
Erlacher et al 

 

44 
 

A GPU-based Parallelization 

Approach to conduct Spatially-

Explicit Uncertainty and Sensitivity 

Analysis in the Application 

Domain of Landscape Assessment 

 GI_Forum 2017, Issue 1  

Page: 44 - 58 

Full Paper 

Corresponding Author: 

c.erlacher@cuas.at  

DOI: 10.1553/giscience2017_01_s44 
 

Christoph Erlacher1,3, Piotr Jankowski2, Thomas Blaschke3, Gernot Paulus1 and Karl-

Heinrich Anders1  

1Carinthia University of Applied Sciences, Department of Geoinformation and 

Environmental Technologies 
2San Diego State University, Department of Geography 
3University of Salzburg, Geoinformatics – Z_GIS 

Abstract 

This paper illustrates a CUDA GPU-based concept to accelerate the computationally 

intensive calculations of performing spatially-explicit uncertainty and sensitivity analysis in 

multi-criteria decision-making models. Uncertainty and sensitivity analysis is a two-step 

approach to validating the robustness of spatial- and non-spatial model solutions. The 

uncertainty analysis quantifies the variability of model outcomes, while the sensitivity 

analysis accounts for the contributions of model inputs to the overall model output 

variability. The proposed solution is applicable for large-scale spatial problems that 

incorporate millions of alternatives and hundreds of thousands of simulation runs. 

Furthermore, this GPU-based concept represents a low-cost approach in comparison to 

high-performance computing that incorporates super computers. Additionally, the 

concept allows the integration of different decision rules (e.g. simple additive weighting, 

ideal point, ordered weighting averaging, or analytical hierarchy process) in order to 

evaluate the performance of the alternatives involved. The proposed approach was 

tested on a landscape assessment example in order to identify the variability of the model 

outcomes with respect to the criteria ‘Compactness’, ‘Mean Patch Area’, ‘Relief Energy’ 

and ‘Variety’ that define landscape diversity.  

Keywords:  
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1 Introduction 

Spatial multi-criteria decision making (S-MCDM) models support decision makers in a wide 
variety of application domains (e.g. natural hazard risk assessment, allocation of funds for 
sustainable agriculture, or landscape impact assessment of infrastructure projects). 
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Consequently, the S-MCDM-derived solutions have potentially significant impacts on 
decisions in terms of costs and resources, but very often lack detailed information about the 
quality and robustness of results. This drawback is in large part due to a failure to account 
for the distribution of uncertainty incorporated in model solutions. The key measures of S-
MCDM model robustness are the uncertainty of model outputs and its sensitivity to 
uncertain model inputs. Spatial uncertainty-sensitivity analysis promises to provide a critical 
improvement in assessing the robustness of S-MCDM results. Therefore its development 
stands to make a significant contribution to more informed, and hence potentially better, 
decision making.  

This research focuses on the development of a concept in order to improve the 
computational time conducting Spatially-Explicit Uncertainty and Sensitivity Analysis 
(SEUSA) within the scope of multi-criteria decision-making and spatial decision support. 
Performing spatial uncertainty and sensitivity analysis in S-MCDM can be complex and time-
consuming. The computational intensity of analysis depends on the number of evaluation 
criteria, decision alternatives, and the complexity of the S-MCDM model. Accordingly, an 
important objective of this project is to design a scalable and adaptable SEUSA concept 
which can be deployed within a reasonable computational time and is adoptable for different 
application domains. GPUs (Graphic Processing Units) are powerful and relatively 
affordable, resulting in their widespread use in various application areas and research fields, 
including physics, operations research, chemistry, biology, engineering, environmental 
science, nuclear and industrial safety, economics and finance. In this paper, a GPU-based 
low- to medium-cost solution to perform SEUSA for the landscape assessment application 
domain is presented. The knowledge that has been gained in this project will support analysts 
and experts in the decision-making process thanks to the increased traceability, applicability, 
objectivity and transparency of the approach.  

2 State of the art and theoretical background 

The following sections provide an overview of the current status of research on Spatial 
Multi-Criteria Decision Making (S-MCDM), Spatially-Explicit Uncertainty and Sensitivity 
Analysis (SEUSA), and Parallelization and Distributed Computing.  

Spatial Multi-Criteria Decision Making  

S-MCDM techniques (Malczewski 1999, Malczewski 2006, Malczewski & Rinner 2015) are 
well known and have been investigated for decades. This research area belongs to the field of 
Spatial Decision Support Systems (SDSS) and focuses on a set of alternatives that are 
evaluated on the basis of conflicting criteria. The criteria are described and collected by 
experts and stored in a criterion catalogue. The criterion catalogue represents the basis for 
defining an S-MCDM model that involves objectives and attributes, which are hierarchically 
structured. Objectives are expressed in terms of a set of criteria where every criterion refers 
to a certain preference (trade-off) value. This preference is commonly expressed as criterion 
weight. In contrast to traditional MCDM, which relies on evaluation criteria that typically do 
not express spatial relationships, S-MCDM employs both non-spatial and spatial criteria that 
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explicitly represent spatial relationships (e.g. proximity, overlap, intersection) and spatial 
derivatives (e.g. slope, density, solar insolation). According to Ligmann-Zielinska and 
Jankowski (2008), spatial decision problems include both aspatial and spatial aspects. The 
majority of research activities concerning sensitivity analysis have focused on the aspatial 
nature of decision situations. Spatial distributions of decision alternatives and criteria values 
could potentially impact S-MCDM solutions. Therefore, Ligmann-Zielinska and Jankowski 
(2008) argued for the inclusion of spatially-explicit criteria such as ‘proximity’, ‘compactness’ 
or ‘contiguity’, and for the spatially-dependent weighting of criterion importance as a way to 
‘spatialize’ MCDM. Moreover, unlike traditional (non-spatial) MCDM, S-MCDM solutions 
can be communicated by maps accompanied by tables and graphs, thus enhancing the 
comprehension of results. This capability is commonly achieved by integrating MCDM with 
Geographic Information Systems (GIS) (Jankowski, 1995; Malczewski & Rinner, 2015). 
Spatial data in GIS can be represented either by a set of pixels (regularized locations resulting 
from a grid representation), or by a set of points or of linear or polygonal objects. Each 
location-specific object or a combination thereof represents a decision alternative that can be 
characterized by a set of attributes. Spatially explicit attributes to which a preference order 
can be ascribed (i.e. which can be maximized or minimized) can be treated in S-MCDM as 
evaluation criteria, and their spatial distributions represented on maps. Criteria maps are used 
to evaluate the performance of alternatives. In addition to criteria maps, constraint maps in 
S-MCDM represent limitations on criterion values. Common S-MCDM steps involve 
standardizing criteria to facilitate the comparison of alternatives on the set of evaluation 
criteria, and combining standardized criterion scores for each alternative with criterion 
weights representing preferences/trade-offs between the criteria. A number of combination 
functions (i.e. decision rules) proposed for MCDM, including simple additive weighting, 
ordered weighted averaging, analytic hierarchy process and ideal point, were adopted for S-
MCDM (Malczewski & Rinner, 2015). 

Spatially-Explicit Uncertainty and Sensitivity Analysis 

In spatial multi-criteria evaluation, uncertainty derives both from accuracy and precision of 
input data and from the structural elements of an S-MCDM model such as decision criteria, 
criteria measurements (inaccuracy and measurement error), criteria standardization 
procedure, criteria weights, and decision rules (Hwang & Yoon, 1981; Ligmann-Zielinska & 
Jankowski, 2012; Ganji et al., 2016). The propagation of uncertainty in spatial data can affect 
the S-MCDM model outcome and should therefore be addressed. An important step in this 
direction is to verify the robustness and stability of the model solution by accounting for the 
model’s input-output uncertainties through the integration of uncertainty analysis (UA) with 
sensitivity analysis (SA). Saltelli et al. (2008) describe SA as ‘the study of how uncertainty in 
the output of a model (numerical or otherwise) can be apportioned to different sources in 
the model input’ (p. 1). Uncertainty and sensitivity analysis adds a critical step in spatial 
multi-criteria evaluation, with uncertainty analysis quantifying the variability of the results 
and sensitivity analysis identifying model inputs that are responsible for the variability. SA 
can be roughly differentiated into local and global sensitivity analysis (GSA) methods. As 
stated by Wainwright et al. (2014), ‘GSAs explore the parameter space so that they provide 
robust sensitivity measures in the presence of nonlinearity and interactions among the 
parameters compared to the local sensitivity analysis’ (p. 84).  
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The spatially-explicit, integrated uncertainty-sensitivity approach proposed by Ligmann-
Zielinska and Jankowski (2012, 2014) has been applied so far in only a handful of other 
studies (Feizizadeh et al., 2014; Şalap-Ayça & Jankowski, 2016). In their 2014 paper, 
Ligmann-Zielinska and Jankowski examined the robustness of S-MCDM-based evaluation of 
land suitability with the help of Monte Carlo Simulation (MCS) and variance-based global 
sensitivity analysis. The MCS was used to generate a large number of suitability maps that 
incorporated probabilistic criteria weights, and enabled the calculation of a mean suitability 
map, a standard deviation (uncertainty) map, and model sensitivity maps. The areas of high 
average suitability and high uncertainty found in the mean suitability and standard deviation 
maps represented candidates that needed to be further investigated with variance-based 
sensitivity analysis. The resultant sensitivity maps described locations where a particular 
criterion weight influences the uncertainty of suitability scores (Ligmann-Zielinska & 
Jankowski 2014). Feizizadeh et al. (2014) applied a GIS-based spatially-explicit uncertainty 
and sensitivity analysis approach to landslide susceptibility mapping. They analysed the 
uncertainty and sensitivity of landslide susceptibility with the help of MCS and Global 
Sensitivity Analysis (GSA), and validated the results with Dempster–Shafer theory (DST). 
The authors argued that this approach could improve the accuracy of model results by 
identifying and minimizing the uncertainties associated with the respective methods for 
multi-criteria decision analyses (Feizizadeh et al., 2014). Şalap-Ayça and Jankowski (2016) 
focused on extending the spatially-explicit uncertainty and sensitivity analysis framework to 
integrate it with the local multi-criteria evaluation technique proposed by Malczewski (2011) 
in the application context of prioritizing agricultural land units for conservation purposes. 
The uncertainty and sensitivity analysis in this spatially-explicit model refers to local weight 
changes where the output depends on inputs from neighbourhoods (local spatial 
dependency). Using a spatially-explicit uncertainty and sensitivity analysis approach, Şalap-
Ayça and Jankowski (2016), showed how finding the areas where the model input factors 
contributed the most to the uncertainty of the environmental benefit index could be used to 
acquire more reliable input data and ultimately improve the reliability of land evaluation for 
conservation decisions. 

Parallelization and Distributed Computing 

In conducting spatially-explicit uncertainty-sensitivity analysis, the variance-based approach is 
often recommended for its model-independent procedure suitable to both linear and non-
linear models with spatial data inputs. The probabilistic bases of variance-based global 
sensitivity analysis, however, pose high computational demands (Nossent et al., 2011). In 
particular, for spatially-explicit uncertainty and sensitivity analysis (for vector and especially 
raster representations) the computational load depends on the number of simulations for 
each location (e.g. feature or raster cell), thus generating a large volume of suitability, 
uncertainty and sensitivity maps. In addition, local dependencies in spatial neighbourhoods 
will increase further the computational time. For example, Şalap-Ayça and Jankowski (2016) 
ran SEUSA for a local multi-criteria evaluation model with the study area comprising 31 
polygons. The computational time to obtain reliable results for the first- and total-order 
sensitivity indices was more than 47 hours. 
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Parallelization and distributed computing approaches offer a strategy to achieve the 
acceleration of computationally intensive steps in SEUSA. In contrast to serial computation 
(discrete series of instructions), parallel and distributed computing is more suitable to model 
and simulate real-world phenomena, and to conduct computationally intensive algorithms. 
Distributed computing approaches connect separated processors via communication links 
and can be coordinated by standard MPI (Message Passing Interfaces) for message-passing 
and transmission protocols that incorporate guidelines for data exchange (e.g. Transmission 
Control Protocol) (Yang et al., 2011). Graphics-processing units (GPU) are so powerful that 
currently they are commonly used for general purpose computations (e.g. NVIDIA CUDA 
API). This field of computer engineering research is called General-Purpose computing on 
Graphics Processing Units (GPGPU). GPU co-processors are constructed to accelerate 
parallel floating-point operations massively (Krömer et al., 2014). As stated by Owens et al. 
(2008), the current development of GPUs provides the opportunity to tackle 
computationally demanding and complex problems and represents a low-cost solution. 
GPUs have a parallel architecture that incorporates thousands of smaller but more efficient 
cores in comparison with CPUs. The majority of programming problems have different 
parallel solutions, and the best solution might differ from an existing sequential algorithm. 
Parallel algorithm design represents an opportunity to develop parallel strategies for a given 
programming problem in order to achieve performance increase. GPGPU is very efficient 
when the computational problem is coarse-grained or presents ‘embarrassing’ parallelism. 
This means that the sub-tasks of the problem do not communicate very often, or do so 
rarely in the case of embarrassing parallelism. Monte Carlo simulations in the field of 
sensitivity analysis (Bullard & Sebald, 1988) are often embarrassingly parallel.  

3 Concept Development 

This section presents the development of a conceptual framework to accelerate the 
computationally intensive parts of the SEUSA approach in order to increase the applicability 
for large datasets. Furthermore, the proposed framework incorporates an adaptable and 
extendable structure, which allows integrating various aggregation techniques (decision rules 
such as simple additive weighting, analytical hierarchy process, ordered weighted averaging, 
or ideal point).  

Spatially-Explicit Uncertainty and Sensitivity Approach 

Ligmann-Zielinska and Jankowski (2012, 2014) proposed a SEUSA Framework 
incorporating a variance-based global sensitivity analysis approach. This approach includes a 
Monte Carlo Simulation (MCS) in order to generate a stack of suitability surfaces, where each 
surface represents the performance of the alternatives with respect to the criterion weights. 
The weight samples are created with the help of Sobol’s quasi-random experimental design.  

This study focuses on conducting a spatially-explicit uncertainty and sensitivity analysis 
approach for the application domain ‘Landscape Assessment’. Infrastructure projects 
influence the landscape and often result in heated discussions between planners and people 
behind citizens’ initiatives. Therefore, the preliminary study (Erlacher et al., 2014) focused on 
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a standardized workflow to assess the influence of planned infrastructure projects. 
Landscape alternatives are represented as pixel locations and are composed by the main 
criteria ‘Landscape Diversity’ (rich in landscape shape structures), ‘Landscape Characteristics’ 
(landscape-distinctive and non-interchangeable elements), and ‘Existing Infrastructures’ (e.g. 
industries, wind parks, streets). The first two criteria are of benefit type (increase the 
vulnerability of landscape locations), while the third denotes a cost criterion (decreases the 
vulnerability of landscape locations). Landscape locations with high vulnerability values are 
more sensitive to potential infrastructure projects. The criterion ‘Landscape Diversity’ 
incorporates the uncertainty concerning the expert preferences of the sub-criteria 
‘Compactness’, ‘Variety’, ‘Relief Energy’ and ‘Mean Patch Area’, which were generated by a 
satellite imagery analysis. A detailed explanation of these sub-criteria can be found in Moser 
et al. (2002). Figure 1 provides an overview of the variance-based SEUSA approach for 
computing the landscape diversity of each pixel location. ‘Compactness’, ‘Mean Patch Area’, 
‘Relief Energy’ and ‘Variety’ represent inputs in this approach, where lighter colours indicate 
higher pixel values for the locations (see Figure 2). The first two inputs represent the cost 
criteria (see equation 1), whereas inputs three and four represent the benefit criteria (see 
equation 2). This information is important for the standardization process in order to enable 
comparability of the criteria. For each location of criterion c, the index i represents the row 
and the index j represents the column. Consequently, x’ijc indicates the standardized 

criterion value for each alternative (location), where  xc
min and xc

max are the minimum and 
maximum values for the corresponding criterion.  

x′ijc =
xijc − xc

min

xc
max − xc

min (1) 

x′ijc =
xc

max − xijc

xc
max − xc

min (2) 

For the generation of weight samples, Sobol’s quasi-random experimental design is used, 
which provides a more uniform distribution than simple random sampling. The weight 
samples, consisting of two weight sets (A and B), were created using the software SimLab 
2.2, which is provided by the European Joint Research Centre, a member of the international 
SAMO research group (download centre: https://ec.europa.eu/jrc/en/samo/simlab). For 
each weight sample incorporating weight sets A and B, a radial weight matrix of dimension 
[c+2;c] is generated, where c indicates a criterion. Therefore, the total number of simulations 
runs R can be established by the following equation, where c represents the number of 
criteria and N represents the number of rows for the weight samples: 

R = (c + 2) ∗ N (3) 

The Ideal Point decision rule was used to calculate the performance of each alternative with 
respect to the relative closeness rcij to the ideal point:  

rcij+ =
sij−

sij++ sij−
 (4) 

The separation to the ideal point sij+ for each alternative represents the distance between the 
standardized criterion of the ijth location and the ideal value of the cth criterion (see 
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equation 5). The separation from the negative ideal point sij- for each alternative represents 
the distance between the standardized criterion of the ijth location and the ideal value of the 
cth criterion (see equation 6). For the distance metric, the power parameter p is set to 2, 
which indicates the Euclidean distance (straight line) between two points. Finally, the square 
root of the summed and weighted distance values of the criteria is computed.  

sij+  = [∑ wc
p

c (vijc −  v+c)p]1/p (5) 

sij−  = [∑ wc
p

c (vijc −  v−c)p]1/p (6) 

Each simulation outcome represents one suitability surface that indicates the performance 
(landscape diversity value) for each pixel location (alternative). The stack of suitability 
surfaces constitutes the input for the spatial uncertainty and sensitivity analysis. In the course 
of the uncertainty analysis, an average suitability map and a standard deviation map are 
computed in order to quantify the variability of each location. Locations with a high average 
suitability value and a high standard deviation value represent choice candidates, which 
should be further investigated in order to identify criterion weights that influence high 
standard deviation (the uncertainty of model outcome). As described by Ligmann-Zielinska 
and Jankowski (2014): ‘the first order index (S) captures the independent contribution of a 
given input on output variability, whereas the total effect index (ST) also accounts for 
interactions among a given input and other inputs’ (p. 236).   

 

Figure 1: Illustration of the workflow to perform a variance-based spatially-explicit Uncertainty and 

Sensitivity Analysis. 
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Figure 2: From left to right: representations for the sub-criteria ‘Compactness’, ‘Mean Patch Area’, 

‘Relief Energy’ and ‘Variety’ of the main criterion ‘Landscape Diversity’, in the Grazer Feld case study 

area in Austria. 

Parallelization Workflow 

In the course of the experimental study, a concept for a GPU-based solution was developed 
in order to accelerate the spatial uncertainty and sensitivity analysis approach. Figure 3 
illustrates the GPU-based acceleration strategy that utilizes the Compute Unified Device 
Architecture (CUDA-API) from NVIDIA. The criteria represent two-dimensional ASCII 
files, where each standardized criterion value of a location can be identified by the indices of 
row and column. A single row of the weight samples input is expressed as one dimensional 
array that includes the independent weight sets A and B. At the beginning of this workflow, 
both input datasets are valid. The validation module verifies the availability and the 
dimensionality of all datasets. Furthermore, this module validates the scale of each criterion 
map (checks for standardized values) and normalizes the weights. If the programme passes 
the validation process, the GPU (Device) and CPU (Host) capabilities will be determined 
next. This information is necessary because of the limited resources with respect to the 
memory (CPU and GPU), number of cores, streaming multiprocessors and warp size for the 
GPU. The host represents the program logic that controls memory allocation, data 
partitioning and recombination, and the device accelerates the computation of the suitability 
surfaces (Monte Carlo Simulation), which indicates the most computationally-intensive task 
of the SEUSA workflow. In order to perform the MCS on the GPU, the program logic has 
to pre-calculate the memory requirements for generating the suitability surfaces on the basis 
of the weight sample size, the number of criteria and the number of alternatives (pixel 
locations). According to the computed memory requirements and the available resources, the 
number of partitions is calculated in order to avoid a memory overflow for the GPU and the 
CPU. Each partition represents a sub-area of the whole case study (pixel locations). The 
criterion maps of the sub-area are restructured to one-dimensional arrays and are associated 
with the corresponding weights in the radial weight matrix. For each partition, the threads 
per block and the blocks per grid have to be defined, which depends on the number of 
columns (pixel locations of each sub-area) and the number of all simulations (number of 
weight sets of the radial weight matrix). The number of threads per block refers to the device 
capability warp size. Additionally, the distribution of the two-dimensional parameters (x- and 
y-indices) for the threads per block and the blocks per grid refers to the number of rows and 
columns of the suitability surfaces. The information of the distribution parameters, the 
restructured input data and the predefined data structure of suitability surfaces for the sub-
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areas are transferred from the host to the device in order to perform the MCS. The 
computations are performed on the device with the help of a kernel that represents the Ideal 
Point function in order to obtain the performance of the alternatives. This kernel function 
can be replaced by other decision rules, such as simple additive weighting, analytic hierarchy 
process, or ordered weighting averaging. The output of the MCS – the suitability surfaces of 
the sub-areas – is the input for the spatially-explicit uncertainty and sensitivity analysis 
module. This module generates the uncertainty surfaces (minimum, maximum, average and 
standard deviation maps) and the sensitivity surfaces (first-order and total-order maps for 
each criterion) for the partitions (sub-areas). The memory used for the CPU and GPU will 
be de-allocated and adjusted for the next iterations. This procedure allows performing 
spatially-explicit uncertainty and sensitivity analysis for millions of alternatives and hundreds 
of thousands of simulation runs without overloading the CPU and GPU of a workstation.  

 

Figure 3: Illustration of the GPU-based acceleration approach to perform spatially-explicit uncertainty 

and sensitivity analysis. 
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4 Proof of Concept 

Simulation Speed-Ups 

The proposed concept to achieve a sufficient speed-up and subsequently to enable spatially-
explicit uncertainty and sensitivity analysis was implemented in Python incorporating the 
Anaconda CUDA acceleration packages. For the performance tests, the Tesla K40 GPU 
from NVIDIA was used and compared with a CPU-based NumPy implementation. NumPy 
is a Python package for scientific computing. The Grazer Feld case study in Austria includes 
5,000 alternatives (pixel locations). For performing the MCS, different weight sample sizes 
were chosen (288, 576, 1152, 2304, 4608, 9216 and 18432), resulting in 110,592 simulation 
runs for a weight sample size of 18,432. The simulations for this case study can be 
accelerated up to the speed-up factor of 150, which indicates that the GPU-based solution is 
150 times faster than the CPU-based solution. Figure 4 illustrates the acceleration of the 
GPU-based approach in comparison with the CPU-based approach.  

 

Figure 4: Comparison of GPU-based speed-ups for chosen weight sample sizes. 

Spatially-Explicit Uncertainty and Sensitivity Analysis Results 

The spatially-explicit uncertainty analysis incorporates the relationship between the mean 
output map and the standard deviation map in order to select the priority locations with 
confidence. Locations with high average values and low standard deviation values are 
considered robust, whereas locations with high average values and high standard deviation 
values are deemed to be possible candidates. Therefore, the relationship between both maps 
is identified by creating four quadrants that can be divided into high AVG and high STD 
locations (candidate locations), high AVG and low STD locations (robust regions), low AVG 
and high STD locations, and low AVG and low STD locations. The boundary values for 
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defining those quadrants are the global mean of the average suitability map (0.41875) and the 
global standard deviation (0.12287). Figure 5 illustrates the spatial distribution (left) and the 
bar chart (right) of the four relationship quadrants with respect to the AVG and STD maps.  

 

Figure 5: ‘Landscape Diversity’ priority locations where 

High AVG and High STD locations (red) represent 

candidates, and High AVG and Low STD locations 

(yellow) represent robust regions. 

Figure 5. illustrates the spatial distribution of the first-order and total sensitivity indices for 
the sub-criterion ‘Compactness’. The first-order and total-order maps for the criterion 
‘Compactness’ incorporate more high- and low-value clusters than the remaining sensitivity 
maps. Furthermore, the standard deviation value for the S-Map ‘Compactness’ is higher than 
for any of the other S-Maps. The differences between first-order and total-order maps of all 
sub-criteria are low, due to low interactions between the sub-criteria of the main criterion 
‘Landscape Diversity’. Locations with lighter colours indicate relatively high interactions (see 
Figures 7 and 8).  

The higher the first-order values of a criterion, the greater the single contribution to the 
observed variability in the suitability score. Figure 9 represents the distribution of dominant 
criteria (highest pixel values) for candidate locations with respect to the first-order sensitivity 
indices. The dominant criteria for both the first-order and the total-order sensitivity indices 
are criterion 2 (Mean Patch Area) and criterion 3 (Relief Energy), whereas criterion 4 



Erlacher et al 

 

55 
 

(Variety) indicates a low contribution to the variability of the suitability scores. The 
proportion of dominant locations in comparison to the overall study area decreases 
dramatically for criterion 1 (Compactness). 

 

Figure 6: First-order (left) and total-order (right) 

sensitivity maps for the criterion ‘Compactness’. 

      

Figure 7: Interaction maps between the main order index (S) (left) and the total-order index (ST) (right) 

for the criteria ‘Compactness’ and ‘Mean Patch Area’, where lighter colours indicate locations 

incorporating relatively high interactions.   
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Figure 8: Interaction maps between the main order index (S) (left) and the total-order index (ST) (right) 

for the criteria ‘Relief Energy’ and ‘Variety’, where lighter colours indicate locations incorporating 

relatively high interactions. 

 

Figure 9: Distribution of dominant criteria for potential candidate locations concerning the first-order 

sensitivity indices. 

 



Erlacher et al 

 

57 
 

5 Summary, Discussion and Future Prospects 

The proposed concept for a GPU-based solution to accelerate spatially-explicit uncertainty 
and sensitivity analysis provides reasonable computational speed-ups. This development 
increases the applicability of the SEUSA workflow. Furthermore, various decision rules such 
as simple additive weighting, ordered weighted averaging or the analytical hierarchy process 
can be integrated in the proposed conceptual development by changing the CUDA kernel 
function. Additionally, this implementation is applicable for extensive data sets incorporating 
millions of alternatives (i.e. individual pixel locations) and hundreds of thousands of 
simulation runs. Locations showing a high landscape diversity can be interpreted as critical in 
the decision-making process: they are areas with high vulnerability with regard to the planned 
infrastructure project. The major benefit of this new approach is the further chance it offers 
of classifying those high vulnerability locations in terms of the associated model uncertainty. 
Locations with high vulnerability and low uncertainty values represent a high probability of 
robust MCDM results, whereas areas with high vulnerability and high uncertainty values are 
candidate locations for further investigation. In this case study, more than 41% of the study 
area presents candidate locations. The criteria ‘Mean Patch Area’ and ‘Relief Energy’ are the 
cause of the uncertainty for the majority of locations. Further investigation of these locations 
is therefore recommended, as is their detailed evaluation, before any final recommendation is 
made. For example, the determination of weight ranges for criteria in collaboration with 
domain experts may reduce the uncertainty of candidate locations and represent one option 
for a reassessment loop. 

This approach represents the first step towards developing computationally robust 
techniques to enable the use of SEUSA for a wider range of application-oriented user 
communities. Currently, the proposed solution is limited to vertical raster operations 
incorporating local aggregation techniques. Further partitioning strategies to perform 
spatially-explicit uncertainty and sensitivity analysis for local spatial dependency 
(neighbourhood analysis) have still to be conceptualized and integrated into the existing 
workflow. Additionally, further parallelization and distributed computing methods involving 
clusters of workstations are of interest, as well as examining the effectiveness of 
communication-model uncertainty and sensitivity through visualization techniques. Finally, 
the long-term vision for this research is the development of a computationally-efficient low-
cost framework to perform spatially-explicit uncertainty and sensitivity analysis in different 
kinds of application domains (e.g. natural hazard risk assessment, environmental protection, 
or land use management), in order to increase the quality and reliability of spatial decision-
making processes.  
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