Bilder von G und H liegen dann bezüglich der KLEINschen Quadrik M_2^4 polar, und es gilt

$$\langle g, \overline{h} \rangle + \langle \overline{g}, h \rangle = 0,$$
 (13)

womit auch das Linienelementpaar gekennzeichnet ist.

Fall 3. Die Geraden G und H schneiden einander in Q. (Falls sie einander in P schneiden, ist durch Umbenennung der Objekte dieser Fall erreichbar.) Neben (13) gilt nun auch

$$\langle \hat{h}, g \rangle = 0$$
 und $-h_0 g + h \times \overline{g} = 0.$ (14)

Fall 4. Falls die beiden Linienelemente den Punkt teilen, also P = Q gilt, dann schneiden einander auch G und H. Es gilt dann nicht nur (13), sondern auch $(\widehat{g}, g_0) = \lambda(\widehat{h}, h_0)$, wobei $\lambda \in \mathbb{K} \setminus \{0\}$ ist.

Fall 5. Stimmen die Linienelemente in ihren Geradenkomponenten überein, ohne dass dabei P = Q gilt, dann gilt für die Koordinaten $(g, \overline{g}) = \lambda(h, \overline{h})$ mit einem geeigneten $\lambda \in \mathbb{K} \setminus \{0\}$.

Fall 6. Identische Linienelemente sind durch $(g, \overline{g}) = \lambda(h, \overline{h})$ und $(\widehat{g}, g_0) = \mu(\widehat{h}, h_0)$ mit $(\lambda, \mu) \in \mathbb{K}^2 \setminus \{0, 0\}$ gekennzeichnet. Dabei müssen λ und μ keineswegs gleich sein.

5. Duale Linienelemente

Die dualen Gegenstücke der Linienelemente sind Paare (G, E), bestehend aus einer Ebene E und einer in ihr gelegenen Geraden G. Man könnte sie *Ebenenelemente* nennen. Beschreiben wir nun die Ebene E durch ihre homogenen Koordinaten $(g_0, \widehat{g})\mathbb{K}$ und die Gerade G durch ihre homogenen PLÜCKER-Koordinaten $(g, \overline{g})\mathbb{K}$. G liegt genau dann in E, wenn

$$\langle \widehat{g}, g \rangle = 0, \qquad -g_0 g + \widehat{g} \times \overline{g} = 0$$
 (15)

gilt.

Analog zu Def. 3.1 kann man Folgendes vereinbaren:

Definition 5.1. Der Vektor $(g, \overline{g}, \widehat{g}, g_0) \in \mathbb{K}^{10}$ ist der Koordinatenvektor eines Ebenenelements (G, E), wenn $(g, \overline{g})\mathbb{K}$ die homogenen Koordinaten der Geraden G und $(g_0, \widehat{g})\mathbb{K}$ die homogenen Koordinaten der Ebene E sind und die Gln. (2) und (15) gelten. Vektoren mit $\overline{g} = g = 0$ oder $\widehat{g} = 0$ und $g_0 = 0$ sind auszuschließen.

Die Interpretation der Koordinaten der Ebenenelemente als Koordinaten von Punkten eines neundimensionalen projektiven Raumes \mathbb{P}^9 ist naheliegend.

Bemerkung 5.1. Wie schon bei den Koordinaten für die Linienelemente ist auch hier eine ganz eigenartige Homogenität zu beobachten. Die PLÜCKER-Koordinaten von G und die Koordinaten der Ebene E können unabhängig voneinander mit beliebigen Faktoren aus $\mathbb{K} \setminus \{0\}$ multipliziert werden, ohne dass dabei das geometrische Objekt verändert wird.

Das Dualitätsprinzip offenbart uns folgenden Satz:

Satz 5.1. Die Ebenenelemente des projektiven Dreiraumes \mathbb{P}^3 können auf die Punkte einer fünfdimensionalen algebraischen Fläche $M^{5\star} \subset \mathbb{P}^9$ mit den Gln. (2) und (15) abgebildet werden. $M^{5\star}$ ist rational parametrisierbar und ist vom Grad 5.

Beweis. Die Ergebnisse aus Abschnitt 3 sind zu dualisieren, das heißt, wir deuten jetzt $(\widehat{g}, g_0)\mathbb{K}$ als Koordinaten einer Ebene anstatt eines Punktes. Die Dimension, der algebraische Grad und die rationale Parametrisierung folgen aus Satz 3.1.

Analog zu 3.1 gilt:

Satz 5.2. Es gibt eine Projektion π : $\mathbb{P}^{23} \to \mathbb{P}^9$, die die in der SEGRE-Mannigfaltigkeit $S_{3,5}$ enthaltene Ebenenelementmannigfaltigkeit auf M^{5*} abbildet.

Bemerkung 5.2. Die beiden SEGRE-Mannigfaltigkeiten $S_{3,5}$ und $S_{5,3}$ sind nicht wesentlich voneinander verschieden, siehe hierzu etwa [5].

Beweis. Der Nachweis der Behauptung besteht im Umdeuten der Punktkoordinaten im Beweis zu Satz 3.1 in Ebenenkoordinaten.

Bemerkung 5.3. Auch hier gibt es zwei windschiefe Unterräume \mathbb{A}^{3*} und \mathbb{A}^{5*} des \mathbb{P}^9 , die keine Punkte enthalten können, welche Ebenenelementen entsprechen. Die Gleichungen sind in Bemerkung 3.1 angegeben.

Das Dualtitätsprinzip gestattet uns auch die Formulierung eines zu Satz 4.1 analogen Satzes über die Ebenenelemente:

- **Satz 5.3.** Die Abbildung der Ebenenelemente auf Punkte der $M^{5\star}\subset \mathbb{P}^9$ bildet
- 1. das Ebenenbüschel auf eine in M^{5*} gelegene und um einen Punkt des \mathbb{A}^{3*} verminderte Gerade,
- 2. das Geradenbüschel auf eine in $M^{5\star}$ gelegene und um einen Punkt des $\mathbb{A}^{5\star}$ verminderte Gerade,
- 3. die Ebenen durch die Geraden eines Büschels auf eine in M^{5*} gelegene und um einen Punkt des \mathbb{A}^{3*} verminderte Ebene,
- 4. das Geradenfeld auf eine um eine Gerade des $\mathbb{A}^{3\star}$ verminderte Ebene.
- 5. die Ebenen durch die Geraden eines Feldes auf einen in M^{5*} gelegenen und um einen Punkt des \mathbb{A}^{3*} verminderten dreidimensionalen projektiven Unterraum und

6. die Ebenen durch die Geraden eines Bündels auf eine in M^{5*} gelegene und um einen Punkt des \mathbb{A}^{3*} verminderte ringartige Quadrik ab.

Bemerkung 5.4. Eine analytische Kennzeichnung von Paaren dualer Linienelemente kann nun analog zu Abschnitt 4.7 geschehen.

6. Abschließende Betrachtungen

Eine mögliche Anwendung der Linienelementkoordinaten könnte in der projektiven Differentialgeometrie gefunden werden. Wir fassen beispielsweise eine Raumkurve C als Menge ihrer Linienelemente auf. Ist C durch eine Parametrisierung $C(t) = (c(t), c_0(t))$: $I \subset \mathbb{R} \to \mathbb{R}^3$ festgelegt, dann ist an jeder Stelle $t_0 \in I$ ihrer Tangenten die Verbindungsgerade des Kurvenpunktes $C(t_0)$ und des Ableitungspunktes $\dot{C}(t_0)$. Die 1-parametrige Mannigfaltigkeit der Linienelemente ist damit durch

$$C(t) = (c_0 \dot{c} - \dot{c}_0 c, c \times c, c, c_0) \mathbb{R}$$
(16)

beschrieben. Dabei handelt es sich um eine ganz in M^5 enthaltene Kurve. Die Abbildung der Linienelemente des \mathbb{P}^3 auf die Punkte von M^5 bildet also den *Linienelementverband* einer Kurve auf eine *Kurve in* M^5 ab. Für ebene Kurven ist die Bildkurve auf M^5 nach Satz 4.1 in einer dem Linienelementenfeld der Ebene entsprechenden Quadrik enthalten.

Kurven auf Regelflächen können gemeinsam mit den Erzeugenden der Regelfläche zu *Linienelementenstreifen* zusammengefasst werden. Das ist auch mit einem Vektorfeld längs einer Kurve möglich. Nach Satz 4.1 spannen die Bildkurven solcher *Streifen auf einem Zylinder oder Kegel* höchsten einen *dreidimensionalen projektiven Unterraum, der zur Gänze in M*⁵ *liegt*, auf.

Ist eine Regelfläche \mathcal{R} des projektiv abgeschlossenen Anschauungsraumes durch eine Parametrisierung der Form R(t) = l(t) + vr(t) beschrieben (wobei wir nur $r(t) \neq 0$ voraussetzen), so ist $s = l + \langle \dot{l}, \dot{r} \rangle \langle \dot{r}, \dot{r} \rangle^{-1} r$ ihre Striktionslinie, wenn man annimmt, dass $\dot{r} \neq 0$ im betrachteten Intervall gilt, \mathcal{R} also dort keine zylindrischen Erzeugenden besitzt. Das *Striktionsband* von \mathcal{R} ist dann durch

$$S(t) = (r, l \times r, \langle \dot{r}, \dot{r} \rangle l - \langle \dot{l}, \dot{r} \rangle r, \langle \dot{r}, \dot{r} \rangle) \mathbb{R}, \tag{17}$$

die auf M^5 gelegene Bildkurve des Striktionsbandes, parametrisiert. Wie bei den Regelflächen bereits geschehen, könnte man die Differentialgeometrie der Streifen, also der Regelfläche mitsamt einer darauf befindlichen Kurve, auf die Differentialgeometrie der Kurven in M^5 zurückführen.

Danksagung

An dieser Stelle möchte ich H. STACHEL für seine konstruktive Kritik und manchen Hinweis danken. J. WALLNER gebührt mein Dank für einen Hinweis die algebraische Geometrie betreffend. Schließlich sei H. POTTMANN gedankt, dessen Anregung, die Geometrie der Linienelemente im Euklidischen Dreiraum zu studieren, meine Aufmerksamkeit auch auf die Linienelemente des \mathbb{P}^3 gelenkt hat.

Literatur

- [1] BURAU, W. (1954) Eine gemeinsame Verallgemeinerung aller Veroneseschen und Grassmannschen Mannigfaltigkeiten und die irreduziblen Darstellungen der projektiven Gruppen. Rend. Circ. Math. Palermo, II. Ser. 3: 244–268
- [2] Burau, W. (1958) Zur Geometrie der verallgemeinerten Raumelemente des \mathbb{P}^n und der zugehörigen *J*-Mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamburg **22**: 141–157
- [3] BURAU, W. (1967) Über die Hilbertfunktion der Grundmannigfaltigkeiten der allgemeinen projektiven Gruppe. Monatsh. Math. **71**: 97–99
- [4] BURAU, W. (1977) Über die irreduziblen Darstellungen der klassischen Gruppen und die zugehörigen Grundmannigfaltigkeiten. In: ARNOLD, H. J., BENZ, W., WEFELSCHEID, H. (eds.) Beiträge zur geometrischen Algebra (Proc. Symp. Duisburg, 1976), pp. 63–71. Birkhäuser, Basel
- [5] BURAU, W. (1961) Mehrdimensionale projektive und höhere Geometrie. VEB Dt. Verlag der Wissenschaften, Berlin
- [6] GIERING, O. (1982) Vorlesungen über höhere Geometrie. Vieweg, Braunschweig Wiesbaden
- [7] HAVLICEK, H., LIST, K., ZANELLA, C. (2002) On automorphisms of flag spaces. Linear Multilinear Algebra 50: 241–251
- [8] HOFER, M., ODEHNAL, B., POTTMANN, H., STEINER, T., WALLNER, J. (2005) 3D shape recognition and reconstruction based on line element geometry. In: Tenth IEEE International Conference on Computer Vision, Vol. 2, pp. 1532–1538. IEEE Computer Society
- [9] ODEHNAL, B. (2006) Flags in Euclidean three-space. Mathematica Pannonica 17: 29–48
- [10] ODEHNAL, B., POTTMANN, H., WALLNER, J. (2006) Equiform kinematics and the geometry of line elements. Beitr. Algebra Geom. 47 (No. 2): 567–582
- [11] POTTMANN, H., WALLNER, J. (2001) Computational Line Geometry. Springer, Berlin Heidelberg New York
- [12] SHAFAREVICH, I. R. (1988) Algebraic Geometry. Springer, Berlin Heidelberg New York
- [13] WEISS, E. A. (1937) Einführung in die Liniengeometrie und Kinematik. Teubner, Leipzig
- [14] WHITNEY, H. (1944) The self-intersections of a smooth *n*-manifold in 2*n*-space. Ann. of Math. **45**: 220–246

Anschrift des Verfassers: Mag. Dr. Boris Odehnal, Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10, 1040 Wien, Austria. E-Mail: boris@geometrie.tuwien.ac.at.