Aristotle, *Met.* 1093b, the harmony of the spheres, and the formation of the Perfect System

Our knowledge of Ancient Greek Music owes much to passing comments made by ancient authors who, at this time, had anything else in mind but conveying technical information to people not acquainted with the basics of contemporaneous musical life. This often leads to the frustrating feeling that a treasure is hidden in a particular passage, while all interpretations offered so far are not nearly satisfactory, and the key seems still missing. This paper is going to deal with such a statement by Aristotle, and if the hypothesis offered here is accepted it will consequently influence our view of a crucial chapter in the development of Greek music, both in theory and practice: the formation of the Greater Perfect System.

In a sequence of examples of an erroneous way of attributing metaphysical sense to numerical coincidences Aristotle mentions also the observation

\[\text{ὅτι ἴσον τὸ διάστημα ἐν τοῖς γράμμασιν ἀπὸ τοῦ Α πρὸς τὸ Ω, καὶ ἀπὸ τοῦ βόμβυκος ἐπὶ τὴν ὀξυτάτην νέατην ἐν αὐλοῖς, ἢς ὁ ἀριθμὸς ἴσος τῇ οὐλομελείᾳ τοῦ οὐρανοῦ.} \]

(Met. 1093b)*

…that the distance is the same in the letters between alpha and omega, and from the *bömbyx* to the highest *néa* in auloi, of which the number is equal to the wholeness of the heavens.

Since we know very little about the construction of the classical aulos, we are happy to learn that it incorporated, either as an instrument or as a class of instruments, some feature that could be, in some more or less obvious way, associated with a given numerical value. To find out more about the nature of this association we must submit nearly every word of the quoted passage to a close observation, eliminating prima facie possible interpretations out of the context of the statement.
Not even the number in question is entirely clear. It is usually assumed that only twenty-four, the number of letters of the Ionian alphabet, employed at that time in Athens, can be meant. Taken literally, however, the distance between Α and Ω is certainly twenty-three. But this number is indeed little appropriate for mysticism; and in any case the notion of distance between letters makes very little sense, and we should expect rather the number of letters to be used. The notion of distance seems transferred carelessly from the context of the aulos to the alphabet. That it was inappropriate for both items of comparison is extremely unlikely: there would have been no motive to dismiss the natural concept of number in favour of that of distance. So we may take as a first hint that we should accept only an interpretation that involves a true distance, or interval, measured by the number twenty-four.

So twenty-four of what did Aristotle have in mind? At first glance it is most obvious to think of some interval taken as a measure for the compass of the aulos: twenty-four semitones give a nice double octave; and the octave itself consists of twenty-four quartertones, which are well attested to have been employed as a measure by a certain school of music theorists. Yet if the single octave is envisaged, the specific connection with the aulos is hard to understand. The octave was associated with stringed instruments as well, and certainly established as an abstract unit already in the fifth century: especially those engaged in number mysticism would not have had resort to auloi when they could simply have said that the harmonía consists of twenty-four.

Nor does the double octave explanation work, since the semitone is no likely measurement in a musical culture whose most revered style was defined by its quartertone steps. And what is more, and detrimental to the entire interval measurement hypothesis, the observation cited by Aristotle must have originated in Pythagorean context. But this precludes the notion of measuring by either semitones or quartertones altogether, since it was one main doctrine of Pythagorean music theory that the tone cannot be divided into equal parts (nor can any concordant interval). The notion of simply adding intervals like distances, though deeply rooted in practice, came to be associated with the name of Aristoxenus, while Pythagoreans

1 See Barker 1989, 55f n.3.
2 The note names are originally lyre string names covering (a seventh or rather) an octave (so described already in our earliest source, Philolaus, fr. 6a).
3 Barker 1989, 73 n.19 (but erroneously mixing up semitones and quartertones).
Twenty-four in auloi

had to use multiplication, and consequently ended up with nasty *leimma* and ‘Pythagorean’ commas. 4

Secondly, there might be some set of twenty-four playable notes. But how should these be defined? Certainly at that time there were fewer than twenty-four basic notes on each aulos, even if both pipes sounded different notes over a certain range, and if, as in the professional instruments of the era in question, additional holes were available by a mechanism of rotating metal collars. 5 Many notes, however, were achieved not merely by opening or closing finger holes, but by half-stopping them to different degrees, or by manipulation of the reed. 6 Yet these techniques yield a great variety of shadings, and nothing like a definite set of countable notes. 7 Moreover a

4 Where we find confusion between both approaches (attributed to the Pythagorean Philolaus; see below), only microtones are concerned, and the composition of these to larger units is certainly not envisaged.

5 Even late aulos finds, which sometimes have this many holes, are obviously not standardized as regards hole number or arrangement; cf. below n.7.

6 Cross-fingering, as employed on modern wind instruments, is of little or no use on an instrument with such large finger holes in relation to the main bore diameter as the Greek aulos invariably had. Achilles Tatius, 8.6.6 (κλείσας ὁ αὐλητής τὰς ἄλλας ὀπὰς μίαν ἀνοίγει μόνην, δὲ ἢ τὸ πνεῦμα καταρρεῖ), a passage cited by West (1992), 95, n.73, as possible evidence for cross fingering (or rather ‘covered fingering’, cf. Byrne 2000) need not be pressed: the point is that there is just one sounding hole, as in the panpipe there is just one sounding pipe; so uncovered lower holes can remain out of consideration (according to the limited acoustical knowledge of the author, which in turn was well in accord with the large finger holes of the aulos).

7 If we do not count shadings but stick to a ‘dynamic’ definition of a note as a location within the scalar system, we must assume that there could be produced at least the three sensible notes of a pyknon per finger hole: ἕκαστον γὰρ τρύπημα τῶν αὐλῶν τρεῖς φθόγγους, ὡς φασί, τοῦλαχιστον ἄφησαν, τι δὲ καὶ τὰ παρατρυπήματα ἀνοιχθέν, πλείους (Procl., *in Alc*. 197, p.191.13–15 Westerink); except for the lowest holes, we must add, be it vent holes or main bore opening, which were not fingered at all and thus could not be half-stopped. Proclus talks about the evolved professional aulos, but since the enharmonic pyknon seems to be implied, at least the first part of his statement will accord with the practice of Plato’s time. Taken literally, an aulos with 3 notes per hole and n dissimilar holes will give $3n+1$ notes with similar lowest holes, and $3n+2$ with different ones, but not $24=3n+0$. In any case the later extended professional aulos, especially with additional (side?) holes, cannot be assumed to have been standardized enough to make any canonical count of notes; virtuosi had their instruments made for their specific needs (cf. below, p.88 with n.104).
number of notes is again no distance; so this explanation meets also the
reservations we had to make above.

Another interpretation, put forward rather tentatively by A. Barker, builds on the fact that Aristotle says ἐν αὐλοῖς rather than ἐν τοῖς αὐλοῖς, and so might refer to the whole class of instruments. Since these came in several sizes, and Aristoxenus remarks that their overall range extends to over three octaves, Barker points to the fact that “a three-octave range in any one generic system of tuning will be covered in 22 notes, so that twenty-four notes will extend to a little over three octaves.” Still we would expect an expression in terms of numbers, not distances. But graver objections must be raised. Firstly, it is implausible that auloi of different sizes worked together to produce one continuous scale. Such an arrangement would be natural in a musical culture where the instruments play together in orchestral formations. This was not the case in Ancient Greece. Even on those seemingly rare occasions where more than one aulos played at one time, these were obviously of the same type. But usually the aulos was a solo instrument, or accompanied one singer or a chorus. So we must rather expect different sizes of auloi to produce similar scales set to different pitches. And indeed neither ancient music theory nor notation ever described anything coming near a three-octave scale. Even when in post-Aristoxenian times the fifteen-scale system of notation would, in some places, have allowed for systems covering three octaves, these remained split up into two two-octave scales sharing the notes of one octave. Consequently we cannot assume that in much earlier times such a system was constructed for the sole purpose of incorporating the notes of about five different types of instruments that never actually played together, and moreover that this system, although it has left no traces in later writings,

8 See above, n.3.
9 Cf. Barker (1989, 60 n.18) himself: “no Greek theorist seriously considers a musical scale extending beyond two octaves.”
10 Aristoxenus mentions the three octaves not in connection with scales, but in the course of finding a sensible definition of a greatest concordant interval (Harm. 1.20, p.25.14–26.8 Da Rios). For musical usage, he says, this is the double octave plus fifth, for neither the voice nor any melodic instrument extends over three octaves – even if this interval might (τάχα γάρ ... ἂν ποιήσῃ: nobody uses it!) be found between large and tiny auloi, between children and men, or between auloi played normally and in whistling mode (overblown; which we will discuss in detail below). The implication is precisely that none of those relations is musical in the sense that it could occur within one melody or piece (δεὶ δὲ τὴν διάτασιν ὄριζεν ἕν ὀργάνου τόνω καὶ πέρασιν),
was at its time popular enough to invoke numerological speculation. For as we shall see shortly, all the other examples Aristotle cites involve no obscure numerical relations but numbers which were known either to everybody or at least to anyone who was acquainted with the basics of ‘Pythagorean’ philosophy.

Thus we are left with only one possibility: the number twenty-four must be related, in some way or other, to an interval expressed in Pythagorean manner, as a ratio. Still it cannot simply designate that interval in the sense that one of the extremes is twenty-four times the other, because this would give the wholly impossible range of four octaves and a fifth, which exceeds any attested aulos range, with or without overblowing, and also that of the Greek scalar system in its most evolved state, which comprised only three octaves and a minor third.

Before we proceed with our argument we shall have a look at Aristotle’s other examples, from which we can get an impression of the general way of thinking he criticizes. False emphasis has been put, he says, on the numerical coincidences that there are

- 7 vowels, 7 notes in the octave, 7 Pleiades, 7 against Thebes – and in the 7th year (some) animals lose their teeth,
- 3 consonances in letters (ΞΨΖ, because two sounds sound together in one letter), and 3 consonances in music (fourth, fifth, and octave, as the basic consonances),
- 8 and 9 the arithmetic and harmonic means, but 8+9=17 is the number of hexameter syllables (in holodactylic verses), which consists of two parts of 8 and 9 syllables respectively.

The final example is of special interest for us, both because it involves some explicit mathematics, also related to music, and because it is most intimately linked with the aulos statement, with which it forms part of the same sentence, depending on one initial λέγουσι δὲ τινὲς, while separated from the previous ones by a remark of Aristotle.

and thus not within one continuous scale. Just as ancient geometry regarded the straight line as extensible as far as needed but not extended beyond that point nor of infinite (though perhaps undefined) length, ancient music theory always kept its scales within the boundaries of musical practice.

11 This interpretation was indeed adopted by Reinach 1900, 447, without reference to the contradictory Aristoxenus passage (see above, n. 10).

12 The standard σύστημα πεντακατάκτοπον of the notation incorporates three octaves and a tone, but there were additional signs for another halftone.
Now the arithmetic and harmonic means are of course not fixed numbers, but variables to be found by fixed algorithms between any pair of given numbers. But there is good sense in equating them with the specific numbers 8 and 9, because these are the lowest whole numbers in which both means can be expressed, namely as arithmetic and harmonic means of the extremes 6 and 12. Wherever both means are calculated for any pair of numbers, the resulting series will be some multiple of that basic 6:8:9:12. That both these means are, on the other hand, treated as belonging together in such a way as they are, has an entirely musical cause: within the octave (1:2, or 6:12), those means build a framework of fifths (6:9 and 8:12) and fourths (6:8 and 9:12), with a whole tone in the centre (8:9). This structure happened to represent also the framework of what we can call the traditional standard lyre tuning (e–a–b–e; the gaps could be filled differently with the remaining three strings), so that in this case mathematics and music were found to blend exceptionally well. What we find implied in Aristotle’s example may be nothing less than the core demonstration of Pythagorean thinking, as attested already in the celebrated Philolaus fragment. But the next step is somewhat obscure: the same numbers that gained their meaning only as ratios are simply added, to yield a single number of syllables. Even if Aristotle’s source had implied that the relation between both parts of the verse is 8:9 (which Aristotle does not stress at all), there must have been reference to the number 17, gained by that odd addition: numbers forming ratios have been treated as quantities.

This procedure, which displays more confidence in the ontological significance of certain numbers than mathematical sensibility, was perhaps quite typical for pre-Platonizing Pythagoreanism. At least Boethius attests that it was employed by Philolaus, for us the outstanding representative of this school of thought, because only he left a written account. The conceptions and procedures outlined by Boethius are accepted as genuinely Philolaean by W. Burkert and M.L. West; C.A. Huffman, in his recent commentary, however, argues for a later origin in the early Academy, namely Xenocrates. Yet it seems hard to imagine how Platonic scholars should have returned to a much more primitive and obviously wrong account on microtones once Archytas had put forth his neat tunings. In any

13 Philol., fr. 6a.
16 Huffman 1993, 368–374.
17 On these, cf. Barker 1989, 46–52; West 1992, 236–238; Franklin in this volume.
case, even if the Xenocrates hypothesis is accepted, the date of the account
is early enough to serve as a background for Aristotle (who usually criti-
cizes his contemporary colleagues from the Academy anonymously).

Whoever devised the system started from the traditional Pythagorean
diatonic division of the fourth into two tones plus a leîmma or dîesis, 8:9,
8:9, 243:256. This whole tetrachord can be expressed in whole numbers
most easily as the sequence 192 : 216 : 243 : 256. Here the lower one of
the two tones had to be expanded by 27 (216:243=8·27:9·27), the higher
one by 24 (192:216=8·24:9·24). Consequently the differences between
adjacent numbers in the series are also 27 (243–216) and 24 (216–192),
and 27:24 is again a tone. In any case, such an importance was attached to
the number 27 that it was accepted as ‘the number of the tone’, and taken
as a starting point of microtonal calculations, which involve a good deal of
addition and subtraction, the details of which need not concern us here. It
will be noticed that the idea of attributing a single number to something
that can be expressed only through a ratio reminds one of the way the num-
ers 8 and 9 are conceived as representing the arithmetic and harmonic
means: whether Philolaus or an author from the early Academy is behind
Boethius’ account, he is doubtless thinking along the same lines as the un-
known authority criticized by Aristotle.

Keeping this in mind, and having excluded all other possible explana-
tions, we can now formulate a new hypothesis about the aulos statement,
which plausibly stems from the same source: the ‘distance’ of 24 might be
the difference between the extremes of a sequence of numbers that repre-
sent, in Pythagorean manner, some tonal structure inherent in auloi. Such a
scheme would have its exact parallel in the way of determining the ‘num-
ber of the tone’ found in Boethius’ account, and we would consequently
attribute it to the same school, probably the non-Platonizing Pythagorean-

18 Cf. Plut., Anim. procr. 1018e. The conception of every single thing or idea hav-
ing a definite number is just the literal application of Philolaus, fr. 4: καὶ πάντα γα μὲν
tὰ γνωσκόμενα ἄρθρον ἔχοντα οὐ γὰρ οἴον τε οὐδὲν νοηθῆμεν οὔτε γνωσθῆμεν
ἀνεύ τούτου, where ἄρθρον ἔχοντι may be translated by “have a number” as well as by
the more sophisticated (but perhaps too Platonic?) “have number”. For an even more
simplistic conception, of gaining ‘the number’ by addition, cf. Anatolius in Iamb.,
Theol. ar., 55,4f de Falco: ὁ ζ λέγεται τῆς πρῶτης συμφωνίας ἄρθρον εἶναι τῆς διὰ δ’, δ’
γ’, ἀναλογίας τε γεωμετρικῆς α’ β’ δ’. Similarly the references in Plut., Anim. procr.
1017e–1018a: the number of the harmonία is 35, which is 6+8+9+12, and at the same
time 2³+3³. The source of these considerations might also be Philolaus.

ism represented by Philolaus. In mathematical terms, we are searching for a musically meaningful sequence of numbers \(a:b:c\ldots x:y:z\), for which \(z−a=24\).

The first step to an identification of this sequence must be the identification of its extremes, labelled as ‘the highest nête’ and ‘bômeyx’ by Aristotle. So which one is the highest nête? In the Greek scalar system, each tónos (key) had two or three nêtaí, and at the end of the classical period there were already several keys in use. So we might think of the nête of the highest key available on a standardized type of modulating aulos. Fortunately – it might have been difficult to find the correct set of tónoi – any numerical rendition of the relationships of modulating scales will lead to numbers that are much higher than our 24. No modulation of key is envisaged in the system we are looking for; which means that as an ‘unmodulating system’ it includes only one mésê.

The most extended unmodulating system of ancient music theory is the so-called ‘Unmodulating Perfect System’, sístéma téleion ametábolon; and we can expect that it includes former less complete models in all respects we are concerned with. In spite of its name it incorporates the most common modulation to the neighbouring scale (situated one fourth above). But this type of modulation was not understood as a shift of mésê, because the system was perceived as combining the so-called ‘Greater Perfect System’ with the ‘Lesser Perfect System’, which share their tonal centres.

\[\text{20 Cf. the harmonic structure of Philoxenus’ ‘Mysians’ (which were accompanied by the aulos): West 1992, 364–366.}\]
\[\text{21 If we take just the most archaic musical style with three tónoi (Lydian, Phrygian, and Dorian; cf. Ptol., Harm. 2.10, p.62.18–20 Düring; ps.-Plut., Mus. 1134a; Ath. 635cd, p.402.13–16 Kaibel; Bacchius 46, p.303 Jan) separated by two tones, modulate only between two of them, and take those scales which are most easy to combine (Dorian and Phrygian), in their simplest conceivable form (i.e. not including the Dorian hyperypátê although it is part of Aristides’ ‘ancient Dorian’, but just taking the central octave, while excluding, on the other hand, the Phrygian nête synëmmênon, because it is not part of Aristides’ ‘ancient Phrygian’), and confining ourselves to the fixed notes of the systems, thus arriving at the certainly least complex modulating system, which not even exceeds the octave and can be described as d–e–g–a–b–d, we cannot assign to it lower numbers than 48:54:64:72:81:96, with a difference of 48 between the extremes. And in this simple system there is not even such a thing as a highest nête because the nêtaí of both tónoi are identical in pitch.}\]
\[\text{23 It does not include the hyperypátê; but that does not affect our argument.}\]
the nomenclature is perfectly understandable, all the more since a similar
‘modulation’ is even inherent in the classical Phrygian scale as transmitted
by Aristides Quintilianus. With modern note names indicating relative
pitch,24 the outlines of the σύστημα τέλειον αμετάβολον are given in Figure 1.
For each tetrachord only the ‘fixed’ bounding notes are printed, not the two
‘movable’ notes whose varying positions indicated the genus of a scale.

This system contains no less than three νήται: νήτε διεζυγμένον (ε’),
the highest note of the ‘Dorian octave’ so prominent in theory, νήτε ἕ
περβολαίον (α’), the highest note of the system, and νήτε συνεμμένον (δ’),
the highest note of the modulating tetrachord. Taken literally, Aristotle’s “high-
est νήτα” as a superlative must refer to the highest of at least three, and so
to νήτε ἕπερβολαίον (α’). But we should not be too sure. If his model sys-
tem did not extend beyond νήτε διεζυγμένον (ε’), the superlative might be
induced by the fact that this is the highest note of all, and need not imply
more than “the highest note, a νήτα.” So we are left with two possibilities,
although the identification with νήτε ἕπερβολαίον (α’) is in better accord
with Aristotle’s wording.

The second bounding note is called βόμβυξ. This term is associated
with low, buzzing sound, and especially connected with the aulos.25 There
can be no doubt here that it designates the lowest note of this instrument,
although we may not take it for granted that this is necessarily a playable
note: early aulos pipes usually have, in addition to five finger holes, a vent
hole below which ensures that the lowest note does not differ from the
other ones in timbre, as is the case if it is produced from the whole tube.26
Since βόμβυξ can refer to the pipe as a whole,27 it presumably meant the

24 Although the SOL-FA system would be more appropriate, for the convenience of
most readers I have decided to use note names instead.
25 Cf. Barker 1984, 187 n.4; West 1992, 87 n.30; 90 with n.43.
26 At the same time the pipe length is no longer defined by the requirements of the
musical scale, and can be designed according to aesthetic considerations.
27 Cf. Aeschyl., fr. 91: ὁ μὲν ἐν χερσὶν βόμβυκας ἔχων, τόρνου κάματον, Aristot.,
Aud. 800b; Theophr., HP 4.11.3. See Barker, as in n.25.
note produced from this pipe, with all finger holes closed, rather than the voice of a vent hole.28 It is not before the ps.-Euclidean Division of the Canon that we find bómbyx in close connection with a scalar step of the Perfect System:

\begin{equation*}
\text{έστω τοῦ κανόνος μήκος, ὁ καὶ τῆς χορδῆς, τὸ ΑΒ, καὶ διηρήσθω εἰς τέσσαρα ἴσα κατὰ τὰ Γ, Δ, Ε. ἔσται ἄρα ὁ BA \text{ βαρύτατος ἐν φθόγγος βόμβυξ. οὕτως δὲ ὁ ΑΒ τοῦ ΓΒ ἐπιτριτός ἐστιν, ὡστε ὁ ΓΒ τῷ ΑΒ συμφωνήσῃ διὰ τεσσάρων ἐπὶ τὴν ὀξύτητα. καὶ ἔστιν ὁ ΑΒ προσλαμβανόμενος: ὁ ἄρα ΓΒ ἔσται ὑπάτων διάτονος.}
\end{equation*}

(Sect. can. 19)

Let there be the length of the canon, which is also that of the string, AB, and let it be divided into four equal parts at the points C, D, and E. Thus BA, being the lowest note, will be the bómbyx. And the same AB is epi-tritic (4:3) to CB, so that CB will sound a concordant fourth above AB. And AB is prosλαμβανόμενος: so CB will be diάτων ἕβατον.

Here the author first introduces the whole length of the string as AB, and infers that this length, just because it represents the lowest note, is the bómbyx. But why did it not suffice to say either that AB is the lowest note, or that it is bómbyx? That this equation is made at all implies that bómbyx, at that time, was commonly understood in a clearly defined sense: as the starting point of the division of a scale. Such a division is carried out in practice both by makers of fretted lutes and of wind instruments. Since the former are of virtually no importance in Ancient Greek culture, it is only natural that the theorists took over the respective terminology from aulos makers, who had to start from the bómbyx, the length of the entire pipe when marking out the proper places for finger holes.

That AB is at the same time prosλαμβανόμενος (A in Figure 1), is no new information, as the simple ἔστω instead of a defining ἔστα shows. Nor is it explicitly inferred from what preceded, which would have been indicated by the future ἔσται. Instead it was treated as having been said already, although we cannot be sure, where. Was it taken for granted that on the contemporary standard aulos the bómbyx sounded the prosλαμβανόμενος, as it indeed did on the best preserved instrument known as the Louvre aulos?29 Or did it go without saying that the lowest note used in the division was at the same time the lowest note of the system to be established: that

28 If the full tube length gave a usable note, too, vent holes could conceivable have been stopped e.g. with wax for certain types of music.

29 Cf. Hagel 2004; see below.
there were no additional notes below proslambanómenos needed for the constructions to be carried out? In the latter case we might have expected at least an ἔσται, if not an ἔστω, but we cannot be sure. In any case we have to take what we get, and since there is no connection of bómbyx with any other scalar step but proslambanómenos, and since this connection is archaeologically corroborated, we have to investigate whether the same identification will make sense in the present context, too.

In a next step we have to establish plausible intermediate notes between both extremes. The structure we are looking for must lie on the way between the early Pythagorean division of the octave=harmonía and later full representations, which need higher numbers. The early division, as we have seen, gave values only for the framework of ‘fixed’ notes of what became the central octave of the Greater Perfect System:

A	B	e	a	b	e'	a'
6 | 8 | 9 | 12 | 12 | 9 | 8 | 6

Because the ‘moving’ notes have been left out, the simple sequence of fourth–tone–fourth has also the advantage of being symmetrical, and thus invariant to the direction of number assignment.

Of later more extended systems none became canonical. There were so many possibilities of combining or representing single genera and their microtonal shades, of displaying the system as a whole or just parts of it, of including or omitting the synēmménōn tetrachord. And all of them needed huge numbers, which were of no practical purpose and of no interest for numerological speculation. Still it is likely that there were intermediate steps: on one hand, the complete representation of the octave in one genus, presumably first in ‘Pythagorean’ diatonic; on the other, the traditional calculation of values only for the ‘fixed’ notes, but now for those of an extended system. The first possibility does not help us further: our system comprises certainly more than the octave; and not only the numbers resulting from the ‘standard Pythagorean’ tetrachord with its 256:243 leímma are once more much too high, but also those for later, smoother divisions of the fourth (moreover none of these had ever acquired canonical status). But the construction of the ‘fixed’ notes of the Perfect System is well attested at least as a first step: In the Division of the Canon, chapter 19 is devoted to this procedure, while the moving notes are left for chapter 20.30

30 On the similar procedure in Plato’s Timaeus see below.
Nevertheless chapter 19 bears the title ‘to construct the canon according to the so-called unmodulating system.’\(^\text{31}\) Curiously enough, the ‘moving’ notes of chapter 20 are taken diatonically, while the propositions preceding the construction of the Perfect System presuppose the enharmonic genus; the transition is not mentioned at all. This incoherence strongly suggests that either chapter 19 and 20, or just chapter 20, are later additions. On the other hand it is hardly possible that a work known as, and obviously culminating in, the Division of the Canon, should not have contained it initially. Thus it is most plausible that only the last chapter was added, in a time when the need for a complete scale was felt.\(^\text{32}\) The first author, who obviously had primarily the enharmonic in mind, could hardly set himself this task at all. While the enharmonic likhanoi and paranētai could be constructed by concordant intervals (ch.17), the parypētai and tritai could not; for these it was merely possible to ‘prove’ that they do not (as Aristoxenus claims) stand between two equal intervals (ch. 18). But such a purely negative demonstration provides no basis for a positive construction; so an enharmonic Division had to stop with the framework of ‘fixed’ notes. Such a framework could plausibly underlie also the scalar structure we are trying to reconstruct, especially since its date would be much nearer to, if not fall within, the time when enharmonic music flourished.

The last ambiguity we have to deal with is the direction of pitch in relation to numbers: ratios per se designate intervals without giving their direction, the interpretation of which relies on often unexpressed suppositions of physical or linguistic nature. Since Ancient Greek does by no means associate pitch with spatial arrangement, but with the notions of sharpness and weight,\(^\text{33}\) in ancient sources ascending numbers are used both for ascending and descending pitch.\(^\text{34}\) The division of a string, as on the canon, immediately leads to the association of higher numbers with lower pitch, just as wind instrument tube lengths and idiophone dimensions do. On the other hand, ancient physical theories usually connect a rise in pitch with a rise in sound force, speed or frequency; which view is based on experiences with string tension and vibration, wind instrument blowing

\(^{\text{31}}\) Despite Barker’s reservations (1989, 205 n.65), the term ‘unmodulating’ is perfectly justified, because it stands for systems with one mēsē, as opposed to those with more than one.

\(^{\text{32}}\) For the single diatonic note in chapter 19 and its identification with hyperepētē, prominent in enharmonic scales, see Barker 1989, 205 n.65.

\(^{\text{34}}\) Cf. van der Waerden 1943, 173–175.
force, and the human voice, and linguistically expressed in terms of ἐπίτασις and ἄνεσις. So we cannot know in advance which model Aristotle’s source used, and have consequently to try both.

Now we can finally assign numbers to the Greater Perfect System, from proslambanómenos to both possible nētai. The smallest numbers matching the interval relations of fourths and tones are those printed in Figure 2, both in rising and in falling direction.

To cover the double octave we need either the range from 8 to 32, in ascending order of pitch, or from 9 to 36, descending. On first glance, both sequences contain two steps between which we find a ‘distance’ of 24, and both occur between such notes as we have recognized as possible boundaries. Proslambanómenos, which we have equated with bōmbyx, is always involved, while at the higher end of the scale it is either nētē diezeugménon (e’, 36–12) or nētē hyperbolaiōn (a’, 32–8). But the former must be ruled out: if the scale in consideration extends not further than nētē diezeugménon (e’), the series of numbers loses its only odd member, 9, and consequently is reduced to 18–16–12–9–8–6, with a distance between the extremes of only 12. At the same time it is clear that no subset of the notes smaller than the entire double octave of the Greater Perfect System will give the desired results. So we find that the distance of 24 occurs exactly

Figure 2: Assigning numbers to the Greater Perfect System

35 The predominance of lyre types with equal string lengths combined with an almost complete absence of fretted lutes and the marginalization of pan flutes must have made string tension the primarily experienced pitch determinant, especially because everyone had to tune their lyres (but not to bore their auloi, for instance).

36 The inclusion of nētē synōménōn from the LPS into the scale does not work: only if we reduce the range to the central octave we get, in descending order, 24:27:32:36:48; but hypētē mēsōn cannot have been bōmbyx because it was used together with the degree three quartertones above already in the spondeion scale, at home in the most ancient auletic music we know of (cf. Winnington-Ingram 1928, West 1992, 206;
between those notes that we have established as the most plausible boundaries on altogether different grounds.

Let us consider briefly the results that our hitherto purely theoretical speculations have brought about. After the thorough exclusion of different explanations, we have set up as our working hypothesis that the number twenty-four represents the numerical difference between the extremes of an intervallic sequence. Subsequently we have proven that the only meaningful scale to match this requirement is the framework of ‘fixed’ notes of the Greater Perfect System. Both the inclusion of movable notes and the employment of modulating scales, even of the most reduced kind, lead to higher numbers, while, on the other hand, no smaller subset of the Greater Perfect System suffices. But are there any traces of such a numerical representation as we propose? And can we reasonably assume the Perfect System to have been established early enough, that is, not long after, if not before, 400 BC?

The first question finds its answer in a source from the middle of the second century of our era: Ptolemy’s cosmic harmony, as laid down in his Canobic Inscription, and also in the lost final chapters of his Harmonics. Underlying Ptolemy’s approach is the traditional idea of connecting the celestial bodies, or spheres, with notes of a musical scale. Ptolemy’s conception seems however to have been original in certain ways. Though there are minor differences between the sources, which regard mainly the allocation of the lower spheres, Ptolemy’s arrangement must have been that printed in Table 1.

Here the series of planets runs from the earth and its atmosphere, represented by the four elements, to the sphere of the fixed stars in a rather traditional manner, although the separation of the four elements at the cost

37 On the sources and their variants, the problems of the arrangement, and the inclusion of the table in the Harmonics, see Jan 1894, 18–35 (who believes in a Ptolemaic origin only of the general thought), and now Redondo Reyes 2003 (with arguments for an astronomical derivation of the special features of the table) and Swerdlow 2004 (with special emphasis on its non-astronomical character).

38 For an account of the different ancient cosmic scales, see Jan 1894; Richter 1999.
of attributing one single sphere to Venus and Mercury is unusual, and underlines the analogical nature of the scale, which is obviously not intended to reflect astronomical facts accurately. This is the table as it has come down to us in the manuscript tradition of the Canobic inscription.

In the Excerpta Neapolitana we find a more natural scheme, with Mercury and the Moon shifted down by one line, and the four elements united within the innermost sphere. This same arrangement underlies another tradition, which has disposed of the note names and retained only the numbers and the names of the spheres, except that of the innermost one. This tradition is also united by the loss of the fractional part of the sphere

<table>
<thead>
<tr>
<th>Spheres</th>
<th>Fixed Notes</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed stars</td>
<td>† mész hyperbolaión</td>
<td>b1</td>
</tr>
<tr>
<td>Saturn ṣ</td>
<td>nété hyperbolaión</td>
<td>a1</td>
</tr>
<tr>
<td>Jupiter ṳ</td>
<td>nétie diezeugménon</td>
<td>e1</td>
</tr>
<tr>
<td>Mars ♂</td>
<td>nétie synémnémon</td>
<td>d</td>
</tr>
<tr>
<td>Sun ☉</td>
<td>parámesos</td>
<td>b</td>
</tr>
<tr>
<td>Venus, Mercury ♀♂</td>
<td>mész</td>
<td>a</td>
</tr>
<tr>
<td>Moon ☽</td>
<td>hypátë mésôn</td>
<td>c</td>
</tr>
<tr>
<td>/fire, air</td>
<td>hypátë hypátôn</td>
<td>B</td>
</tr>
<tr>
<td>/water, earth</td>
<td>proslambanónemos</td>
<td>A</td>
</tr>
</tbody>
</table>

Table 1: Ptolemy’s cosmic harmony

39 Usually either the planets are separated, or combined with the sun because of their equal average speed in relation to the fixed stars: so Plut., Anim. procr. 1029a9–b4 (on which see below); cf. De defectu orac. 430a; Plato, Ti. 38d; 36d. For further references, see Plut., Anim. procr. 1029b Cherniss 332f, note c.

41 This note name, for a degree absent from the usual systems treated in musical texts, is found in the Canobic Inscription, and evidently underlies μὲν ὑπερβολαῖον N, μὲν ὑπερβολαῖον P in the Exc. Neap. Since the scalar degree has nothing in common with mész, it has been corrected into νῆτη ὑπερβολαῖον (of the key one tone apart) by Jan, into ὑπερὑπερβολαῖον by Düring and Zanoncelli, into μετὰ ὑπερβολαῖον by Vincent. One might consider also ἡ ἐπαρχή ὑπερβολαῖον (the note above another disjunctive tone), or even ἡ προσλαμβανόμενος μὲν(ος) ὑπερβολαί(ος) (cf. the passage from Plutarch cited in n. 44).

of Mars (nētē synēmménōn), where only the simple number 21 is retained, which has no scalar meaning. On the other hand this tradition was augmented by a rather tedious scholion-like explanation of the numerical relations inherent in the scale. This list is already based on the simple 21, for which it introduces the numerological conception of διπλασιεπίτριτος, \(n (1 + 4/3) \), entirely alien to music theory. In this form Ptolemy’s table appears in Iamblichus under the name of Anatolius, but perhaps as a later addition, and again in the Excerpta Neapolitana, but obviously without connection to the more original rendition there.\(^{43}\)

The musical scale Ptolemy uses consists of the fixed notes of the Greater Perfect System, which is in perfect accord with the exposition of the lost chapter of his Harmonics, in which he must have explained its construction:

\[
\text{κατὰ τίνας ἄν πρώτους ἄριθμοὺς παραβληθεῖν οἱ τοῦ τελείου συστήματος ἐστῶτες φθόγγοι ταῖς πρώταις τῶν ἐν τῷ κόσμῳ σφαίραις. (Ptol., Harm. 3, p.82.28–30 Düring)}
\]

By the use of which smallest numbers it is possible to compare the fixed notes of the Perfect System with the primary cosmic spheres.

But we are surprised by an unusual topmost note, one tone above nētē hyperbolaíōn, which is never considered in musical sources.\(^{44}\) It seems as if this note is introduced only to bring the total number of fixed notes into accord with the number of the spheres – or halfway into accord if we accept

\(^{43}\) Iamb., Theol. ar. 75.9–76.4 de Falco; Exc. Neap. §1–3, p.411f Jan; the latter is little likely to stem from the former, since its heading as Πτολεμαίου μουσικά cannot have been inferred from the Iamblichus passage. Thus, the Greek evidence might be interpreted as suggesting the following affiliation:

```
<table>
<thead>
<tr>
<th>Harmonics</th>
<th>Ptolemy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anatolius?</td>
</tr>
<tr>
<td>Canobic Inscription</td>
<td></td>
</tr>
</tbody>
</table>
```

This picture, however, can hardly be upheld against the Arabic evidence, which we will discuss below.

\(^{44}\) Cf. Redondo Reyes 2003, 184 n.13: “sin duda este tipo de nuevas escalas debió de originarse en círculos astronómicos más que musicales…” The possibility of adding a proslambanómenos not at the lower, but (also) at the higher end of the scale is implied in Plut., Anim. procr. 1029c; see below.
the assignation of Venus and Mercury to a single sphere as original. And there is another oddity: while the inclusion of nētē synēmmēnōn in itself is not unexpected, its numerical value does not fit the system, because it is written as a fraction, $21\frac{1}{3}$. Obviously it has been inserted secondarily into a pre-existing sequence without extending its numerical values; which procedure can be explained best if these values were already canonized by tradition. Even more so, because the resulting scale does not even fulfil Ptolemy’s own claim to expound the πρῶτοι ἀριθμοί, the sequence of first, i.e. smallest whole numbers. Both additions, the highest note as well as nētē synēmmēnōn, are due to the somewhat violent connection of the traditional series with astrological speculations; and they are so obvious, that we can, by simply deleting them, reconstruct the underlying sequence with reasonable certainty. The resulting scale is identical to that one which we have postulated: a traditional numerical representation of the Greater Perfect System, running from 8 to 32.

The traditional state of these numbers might find further confirmation in the short statement that introduces the table in the Anatolius/Iamblichus tradition:

∗

While the second sentence is an adaptation of the original title of the table, ὅροι συστήματος κοσμικοῦ, the first phrase is not found in the Canobic Inscriptio. Nor is it taken from the lost chapter of the Harmonics, where Ptolemy uses the term μουσικός exclusively for persons, experts on music. ‘Lógoi mousikoi’ as ratios indicating musical intervals seem to belong to the realm of neo-Platonist and probably neo-Pythagorean terminology. It is not altogether impossible that the phrase originated in the context where we find it, and simply indicates the starting point of the ‘musical ratios’ attributed to the celestial spheres. But in this case its placement be-

45 Cf. Düring 1934, 281.
46 Cf. Redondo Reyes 2003, 188.
48 According to Düring’s index, once to identify Didymus, thrice in superlative plural: (even) ‘the most outstanding experts on music.’
fore instead of after the title is very odd, especially because the number eight is naturally perceived as belonging to the ‘boundaries’ which are announced there. Therefore the statement about the number eight as the basis for ‘the musical ratios’ plausibly comes from another source: it might have been ‘Pythagorean’ commonplace, associated with our numerical sequence for the fixed notes of the Perfect System. Admittedly this is speculative; but in any case we can be certain that our scalar series existed, and was obviously regarded as canonical, by the time of Ptolemy.

It seems curious that this system of all models of assigning notes (and numbers) to celestial spheres did not make it into Latin writings, and so into the European Middle Ages. Perhaps the domination of the fixed notes, so crucial for the genera and modulations of Greek music, was not very attractive for Latin writers. We know nothing about native tonal systems of ancient Europe apart from the mainstream of Greek musical culture; but the increasing popularity of the diatonic genus in the fragments of the Roman period, as well as its final triumph in European music, especially of the Latin Church, might indicate that the melodies Latin writers were most familiar with were basically diatonic heptatonic. In such a musical environment the notion of fixed boundary notes of tetrachords was of not much use; and the Greek system, though transmitted by theorists in the absence of a generic one, remained foreign.

But there may be a trace of our scale, and possibly in its pre-Ptolemaic version, in Arabic medieval writing. Noel M. Swerdlow kindly draws my attention to the *Epistle on Music*, part of the encyclopaedic work going under the name of the *Ikhwān al-Ṣafā*. There the cosmic scale is introduced by the following statement:

On the subject of the virtue of the number eight, the mathematician philosophers have advanced the theory that a harmonious proportion exists between the diameters of the celestial spheres and those of earth and air.

(Shiloah 1978, 45)

50 If, as seems likely, Boethius had planned to adapt the third book of Ptolemy’s *Harmonics* (cf. Mathiesen 1999, 635), his account of celestial music would almost inevitably have included the fixed notes scale.

51 ‘Brethren of Purity’. The epistles are held to have originated in 10th century Baghdad. I have used the English translation provided by Shiloah (1978). Cf. Swerdlow 2004, 178.

52 In a different context, the Epistle mentions, in this sequence, Pythagoras – Nicomachus – Ptolemy – Euclid – “and other philosophers” (Shiloah 1978, 38).
The separation of earth and atmosphere into two spheres is that of Ptolemy’s system, but the argument in general is more related to the Anatolius/Iamblichus tradition, where the cosmic system is not constructed for its own sake, nor to establish the connection between human and celestial music, but in purely numerological context, as an example of the importance of the number eight. Again we must emphasize that this thought cannot stem from the lost chapters of Ptolemy’s *Harmonics*. Not only was this author too scientific a mind to attribute such a sort of ‘meaning’ to simple numbers; his work on music simply did not provide the context for such a numerological argument as implied by the *Epistle*. Consequently, the Ikhwān al-Ṣafā’ seem to rely on the same source as Anatolius. Their numbers for the individual spheres are quite unusual: earth 8, air 9, Moon 12, Mercury 13, Venus 16, Sun 18, Mars 21½, Jupiter 24, Saturn 24⅓, fixed stars 32.\(^53\) The explicit statement that the maleficent planets, Mars and Saturn, stand in no harmonic relationship to the rest\(^54\) is undoubtedly related to Ptolemy’s principles, though the system in which it is presented is not Ptolemy’s, but evidently more primitive. We notice that the Ikhwān al-Ṣafā’ sequence extends only to 32, just as the original series postulated by us. Is it possible that it is nevertheless based on Ptolemy’s arrangement, clipped and contorted? No, for without the explicit background of the canonized Perfect System, it makes no sense at all to abandon the upper limit of 36, so beautifully invoking the partition of the celestial sphere of 360° into 12 zodiacal signs, divisible into three parts each, in favour of the number 32, associated only with squares and cubes. And what is at least equally significant, those and only those numbers are common to Ptolemy’s tables and the Arabic system that belong to our sequence of values for the fixed notes. On the other hand, the authors diverge in all the additional numbers and in the assignment of three celestial spheres. So it is very plausible that this Arabic system draws not on the *Harmonics* but on the same source as Ptolemy: that source which explicitly attached importance to the number eight as the starting point of musical ratios. This text might have considered how to extend the fixed notes series to incorporate all the planets and proposed a solution, which was however not accepted, and heavily modified either (and most probably) by Ptolemy or by the Ikhwān al-Ṣafā’ writer or by both of them.

\(^{53}\) Shiloah 1978, 45.

\(^{54}\) Shiloah 1978, 46.
So there is plenty of evidence that our proposed numerical rendition of the Perfect system was indeed known in antiquity, and well-established by earlier than the middle of the second century of our era. But can we assume that it was already known 500 years earlier? Certainly it must be said that of what there was of systematic treatments of musico-numerical relationships we know little, and can read less. Only scraps of Philolaus’ work have survived, while the Division of the Canon does not use numerical values where it can help it; nor can we expect ratios from Aristoxenus. So most depends on the date of the establishment of the proslambanómenos: with this note, which we have equated with the bómbyx of the Aristotle passage as a working hypothesis, the Perfect System was completed. But it may be doubted whether this step was taken so early. On one hand the note name is no longer connected with lyre string names, as are all the other ones. Yet we have to take into account that the names of all notes of the Perfect System other than those of the central octave (except hyperhypáte which did not make it into the system) are derived not from the practice of lyre tuning, but from a sophisticated tetrachoral abstraction of a standardized tuning. The likhanós hypátôn, for instance, derived its name not from a new string which was plucked with the forefinger, as was the original likhanós, now tagged ‘mésôn’, but because both are the highest but one notes of their respective tetrachords. Only the proslambanómenos had no functional counterpart. Though it corresponds to mésë insofar as it lies below a disjunction, one could hardly term the outermost tone some kind of ‘middle note’; and though it lies to the tetrachord hypátôn as old hyperhypáte to the tetrachord mésôn there was no convenient way to transfer this name: just as the hyperhypáte could not be included in the system because it competes with the tetrachord hypátôn, in the range of which it lies, while its name is oriented on the tetrachord mésôn above, it was impossible to coin a term like hyperhypáte hypátôn, ‘beyond-hypáte of the hypátôn tetrachord’, for a note not belonging to this tetrachord. On the other hand,

56 If Plut., Anim. procr. 1028f–1029a, is not simply a mistake (but should we not trust Plutarch to know the Perfect System?), but the terminology taken over from the source, the term proslambanómenos was once applicable to hyperhypáte: which must have been before the names for the degrees of the Perfect System had become canonical. The passage seems to describe the well-known ‘Phrygian’ cosmic scale, but apparently in its diatonic variant instead of the usual chromatic (cf. Reinach 1900, 442f; Burkert 1961, 31–43; Hagel 2000, 46f; Burkert, p. 39 n.2, as well as Richter 1999, 300, try to explain the well-attested scale away, but overlook its connections to Classical and
once the Perfect System was established by appending two extra tetrachords on each end of the old harmonía, resulting in a range of an octave plus seventh, its extension to the neat two-octave system was plausibly realized rather soon, if not immediately. Accordingly, the term proslanbanómenos cannot serve as an argument for the relative lateness of the associated scalar degree.

Still there is a statement by Plutarch that might well be interpreted as indicating a late origin of the proslanbanómenos. The entire passage is of such importance for our study that we have to print it in full:

οἷς δ᾽ οὖν οὐ δοκεῖ ταῦτα τῆς τοῦ Πλάτωνος ἀπηρτῆσθαι διανοίας, ἐκείνα κομιδὴ φανεῖται τῶν μουσικῶν λόγων ἐχεοθα, τὸ ε’ τετραχόρδων ὄντων τῶν ὑπάτων καὶ μέσων καὶ συνημμένων καὶ διεξεγμένων καὶ ὑπερβολαίων ἐν πέντε διαστήμασι τετάχθαι τοὺς πλάνητας· ὅν τὸ μὲν ἐστὶ τὸ ἀπὸ σελήνης ἐξ’ ἡλίου καὶ τοὺς ὀμοδρόμους ἠλίῳ, Στῆλβονα καὶ Φωσφόρον· ἔτερον τὸ ἀπὸ τοῦτο ἐπὶ τῶν Ἀρεοπολίτων· τρίτον δὲ τὸ μεταξὺ τούτου καὶ Φαέθοντος· εἰθ’ ἐξ’ τὸ ἐπὶ Φαῖνοντα καὶ πέμπτον ἤδη τὸ ἀπὸ τοῦτο πρὸς τὴν ἀπλανὴ σφαῖραν· ὡστε τοὺς ὀρίζοντας φθόγγους τὰ τετράχορδα τῶν πλανωμένων λόγων ἔχει αὐτῷ ἀστέρων. Ἐτι τοῖς τούς παλαιοὺς ὑπάτας μὲν δύο τρεῖς δὲ νήπιας μὲν δὲ μέσην καὶ μίαν παραμέσιν τιθεμένοις, ὃς τοῖς πλάνησιν ἑστῶτας εἰναι τοὺς ἔστωτας, οἱ δὲ νεώτεροι τὸν προσλπάμβανον, τὸν διαφέροντα τῆς ὑπάτης, ἐπὶ τὸ βαρὺ τάξαντες τὸ μὲν ὄλου σύστημα διὰ διὰ παπερησαίς, τῷ δὲ συμφωνοῦν τὴν κατὰ φύσιν οὐκ ἐπήρμαν τὰξεν· τὸ γὰρ διὰ πέντε πρῶτερον γίγνεται τοῦ διὰ τεσσάρων, ἐπὶ τὸ βαρὺ τῇ ὑπάτῃ τὸν προσληφθέντος, ὁ δὲ Πλάτων δήλος ἐστιν ἐπὶ τὸ δέχειν ὀρθὸν τοὔπο τοῦ Ἀρείου τῶν ὀκτὼ σφαιρῶν ἐκαστήρα καταφέρειν εἰς αὐτὴν Σειρήνα βεβηκικαί…

(Plut., Procr. anim. 1029a–c)

Now, for those who do not think that this (previously related account) is dependent on Plato’s thoughts, the following will appear to stick entirely

Hellenistic musical practice). Does the use of the Phrygian scale, associated with aulos music, point to a school of theorists more concerned with the aulos than the mainstream of our extant sources? Perhaps the scale was chosen just for its convenient layout: of all archaic scales transmitted by Aristides Quintilianus only his Phrygian unites nine degrees (needed for the seven planets, the earth, and the fixed stars) within a single octave, and this so that the tonal centre, mésexual, is neatly occupied by the Sun. At least the inventors of this equation were not bothered by preconceptions demanding a cosmic priority for the ‘most noble’ Dorian.
to musical reasoning (musical ratios?): that there are five tetrachords, hypatōn, mēsōn, synēmmēnōn, diezeugmēnōn, and hyperbolaiōn, and at the same time the planets are arranged in five intervals, the first of which is from the Moon to the Sun and those running at equal speed with the Sun, Mercury and Venus. The next one from these to Fiery Mars. The third one between him and Jupiter. Next in order, that to Saturn, and the fifth one is already that one from him to the fixed sphere. Consequently the boundary notes of the tetrachords have the ratios of the planets. Now we know that already the ancients had defined two hypātai, three nētai, one mēsē, and one paramēsē, so that there was the same number of fixed notes as of planets. But those who came later put the proslambanōmenos, which is at the distance of one tone from hypatē, at the bottom, thus making the whole system a double octave, but failing to maintain the natural order. For the fifth is produced in advance of the fourth if the tone is added from hypatē downwards. But Plato obviously added it upwards (from the top): for he says in the Republic that the eight spheres revolve with a Siren standing on each of them…

The argument proceeds by reminding us that these Sirens sing one note each. There is besides a tradition of nine Muses, eight in the heavens, but one on earth. It is left to the reader to conclude from this rather enigmatic reference that Plato added a ‘proslambanōmenos’ at the top of the scale. The implication is that if there are eight spheres, but only seven original fixed notes, Plato has obviously used some sort of proslambanōmenos. But if there is a ninth Muse, attached to the disordered realm of the earth, it is to her that in the full scale of nine Muses = Sirens the usual proslambanōmenos must be assigned. Accordingly, the additional note of the celestial harmony, Plato’s ‘true’ proslambanōmenos, resided at the top end of the scale. We will come, in a moment, to the problems that Plutarch’s references to the non-Platonic systems pose. For what Plutarch takes to be Plato’s celestial harmony, we have all the information we need. There are seven degrees reserved for the planets, so each planet will get a sphere of its own; the degrees are the fixed notes, and we have to add a celestial and a terrestrial proslambanōmenos, so that the earth falls out of the harmony of the double octave. The resulting scheme is printed in Table 2, where the order of the planets is, of course, that of the Republic.

Since Plutarch regards the mathematical implication of a system as the criterion of its admittance as a valid interpretation of Plato, and the identity of musical and planetary ratios is the only mathematical association mentioned, we would be justified in adding, as in Ptolemy’s table, numbers establishing the ratios. But although the ratios are identical to those found in the Canobic inscription we cannot be sure whether the abso-
lute numbers Plutarch had in mind, if any, were the smallest whole numbers, or included the irregular 21½ for Mars.

So far Plutarch has taught us three important things. Firstly, that he was already aware of the fixed notes version of the cosmic scale, and moreover already in exactly the same extension of two octaves and a tone as we find it in Ptolemy. Secondly, that he found it plausible that such a scale was already considered by Plato — though this admittedly does not mean much; as a Platonist, Plutarch would readily attribute everything to the divine philosopher. But thirdly, that, although the introduction of the proslambanómenos is attributed to some νεώτεροι, Plutarch obviously regards these as prior to Plato, for whom he not only claims the usage of some idiosyncratic high proslambanómenos, but also the philosophically ‘impure’ traditional one in the full scale that includes the earth. We do not know how much of Plutarch’s account of the completion of the Perfect System is only speculation (perhaps everything); so we cannot infer a pre-Platonic date from his words. But he is certainly not a witness against an early Perfect System.

Much more problematic is Plutarch’s account of the systems which he seems to associate with the παλαιοί. What he says cannot possibly apply to one single system; but we can excuse the author on the assumption that he only wished to recall very briefly some data he needed for the reconstruction of the Platonic system. The notion of five tetrachords resembling five intervals between spheres can never have been anything more than number play of the crudest sort. It can be transposed into an actual sequence only on the assumption that these tetrachords formed a continuous series, which they do not. The bifurcation of the system at mésé must destroy any hope of reconstructing such a sequence: the five tetrachords actually establish six intervals (with seven border notes), too much to fit Plu-

<table>
<thead>
<tr>
<th>Fixed Notes</th>
<th>Spheres</th>
</tr>
</thead>
<tbody>
<tr>
<td>proslambanómenos</td>
<td>b' Fixed stars</td>
</tr>
<tr>
<td>nētē hyperbolaíōn</td>
<td>a' Saturn</td>
</tr>
<tr>
<td>nētē diezeugménōn</td>
<td>c' Jupiter</td>
</tr>
<tr>
<td>nētē synēmménōn</td>
<td>d' Mars</td>
</tr>
<tr>
<td>paramésē</td>
<td>b Mercury</td>
</tr>
<tr>
<td>mésē</td>
<td>a Venus</td>
</tr>
<tr>
<td>hypoτē mésōn</td>
<td>e Sun</td>
</tr>
<tr>
<td>hypoτē hypoτōn</td>
<td>B Moon</td>
</tr>
</tbody>
</table>

Table 2:

Plutarch’s Platonic cosmic harmony

57 In the context of music theory and practice, largely received through the writings of Aristoxenus, this term might well refer to the mid fifth century.
Stefan Hagel

tarch’s list of five intervals into. With the sentence about the ratios between the fixed notes being those of the planets (and not the other way round: human music is an image of the cosmic scale) we are already within the paradigm as we know it from Ptolemy, concerned with the framework, not the intervals.

Plutarch has led us at least one step further. His awareness of a scale of fixed notes, and its ratios resembling those of the universe, is the final proof that it is a good deal older than Ptolemy. If Plutarch is able to attribute such a system not only to Plato but even to earlier theorists, it cannot have been a novelty by his time: either its true origins were lost in the mists of time, or Plutarch really knew about a fifth or early fourth century source for the numerical series, just as our reconstruction would demand – except for the inclusion of nētē synēmmēnōn, which is still absent from our sequence, and, considering its fractal appearance even in Ptolemy’s tables, has carried the stigma of a newcomer for centuries. So we have now arrived at a plausible date in rather early Hellenistic times; and we can proceed to pose a final question: might it be possible that Plutarch is actually right in attributing the knowledge of the scale, along with its numerical rendition, to Plato’s Timaeus?

There the creation of the cosmic soul involves the partition of its ‘matter’ according to numerical values. Though it is denied that the result is immediately audible, no one has ever doubted that Plato has the musical model in mind, especially as in a final step the sequence is filled by ‘Pythagorean’ tetrachordal tuning as first described by Philolaus. The previous steps are taken as follows:

1) Starting from the number one, two sequences are established, one by duplication, one by triplication. Both are extended to the cube of their first number (different from unity):

\[
\begin{align*}
1 & \rightarrow 2 - 4 - 8 \\
& \rightarrow 3 - 9 - 27
\end{align*}
\]

58 I do not really understand how Richter 1999, 302, arrives at his reconstruction, but at least in separating the Sun from its ὀμόδρομοι it is at odds with Plutarch’s text, where they are certainly conceived as sharing their place with the sun: even if the phrase ἐφ’ ἡλιον καὶ τοὺς ὀμόδρομοις ἡλιώ, Στ᾿ βάκιον καὶ Φωσφόρον could conceivably be understood as carelessly passing over one interval, the following ἐπερον τὸ ἁπὸ τούτων seems indisputable. Cf. Plut., Anim. procr. 1029b, Cherniss 233, note g.

59 Plato, Ti. 35b–36b.

60 Plato, Ti. 37b.
2) The harmonic and arithmetic means are inserted between neighbouring numbers (to avoid fractions, everything has to be multiplied by six):

\[8 - 9 - 12 - 16 - 18 - 24 - 32 - 36 - 48 \]

\[9 - 12 - 18 - 27 - 36 - 54 - 81 - 108 - 162 \]

3) The resulting values are then conceived as forming one sequence:

\[6 - 8 - 9 - 12 - 16 - 18 - 24 - 27 - 32 - 36 - 48 - 54 - 81 - 108 - 162 \]

All values that are needed for the standing notes of the Greater Perfect System are already present in the series of even numbers of step (2). But since the orientation of pitch in relation to number is unclear, the full sequence can be interpreted in terms of music in more than one way.

62

Thanks to its nearly symmetric arrangement round the central tone of disjunction (a–b, 16:18), the Greater Perfect System is present in Plato’s construction regardless of the direction in which one prefers to read it. Which direction had Plato in mind? I am very much inclined to think, both. For when he proceeds to the insertion of diatonic ‘movable’ notes into this framework, he fails to mention the direction in which to carry it out, so that no final system can be reconstructed unambiguously. Plato develops a cosmic harmony which extends well beyond the limitations of human music, and which does not simply correspond to earth-bound sound. Yet the whole system of human music, insofar it is governed by invariable principles, symbolized by fixed as opposed to movable notes, is present as a subset of the universal order. There is little doubt that Plato was well acquainted not only with music theory of Pythagorean hue, and with Damon’s thoughts, but also with the most recent developments of pre-Aristoxenian harmonists. Certainly he does not deem the technicalities of any of these schools worthy of philosophical discussion; but he proves himself able to play with them ingeniously. Those of his readers familiar with the numerical se-

61 This is not told by Plato, who is not concerned with absolute numbers (except when he finally gives the ratio of the *leîmma*, of course in whole numbers), but naturally done by commentators; cf. e.g. Plut., *Anim. procr.* 1019bc: ἐδέησε μείζωνας ἄροις λαβεῖν ἐν τοῖς στόιχοις λόγοις; Procl., *in Tim.*, 2, p. 170,32 αὐξήσαντες τοῖς ἀριθμοῖς.

62 In order to render identical intervals by identical distances, the numbers in the diagram are arranged logarithmically.
quence we have postulated would easily recognize it in his construction, and admire the elegant way he has devised it.

A closer inspection of Plato’s numbers might reveal another level of subtlety. While nētē synēmmēnōn (d’) is entirely absent, we meet, in the ‘falling’ rendition, its counterpart at the octave, hypereypatē (d). This note, as far as we know, played a role in classical music both in the Phrygian and in the Dorian mode. Nētē synēmmēnōn, on the other hand, was part only of the Phrygian modal scale, or some variants of it, and it was used for the most basic type of modulation. Note that hypereypatē, irregular in the context of the later canonical system, but conceivably essential for classical Dorian, the mode most highly esteemed by Plato, is included, while the modulating nētē is banned from the construction, just as modulating music is from the ideal state. This may be by chance, however, simply because when Plato devised a system incorporating all the numbers he needed in a mathematically ‘unsuspicious’ way, he had to take those, too, which happened to come along. And perhaps he was just content if the single number interrupting the standard fixed notes sequence had any musical meaning at all.

In any case it is clear that Plato composed the division of the cosmic soul against the background of music theory, conceived in a Pythagorean way; that the system he proposed includes all the numbers needed for the fixed notes of the two-octave system; and that the final step of the division presented these two octaves in a full heptatonic shape, in diatonic ‘Pythagorean’ intonation. It seems a safe conclusion, therefore, that Plato already knew the Perfect System, and most probably also the numerical series for its fixed notes. Otherwise one would have to assume that the Perfect System is present in Plato’s structure by pure chance; hardly a plausible alternative. Consequently we have established the required pre-Aristotelian date for our numerical sequence. Might the ultimate source be sought all-

63 It is part of the Aristides scale, but not treated as indispensable for Phrygian by ps.-Plutarch, Mus. 1137cd (most probably from Aristoxenos).
64 Plato, Rep. 397b–d; 399cd.
65 Curiously enough, the same number 27 which is alien to our sequence is missing in the manuscripts of Proclus’ commentary (in Tim. 194b, vol. 2, p. 176.26 Diehl).
66 It is worth noticing that von Jan, in the first modern account of the ‘fixed’ notes cosmic scale, already feels, in spite of his belief in a Ptolemaic origin, that the thought ought to have a history dating back to Plato: “Es ist merkwürdig, daß dieser im Grunde doch schon von Plato angeregte Gedanke erst in der Verfallzeit des Griechenthums weiter verfolgt und zur Begründung eines Sphärensystems verwendet wurde” (Jan 1894, 28).
ready in Philolaus’ work? Both the Timaeus and the passage from Aristotle point to an origin in pre-Platonic Pythagorean thought, and the lack of scientific method implied by Aristotle, the subtraction of numbers forming a ratio, recalls the way of treating numbers that Boethius ascribes to Philolaus. So one might suspect that the development of the fixed notes framework may conceivably have formed the intermediate step between the basic structure of the octave and the description of the ‘Pythagorean’ tetrachord tuning, just as the empty tetrachordal structure is first established, then divided in the Timaeus and in the Division of the Canon. But there is a serious objection: the fixed note series proceeds from lower to higher pitch, while in Philolaus’ tetrachord the highest number corresponds to the lowest note. Unless we assume that Philolaus switched between both models according to which one is most convenient for a certain purpose, we must exclude his work as the possible source of our structure.

Though it does not concern our argument immediately, the cosmological implication in Aristotle’s words is worth noticing. Often it was taken for granted that the number of the ‘wholeness of the heavens’ is the same as that of the ‘distance’, twenty-four. But what Aristotle says is: ... ἐπὶ τὴν ὀξυτάτην νεάτην ἐν αὐλοίς, ἢς ὁ ἀριθμὸς ἴσος τῇ οὐλομέλειᾳ τοῦ οὐρανοῦ. Therefore an interpretation as twenty-four would be valid only if we might assume that the bōmyx is equated with one, or if we change the text. As it stands, the number of the heavens is that of the highest nēthē, and so, according to our interpretation, thirty-two. It is hard to see, why thirty-two of all numbers should have been assigned such a metaphysical meaning. Much more plausibly in Aristotle’s source the connection was made, not only between the musical scale, its numerical rendition, and the num-

67 Starting from Alexander of Aphrodisias, in Metaph. 814, p.835.16–19Hayduck. His ‘explanation’ (12 zodiacal signs, 8 spheres, 4 elements; obviously giving 24 as their sum and their least common multiple) is not meant to reproduce that of Aristotle’s source, but is an invention of the author to illustrate how easy it is to construct impressive but meaningless numerical relationships. It is inspired by Aristotle’s example, just as Alexander’s preceding and following illustrations are inspired by Aristotle’s examples of star numbers in constellations. Interesting is the final remark, ἀλλὰ καὶ οἱ ὀδόντες τῶν ἀνθρώπων τοῖς διὰ τὸν ἀριθμὸν, which does not fit at all into the previous succession of examples introduced by ὅτι. Might it stem from an earlier commentary, which preserved traces of the equation of the οὐλομέλειᾳ τῶν οὐρανῶν with the number 32? For the number of human teeth, cf. e.g. ps.-Hippocr., Ep. Ptol. de hom. fab. 287.23–289.1 (F.Z. Ermerins, Anecdota medica Graeca, Leiden 1840), Aristot., fr. 286 Rose; Gal., UP 3, 868 Kühn.
number of letters, but also to a version of the celestial harmony. In this case the ‘wholeness of the heavens’ can apply only to the outermost sphere of fixed stars. For any time in question, we can safely assume the knowledge of the seven planets.68 With the fixed stars included, there are not enough scalar degrees for all planets. But we find Mercury and Venus united even in Ptolemy’s version; and Plato already stresses that these planets are running together (namely at the same average speed69) with the Sun, with which they share their sphere in one of the ‘ancient’ systems mentioned by Plutarch. If we assume that the earth was already included, and set to \textit{proslambanómenos}, as in all known variations of the fixed notes system, we can reasonably reconstruct an arrangement in which Sun, Mercury, and Venus shared the same note in the celestial concert, according to their equal speeds.70 Such a tentative reconstruction is shown in Table 3.

Again, Philolaus can hardly be the source of such a list. In his work he obviously put forth the famous non-geocentric system of ten celestial bodies, including earth and counter-earth, which are reconcilable with our numbers only on the basis of implausible hypotheses.71

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Nr. & Fixed Notes & Spheres \\
\hline
32 & \textit{nētē kyperbolaïōn} & a' \textit{Fixed stars} \\
24 & \textit{nētē diezeugménōn} & e' \textit{Saturn} \\
18 & \textit{paramésē} & b \textit{Jupiter} \\
16 & \textit{mēsē} & a \textit{Mars} \\
12 & \textit{hypātē mēsōn} & e \textit{Sun Mercury Venus} \\
9 & \textit{hypātē hypatōn} & B \textit{Moon} \\
8 & \textit{proslambanōmenos} & A \textit{Earth} \\
\hline
\end{tabular}
\caption{A reconstruction of the original fixed-notes cosmic harmony}
\end{table}

69 In an epicyclical model, as probably accepted by Plato as a working hypothesis (cf. van der Waerden 1982), this implies an equal angular speed of the respective primary spheres.
70 It has bothered scholars that later systems assigned different notes to these three planets, despite the explicit Pythagorean connection of the planets’ speed and pitch; cf. Aristot., \textit{Cael.} 290b; Alex. Aphr., \textit{in Metaph.} 31, p. 41.2–9 Hayduck; Burkert 1962, 314.
71 For instance, that earth and counter-earth shared the same speed just as the Sun, Mercury, and Venus do; or that the system incorporates a priori only the part of the universe visible to us. If Philolaus’ sphere of fixed stars was not included as a moving body
A more likely alternative is Archytas, “the Pythagorean most concerned with music”, according to Ptolemy. His acoustical theory connects speed and pitch, and so there is little doubt that his numerical relations were consistent with his physics, associating higher pitch with higher figures. Archytas makes it also explicit that astronomy, numbers, and music are related; so his argument may well have culminated in a synoptic list. Moreover he was famous for his work on the different types of means, which play such an important role in the fixed notes framework. Plato used them to construct his Timaeus system, and Ptolemy still counts all the instances of means occurring in the scale of his Canobic Inscription: it seems that the idea of the means remained connected with the fixed notes variant of the cosmic scale. Unfortunately, from Archytas’ work, only his account of the divisions of the tetrachord survives, not of the larger structures of music. However, if his progress in this field was only remotely as large as the step from Philolaus’ tetrachord tunings to the refined Archytean system, we must certainly expect no less than the numerical representation of the Perfect System.

just as the central fire is not (cf. Huffman 1993, 254–257), there would not even be a number/note for the οὐλομέλεια τῶν οὐρανῶν.

72 Ptol., Harm. 1.13, p.30.9f Düring.
74 Archyt., fr. 1, p.432.4–8 D.-K.: περί τε δὴ τῆς τῶν οὐσίων ταχυτάτου καὶ ἐπιγο-
λάν καὶ διαδικαῖον μεταδόσα τι χάρις διάγνωσιν καὶ περὶ γεωμετρίας καὶ ἄριστων καὶ σφαι-
ρικῶς καὶ σύκη ἔκπεφτω περὶ ἀριστείας καὶ συγκροτήσα μαθηματικὴ ἡμῶν ἀδέλφεια.

75 One might wonder why Plato, who was on best terms with Archytas, did not use his diatonic tuning, but the older one. I suppose the reason must be sought in the closer connection of Archytas’ tuning with musical practice, especially the irregular disjunction of hyperpyattê, while Plato’s cosmic harmony includes a maximum of concordant (in the ancient sense) intervals.

76 Ptol., Inscr. Can., p.154,11f Heiberg.
77 Lydus, Mens. 18,48 Wuensch=Xenocrates, fr. 58 Heinze, quotes a numerical concept from Xenocrates to explain the connection of the moon with the number nine. The wording does not necessarily imply, as modern commentators seem to have taken it, that the latter idea is also found in Xenocrates (Heinze 1892, 70f n.3; Isnardi 1982, 380f; but cf. the cautious diction of Huffman 1993, 372). Therefore the fragment does not support an origin of our cosmic harmony in the Early Academy or even earlier philosophy. If, on the other hand, the original context did already involve the moon, Xenocrates’ curious argument (the number nine gives birth to itself) seems more apt for commenting on an already established numerological connection than to inspire it for the first time. After the planets had been identified with the numbers of the fixed notes sys-
Finally, we must remember that Aristotle refers explicitly to the aulos as the conceptual background of the numerical equation. This fits well into a picture of pre-Platonic Pythagoreanism, in which the string(s) on the canon had not yet taken over as a standard tool of relative pitch measurement, and in which Archytas again seems to have played an important role:

καὶ τῶν Πυθαγορικῶν δὲ πολλοὶ τὴν αὐλητικὴν ἡσκήσαν, ὡς Εὐ-φράνορ τε καὶ Ἀρχύτας Φιλόλαος τε ἄλλοι τε οὐκ ὀλίγοι. ὃ δὲ Εὐφράνορ καὶ σύγγραμμα περὶ αὐλῶν κατέλιπεν' ὁμοίως δὲ καὶ ὁ Ἀρχύτας.

(Ath. 184e, p.402.20–24 Kaibel)

And many of the Pythagoreans practised the art of the aulos, Euphranor, for instance, and Archytas, and Philolaus, and quite a number of others. Euphranor left even an essay on auloi; and Archytas did the same.

The importance of the aulos for pre-Aristoxenean music theory is further corroborated by the account Aristoxenus gives of the arrangements of τόνοι, keys, as proposed by rivalling schools of theorists: one of these systems, he says, is oriented entirely towards the model of aulos boring, and another one sometimes expanded by adding ‘the Hypophrygian aulos’. Since the initial stages of the systematisation of τόνοι were almost certainly independent of the conception of the Perfect System, the aulos seems to...

80 Of course, strings were used by some school(s) at the same time; cf. the famous mention of string-torturers in Plato, Rep. 531ab, who did, however, not carry out measurements; cf. West 1992, 240.

79 Aristox., Harm. 2.37, p.47.6–9 Da Rios: …ἐτεροὶ δὲ πρὸς τοὺς εἰρημένους τῶν ὑποφρύγιον αὐλῶν προστίθεασιν ἐπὶ τὸ βαρύ. οἱ δὲ αὖ πρὸς τὴν τῶν αὐλῶν τρίπτηρα βλέποντες τρεῖς μὲν τοὺς βαρυτάτους τριτοί διέσεσιν ἀπ’ ἀλλήλων χωρίζουσιν… West 1992a, 31, deletes αὐλόν as an intrusion from αὐλῶν below, and indeed the text has suffered worse corruptions elsewhere. But as it is perfectly possible that there was such a thing as a ‘Hypophrygian aulos’, and that its existence (or rather invention?) triggered the extension of the key system, it is by no means necessary to change the text: cf. also Ath. 625a, p.378.19–22 Kaibel, about the ‘Hypodorian’ originating in aulos design.

80 Cf. the reconstruction in Hagel 2000, 165–182. Keys and Perfect System have perhaps merged not earlier than in Aristoxenus’ διάγραμμα πολύτροπον; and even there the full Perfect System was nowhere realized within a single key: cf. Hagel 2000, 183–188. It is only in the σύστημα πεντεκαίδεκατρόπον of the ancient notation that we find both concepts fully expressed.
have functioned as the model instrument for a wider range of theoretical concepts.

Aristoxenus himself, who usually pays little tribute to the achievements of his predecessors, acknowledges that ‘those dealing with the musical instruments’, unlike the rest of music theorists, had a clear conception of the interrelation of the genera, and thus of ‘fixed’ and ‘moving’ notes. Accordingly, only these practice-oriented writers were in the position to develop the Perfect System – and the numerical sequence based on its fixed notes.

It is therefore plausible that the theoretical formulation of the Greater Perfect System went hand in hand with its practical realisation in aulos boring. Especially the presence of a bómbyx one octave below mésē seems of great use, whether in accompaniment or as a drone. Only this note stands in concordant intervals to the more important ‘fixed’ notes, just like mésē does: to hypérypátē and hypáten as well as to all three nētai. The origins of the Perfect System have usually been sought in a highly abstract effort of finding a grid for different lyre tunings or other types of Gebruchsskalen; a grid, however, which remains useless for all practical purposes. In a cultural context where philosophers did not only display great interest both for acoustics and for music theory, but, like everyone, were trained in singing, dancing, and, as we have seen, often also in aulos-playing, any explanation which presupposes a more intimate connection of music theory and practice must be regarded as a priori more plausible. The natural instrument of reference for the extension of scales as well as for heavily modulating systems was not the lyre with its slowly increasing but still limited number of strings, but the versatile aulos, which was just then

81 Aristox., Harm. 2.35 p.44.14–16 Da Rios.
82 For the interval of a tone and of a ninth to the remaining ‘fixed’ notes, hypáten hypáton and paramésē, cf. the tone used in auletic music between accompaniment and melody as attested in ps.-Plut., Mus. 1137c (from Aristoxenos). See Winnington-Ingram 1928; West 1992, 206; Barker 1995, 50; Hagel 2004.
83 So e.g. West 1992, 223. The neat symmetric account of the system as given by Ptolemy has long obscured the independent origins of tōnoi and ‘octave species’, which have at the same time often been mistaken for lyre tunings. The mechanism that ensures that any octave species lies roughly in the same pitch range if taken in its homonymous tōnos is the necessary result of, not the reason behind the evolution of the system. See also n.80 above.
84 When some theoreticians found it necessary to use many-stringed instruments (psaltēria = harps or zithers?) to reproduce and examine contemporary music (Pap. Hi-
being equipped with newly invented mechanisms for closing and opening holes.85 So the conclusions that we have based on the Aristotle passage rather corroborate a scenario which we should have expected anyway.

And what follows for the design of the aulos itself? As we have already seen, the \textit{bömbyx} should usually have sounded the \textit{proslambanómenos} (A) of the instrument’s basic key, usable for a variety of concords, and perhaps as a drone,86 an octave below the tonal centre, \textit{mēsē}. On the other hand, it must have been possible to play notes as high as \textit{nētē hyperbolaïon} (a'), Aristotle’s ‘highest \textit{nētē}, represented by the highest number of our sequence, and located two octaves above the \textit{bömbyx}. This cannot have been done without overblowing, just because finger holes for such high-pitched notes would lie very close to the mouthpiece, near the section usually occupied by the typical ‘bulbs’, and at the same time very close together.87 The laws of physics lead us one step further: like any reed instrument with cylindrical bore throughout, the aulos must overblow to the twelfth.88 If the lowest playable note is the \textit{proslambanómenos} (A), then the first note available by overblowing will be \textit{nētē diezeugménōn} (e'). Both notes can of course be accessed only if all finger holes are closed that lie below the lowest one which is, in the present playing position, actually fingered. This must have been done by the help of rotating sleeves or some other mechanism.89 In other words, \textit{nētē diezeugménōn} can be played without a finger hole of its own whenever the lowest (drone?) note is accessible. The even higher notes in the range of the \textit{hyperbolaïon} tetrachord can be played on the holes at the lower end of the instrument. In this case, all the holes above the hand have to be closed mechanically. In terms of the Unmodulating Perfect System90 there is no absolute need to have specific

\begin{itemize}
\item 86 The funny registers described by Najock (1996) are based not on a cylindrical bore, but one with sections of different diameter. Of the numerous aulos fragments, not one has such a design.
\item 87 On sleeves and sliders see Howard 1893, 7f; West 1992, 87f; Masaraki 1974; Litvinsky 1999; Byrne 2000.
\item 88 See Figure 1, above p.59.
\item 89 No Greek aulos fragment has such finger holes, nor is there any representation of respective fingering.
\item 90 beh 13.23–31; cf. West 1992a, 16f; 21; Wallace 1995, 32–35), they testify to the impossibility of doing so on the kithara: obviously they investigate vocal and/or aulos music.
\end{itemize}
holes for any note above \(\text{nētē synēmménōn} \) (d'), because this note is also more or less identical in pitch with the second but highest note of the \(\text{die-zeugmēnon} \) tetrachord in its highest tuning shade, \(\text{paranētē diezeugmēnon diatōnos} \).

In spite of the great number of excavated aulos fragments, almost none of them can serve for testing our conclusions. Most are either too fragmentary, or their restoration is doubtful, or they are of the more primitive type with only five finger holes plus a vent hole per pipe, or, in rare cases, from such a late and evolved type that an abundance of finger holes prevents the certain determination of a scale. And we almost never have the opportunity to study a pair of pipes that formed an instrument. The exception is the famous Louvre aulos: obviously a pair of pipes, one with nine, the other with seven finger holes, partially matching, partially complementing each other to form a sensible scale. And this scale is identical with the predicted design: it ranges exactly from \(\text{proslambanómenos} \) to \(\text{nētē synēmménōn} \). While the musically most important \(\text{mēsē} \) (a) is the highest note present on both pipes, the discords with \(\text{mēsē} \) and \(\text{bōmyx} \) are taken into consideration, too, as becomes clear from the treatment of the (necessarily discordant) neighbour notes of \(\text{mēsē}/\text{proslambanómenos} \). As regards the standing notes, the higher pipe stops short of \(\text{hypētē hypētōn} \) (B), the lower one of \(\text{paramēsē} \) (b). Of the movable notes, on the other hand, it is precisely diatonic \(\text{likhanōs} \) (g) that is bored to form concords (with c and d) only on the higher pipe, while the respective hole on the lower pipe, situated about a septimal tone below \(\text{mēsē} \), seems to have facilitated the production of certain shades of diatonic.

Figure 3 displays the holes that need to be fingered to produce all notes of the scale, as discussed above:

91 Only in the highest shades of diatonic, the movable \(\text{paranētē} \) is about one tenth of a tone higher than the fixed \(\text{nētē synēmménōn} \). This might have been taken into consideration in the Louvre aulos; see Hagel 2004. But pre-Aristoxenean music theory was concerned mainly with enharmonic music (cf. Aristox., \textit{Harm.} 1.2 p.6.6–12 Da Rios), and apparently ‘diatonic’ notes such as \(\text{paranētē diezeugmēnon} \) were evidently understood as ‘modulating’ \(\text{nētai} \) etc.; see Hagel (2000) 38–41. On the other hand, an additional higher hole would be needed for a (modulating) \(\text{pyknōn} \) above \(\text{nētē synēmménōn} \) – which is, however, listed as \(\text{āpyknos} \) in Cleonid., \textit{Harm.} 4, p.186.5–7 Jan and Bacchis, \textit{Harm.} 34, p.300.6f Jan.

92 For a description of the instrument, see Bélis 1984. For the determination and discussion of its scale, Hagel 2004.

93 See Hagel 2004, especially Table 2.
When the lower two finger holes are closed on the lower pipe, and perhaps also the lower four holes of the higher pipe, there are available, in addition to the bombyx, all notes from hyperypáth (d) to nētē diezeugmēnōn (e'). This is exactly the famous central octave plus the tone below, which was most probably also the first extension of the old lyre tuning, taken at a rather early date. Without overblowing, the highest note is nētē synēmmēnōn, and the melodic compass (without the drone note) covers exactly one octave. It may be significant that this is the so-called Phrygian octave, whose practical relevance is well attested. Its highest note could reasonably be called the ‘Phrygian nētē’, as opposed to nētē diezeugmēnōn (e') as the ‘Dorian nētē’, associated more closely with the lyre. So it seems that just as ‘Phrygian’ music and the aulos are intimately connected, the ‘Phrygian’ mode was available on the aulos without the additional effort of overblowing. The ‘Dorian nētē’ could be reached by simply overblowing the bombyx, while each higher note of the hyperboiaion tetrachord required the opening of a hole near the lower end of the tube, or moving the fingering position there entirely. In this case the melodic compass would shift from

94 In enharmonic shape it is described by Aristides Quintilianus (1.9, p.18f W.-I.) as belonging to the fifth century BC, in chromatic form in the cosmic scale known from several sources (Alexander of Ephesus in Theon, Util. Math. 138–141 Hiller; Censorinus, de die natali 13, p. 22.10–24.14 Sallmann; Aeh. Tat., Intr. Arat. 17, p. 24f Di Maria; with Dorian nētē in Pliny, NH 2.84), in diatonic form it seems to underlie the tonal structure of the Seikilos song, DAGM 23. The bounding notes are the same in all genera, and all notes can be produced on the Louvre aulos with the given fingering by partially covering holes to obtain the missing semitones and quartertones.

95 Ps.-Plut., Mus. 1140f; cf. Aristot. Pr. 19.32, 920a; Plut., Apophth. Lac. 238c.

96 By ‘mode’ I refer to music using such scales as transmitted by Aristides Quintilianus, separated from the notion of key: such music is indicated by the notation of those scales as well as of the Orestes fragment (DAGM 3) in the basic keys, which were (later) termed (Hypo)lydian. I plan to explain the history behind these conceptions in the near future. On mode in ancient Greek music, see Winnington-Ingram 1936.
Twenty-four in auloi

...with an overlap of a sixth between both playing positions. Of course there were other positions, too, which involved also the lower part of the higher pipe. The lowest four finger holes of this pipe can be fingered together, for instance, and all of them yield resonant intervals with the other pipe’s bömbyx, from a minor third to a minor sixth.

Playing the hyperbolaîon tetrachord involves another complication. Since the aulos overblows not to the octave, but to the twelfth, the diatonic sequence of intervals of the higher register does not correspond to that one an octave below. As a result, a hypätē hypätōn finger hole produces not the desired tritē hyperbolaîōn (f), but a note that is one half tone too high (f♯), corresponding roughly to paranētē hyperbolaîon khrōmatikē. Accordingly, the correct pitch must be obtained by half-stopping the finger hole. But this was a common technique, necessary for many of the moving notes of the chromatic and enharmonic genera.

This, it seems, was the basic design of the standard professional aulos of about the early fourth century BC, and it presumably persisted as one possible design for centuries: the Louvre aulos is most probably from a later period.

If our conclusions are justified, they will affect another aspect of ancient Greek musical history. It has been observed that the hyperbolaîon tetrachord was not accounted for in the earlier stages of the ancient notation, and should therefore be relatively young. But our interpretation of Aristotle’s reference needs this tetrachord, and we have seen that it is integrated also into the Timaeus system. So I suggest that those early stages of the notation must be dated to the fifth century. It is not surprising that no direct technical reference to the tetrachord has survived from that time. Still the term is there, in a fragment from the comic poet Pherecrates. In one of his plays, Music herself complains about the violent treatment she has suffered from modern composers. In the last lines, which unfortunately are not transmitted within their exact context, she says:

...
...ἐξαρμονίους ὑπερβολαίους τ’ ἀνοσίους καὶ νιγλάρους… (ps.-Plut., Mus. 1142a)

...inharmonious ones, and overshooting ones, impious, and shrill whistling...

No doubt already fifth century music knew something that was called *hyperbolaios*, and that was new to such a degree that a conservative mind was ready to rebuke it as impious. Why should we assume that this feature was anything else than the high notes of the *hyperbolaios* tetrachord? Is it by chance that these are named in the same breath with whistling sound, or may we take this as a reference to the diminished sound quality of those notes, which could be produced only by overblowing? At least it is hard to see why some sort of unpleasant whistling sound should have been introduced by those popular composers just for its own sake. If this is accepted, it becomes plausible that the term *hyperbolaios* itself was coined in the context of aulos playing, and was originally associated with the increased effort that is necessary for the production of the second register. The entire Perfect System, ranging from the *bómbyx* to the ‘overshoot’ notes, appears then as a reflection of auletic practice.

Overblowing on the aulos is usually connected with the so-called *sýrinx*, an accessory sometimes mentioned in ancient sources, and tentatively identified as a speaker hole: it certainly served to facilitate the production of higher registers. If our interpretation is correct, however, it is

ὑπερβολαίους τ’ ἀνοσίους refers to χορδάς δώδεκα, twelve strings/notes. But in this case νιγλάρους must be parallel to χορδάς: “undressed me and dressed me in twelve notes… and shrill whistling”, which is rather odd. Moreover, it is hardly conceivable that the poet wanted to call all twelve notes ‘overshooting’. So I suppose there is some text missing — if the passage is not from an altogether different play, by Aristophanes. Though the repeated use of χορδή might at first glance point to a context of stringed instruments, the passage as a whole is cited primarily as evidence for the decline of aulos-accompanied music; and χορδή has probably already its later meaning of ‘note’.

101 Barker 1984, 238 n.205 takes it as the natural interpretation.
102 The term ἐξαρμονίους, on the other hand, obviously refers to modulations to alien keys (Hagel 2000, 85f), which probably originated also in auletic and aulos-accompanied music.
103 So first Howard 1893, 32–35; cf. Barker 1984, 226 n.137. Becker’s (1966, 68–80) arguments against the speaker theory are, like so much of his book, mostly based on untenable interpretations of the literary evidence. We need not be disturbed by the fact that perhaps none of the extant pipes and fragments actually has such a speaker hole.
not very likely that this *sýrinx* was already employed for overblowing the *bómbyx* to achieve the ‘Dorian’ *néîd* *diezeugménôn*, in what we might take as the standard playing position. Too often the player would have to switch the mechanism – which involved dragging a slide, not just pressing and releasing a button; so it must have been easier to accomplish the change of register just by means of embouchure. Especially if the transition did not involve a large interval, the overblown neighbouring note presumably came forth more readily than the deep *bómbyx* with its completely different oscillatory regime. But let us consider what Aristoxenus tells us, who is the only source that connects the *sýrinx* mechanism with the topic of instrument range:

\[\text{τάχα γὰρ ὁ τῶν παρθενίων αὐλῶν ὁ ἐξήτηθα ὕπερτελειων βαρύτατον \μεῖζον ἀν \ποιήσει \τοῦ \εἰρημένον \τρίς \διά \πασῶν \διάστημα, καὶ \κατασπασθείς \γε \τῆς \σύριγγος \ὁ \τοῦ \συρίτ-}
\[\text{τοντος \ὄξυτατος \πρὸς \τόν \τοῦ \αὐλούντος \βαρύτατον \μεῖζον \ἀν \ποιήσει \τοῦ \ρηθέντος \διαστήματος.}

(Aristox., Harm. 1.20, p.26.8–27.3 Da Rios)

For the highest note of the girls aulos would easily give an interval that exceeds the mentioned three octaves in relation to the deepest note of the oversize aulos; and if the *sýrinx* is drawn back, the highest note of the *sýrinx*-mode player would exceed the named interval in relation to the deepest note of the aulos-mode player.

If we take an aulos of the already large compass predicted by our interpretation and found on the Louvre instrument, we will reach exactly three octaves by overblowing the highest (*néîd* *synēmménôn*) hole to the first available harmonic, the twelfth – if it was possible to overblow such a high finger hole at all. Yet Aristoxenus talks about exceeding this interval, which will require either at least one finger hole more (which, as we have seen, is not very likely because of its necessary location close to the mouthpiece) or overblowing to the next available harmonic, the double octave plus third. On the other hand it is clear from Aristoxenus’ wording that for him there is a much more pronounced difference between playing with the *sýrinx* (*syrríttein*) and playing in normal mode (*auleîn*) than there is between different registers in a modern woodwind instrument. While on modern instruments the transition to overblown notes should cause as little modification of timbre as possible, ancient *syrríttein* was obviously meant

\[\text{The chance of excavating exactly this type of virtuoso instrument, among so many other, and mostly simple, ones is not very good.}\]
to imply not only a modification of pitch, but also of sound. Only so can we understand at all why a professional musician like Telephanes of Megara could reject the usage of the sýrinx mechanism altogether. So this feature was obviously not used for extending the compass of melodic notes upwards: the hyperbolaion tetrachord could be reached just by adjusting the embouchure. The sýrinx will then have supported the production of the third register, in accordance with Aristoxenus’ words: this register will cover a pitch range that extends from (roughly) two octaves and a third up to three octaves and a sixth above the bómbyx, thus well exceeding a span of three octaves with its highest, but not its lowest note (cf. Figure 4). Accordingly none of the few ancient references indicates any connection with the aulos as accompanying vocal music. The sýrinx seems to have been a feature of professional solo performances, exemplarily associated with the mimetic representation of the dying Pythian dragon at the auletic contests during the festivals at Delphi.

The aulos of our interpretation requires mechanical devices for opening and closing finger holes, such as rotating sleeves or sliders. Their invention is usually attributed to the famous Theban aulete Pronomus. At least he devised, we are told, and was the first to use, auloi on which it was possible to play in all three modes, Dorian, Phrygian, and Lydian – which had formerly required switching between three different instruments. There is no doubt that such a modulating instrument did indeed require a kind of mechanism. Yet if Pronomus did not play his modes in different pitch ranges, his real invention might have been of an even more evolved kind: a type of sleeves that did not just open and close one hole, but al-

104 Ps.-Plut., Mus. 1138a; Bélis 1999, 200–202. Howard’s interpretation (1893, 33f: Telephanes displayed his ability to use the higher register in the old virtuoso way, without the help of a modern tool) fails to take into account the fact that he was not able to attend the Delphic games without a sýrinx.

105 For a skilled player it is possible to exert different pressure on the double reeds of two pipes, so that different registers can be used at the same time.

106 Since the archaeological evidence shows that the diameter of the finger holes did not vary according to their respective distances, the intervals of the overblown notes will not correspond exactly to those of the low register (cf. Benade 1960, 1593).

107 Cf. Strab. 9.3.10; see also n. 104 above. Solo playing is also implied in Xenophon, Symp. 6.5. Cf. West 1992, 102.

Twenty-four in auloi

Allowed one to alternate between two openings about a semitone apart. On the other hand, if he devised such a modulating mechanism, we cannot know if it was already predated by a simpler type such as required by our considerations, or if this extension of range came later, or if both went hand in hand. In any case, the necessary mechanism must have been known well before the end of the fifth century. Its design involved a good bit of aulos-based investigation of musical scales, which further corroborates the rather early date of the theoretical efforts that ultimately led to the conception of the Perfect System.

So convergent evidence gives rise to a new picture of pre-Aristoxenian music theory. Much of it, and obviously the most concrete parts – the formulation of a scalar model as well as the arrangement of keys – was motivated by the practical needs of the ongoing evolution of aulos music, and presumably flourished in a discussion between theorizing professional musicians on the one hand and aulos-playing philosophers on the other. At the beginning of the fourth century, the Perfect system had obviously found its canonical form. Yet the vestiges of that exciting period have become largely obliterated. This might mostly be due to the ‘Athenian reaction’ against the aulos in general. Though Aristoxenus was still an expert on aulos boring, too, almost all that was written on this subject fell into disregard once the instrument had assumed its ambivalent image in the mainstream of philosophizing literature. Accordingly, later theorists of the Pythagorean school concentrated on strings; anyway their mathematical demonstrations had now lost the connection with actual music.

Research for this paper was supported by the APART programme of the Austrian Academy of Sciences. I want to express my thanks to John C. Franklin for correcting my English.
Stefan Hagel

Bibliography

Barker 1984 A. Barker, Greek Musical Writings I. Cambridge.
Barker 1989 A. Barker, Greek Musical Writings II. Cambridge.
Düring 1934 I. Düring, Ptolemaios und Porphyrios über die Musik. Göteborg Högskolas Årsskrift 40, 1–293.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Archäologischen Instituts (Athen. Abt.) 89, 105–121.</td>
</tr>
<tr>
<td>Redondo Reyes</td>
<td>2003</td>
<td>P. Redondo Reyes, La armonía de las esferas según Claudio Ptolomeo. MHNH 3,</td>
</tr>
<tr>
<td>Richter</td>
<td>1999</td>
<td>L. Richter, Struktur und Rezeption antiker Planetenskalen. Die Musikorschung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52, 289–306.</td>
</tr>
<tr>
<td>Rocconi</td>
<td>2002</td>
<td>E. Rocconi, The development of vertical direction in the spatial representation</td>
</tr>
<tr>
<td>Shiloah</td>
<td>1978</td>
<td>A. Shiloah, The Epistle on Music of the Ikhwān al-Ṣafā‘. Documentation &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studies, Publications of the Department of Musicology & the Chaim Rosenberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>School of Jewish Studies, 3, Tel-Aviv.</td>
</tr>
<tr>
<td>Swerdlow</td>
<td>2004</td>
<td>N.M. Swerdlow, Ptolemy’s Harmonics and the ‘Tones of the Universe’ in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Canobic Inscription. In: C. Burnett et al. (edd.), Studies in the History of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the Exact Sciences in Honour of David Pingree. Leiden, 137–180.</td>
</tr>
<tr>
<td>van der Waerden</td>
<td>1943</td>
<td>B.L. van der Waerden, Die Harmonielehre der Pythagoreer. Hermes 78, 163–199.</td>
</tr>
<tr>
<td>van der Waerden</td>
<td>1982</td>
<td>B.L. van der Waerden, The motion of Venus, Mercury, and the Sun in early Greek</td>
</tr>
<tr>
<td>West</td>
<td>1992a</td>
<td>M.L. West, Analecta musica. Zeitschrift für Papyrologie und Epigraphik 92,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1–54.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance culture and Athenian democracy. Cambridge, 58–95.</td>
</tr>
</tbody>
</table>