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Abstract

The Schrödinger equation is solved for spontaneous and stimulated photon emission out
of an ideal energy well, a box inescapable for electrons, which can change their state
only by odd quantum numbers. Shapes of photons emanated spontaneously and under
stimulation are calculated and differ from each other. Calculations of the line widths of
spontaneously emitted photons are in agreement with current theories and turn out to be
much smaller than those of photons emitted by stimulation. The latter exhibit a line
width proportional to the square root of intensity (power). The absorption of the
stimulating electromagnetic wave shows a saturation effect, explaining a well known
phenomenon. For very short photons, the basic energy relation W ¼ �h!21 becomes
questionable, corroborating a recent result obtained by Keller, although possible to
obey, if a quantization rule for the time duration of the photon is introduced.

I. Introduction

The problem under investigation was raised by the recent claim [1]
of a ‘‘fundamental discovery’’, the frequency limitation, which is
supposed to be caused by a detector’s need of ‘‘at least one quantum
�h! and with !!1 the signal’s energy would become infinite’’. The
claim is based on the belief that the high frequency part of the Fourier
spectrum of a wave packet, say of a photon, has something to do with



the energy quantum �h! of the whole packet. The problem is related to
the question as to whether a photon starts and stops at certain times to
be emanated, and what shapes photons may acquire. Since photons
are in many cases emanated by an electron falling from an energy
level to a lower one, where both levels correspond to steady states,
there should definitely be a certain length of the wave packet.
But how long is it and what determines its shape? Is there a difference
between spontaneously emitted photons and photons emitted through
stimulation? The space-time description of photon emission is
usually dealt with by quantum-electrodynamics. The state of the
art is presented in a recent article of Keller [2] who found for
photon emission from an atom that for very short pulse trains
‘‘pronounced deviations from the textbook result, energy W ¼ �h!,
occur’’.

In the present article a simple and transparent model of photon
emission from electrons captured in an energy well is used to answer
the question of the ‘‘frequency limitation’’, to check the validity of
the energy relation W ¼ �h! particularly for short photons and find
how to possibly save it by a proper rule. Solutions of Schrödinger’s
fundamental wave equation a priori disregarding spin and magnetic
forces (a typical engineering theory, as some critical readers of the
manuscript maintained) suffice to answer the questions.

II. Radiation of a Photon from an Excited
Electron in an Ideal Energy Well

Since a nonlinear problem is to be solved, the author prefers to write
Schrödinger’s equation in real notation for the wave functions � and
� instead of the conventional complex functions  and  �. With

 ¼ �þ i�; ð1Þ

the wave equations read

��� 2m

�h

@�

@t
¼ 2m

�h2
W�; ð2Þ

��þ 2m

�h

@�

@t
¼ 2m

�h2
W�: ð3Þ

Here m is the electron mass, �h Planck’s constant h divided by 2�,
W the potential energy within the well (actually a box) situated at
0 < x < dx; 0 < y < dy; 0 < z < dz, and � is Laplace’s operator.
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With a flat bottom of the well in the steady state, insurmountable
walls and an electric field in x-direction, whose origin is internal
(from the emanating photon) and maybe also external,

Ex ¼ ÊEðtÞ sin !2 � !1ð Þt: ð4Þ

For spontaneous emission, the internal field prevails, for stimulated
emission the external field dominates. The potential energy, with the
reference potential in the well’s center place, becomes

W ¼ �eÊE

�
dx

2
� x

�
sin ð!2 � !1Þt; ð5Þ

which implies that the well is small compared to 1=4 of the
electromagnetic wavelength. Here �h!2 is the initial and �h!1 the final
energy of the electron of charge �e. The amplitude ÊE of the (within
the well) space-independent electric field may be time-modulated.
The space-dependent factor dx=2� x in Eq. (5) is for a purpose
evident from the following analysis replaced by a symmetric Fourier
series of period 2dx, so that

W ¼ �4edxÊE sin ð!2 � !1Þt
X1
k¼1

cosð�ð2k � 1Þx=dxÞ
ð2k � 1Þ2�2

: ð6Þ

The difference between the functions in Eqs. (5) and (6) lies in
the fact that according to Eq. (5), the electric field is constant
including the walls, whereas according to Eq. (6), the electrical
field is constant within the well but drops to zero at the potential
walls by step functions. There is no consequence since both wave
functions are zero at the walls, and moreover, the superimposed
trapping field is infinity on the wall. The alternative antisymmetric
Fourier series which could replace the linear function dx=2� x
within the well does not lead to a solution and had therefore been
disregarded.

Now an electron at a steady-state energy level of

�h!2 ¼
�h2

2m

��
l�

dx

�2

þ
�

g�

dy

�2

þ
�

n�

dz

�2�
ð7Þ

is considered to fall back to the empty steady-state level

�h!1 ¼
�h2

2m

��
ðl� l0Þ�

dx

�2

þ
�

g�

dy

�2

þ
�

n�

dz

�2�
ð8Þ

Analysis of Photon Shapes and New Quantization Rule 157



with l, l� l0, g, and n as quantum numbers. The dynamics of this
process may be described by the wave functions

�

�
dxdydz

8

�1=2

¼
�

AðtÞ sin!2t � sin l�x

dx

þ BðtÞ sin!1t

� sin ðl� l0Þ�x

dx

�
sin

g�y

dy

� sin n�z

dz

; ð9Þ

�

�
dxdydz

8

�1=2

¼
�

AðtÞ cos!2t � sin l�x

dx

þ BðtÞ cos!1t

� sin ðl� l0Þ�x

dx

�
sin

g�y

dy

� sin n�z

dz

; ð10Þ

which imply constant frequencies within the envelopes. The amplitudes
AðtÞ and BðtÞ are normalized such as to equal unity in the steady states.
In the dynamic case with modulated amplitudes, it is expected that A2

starts from unity and terminates at zero, while B2 starts at zero and
terminates at unity. Since the electron is supposed to be partitioned
between the levels �h!2 and �h!1, it is expected and proven below that

A2ðtÞ þ B2ðtÞ ¼ 1: ð11Þ
With Eqs. (9) and (10) introduced into Schrödinger’s equations (2)
and (3), in the latter’s right hand sides only the resonant terms are
considered, i. e., the terms with the same space and time dependences
as appear on the left hand sides. It can immediately be recognized
that in the Fourier series of Eq. (6) only the terms 2k1 � 1 ¼ l0 and
2k2 � 1 ¼ 2l� l0 matter. Thus l0 has to be an odd number, which will
be shown later to be in agreement with current theories. Further-
more, the degenerate case !2 ¼ 2!1 must be excluded. With these
restrictions, Eqs. (9), (10), (2), and (3) lead to

dA

dt
cos!2t � sin l�x

dx

þ dB

dt
cos!1t � sin ðl� l0Þ�x

dx

¼ �ðtÞ
�

A cos!1t � sin ðl� l0Þ�x

dx

� B cos!2t � sin l�x

dx

�
ð12Þ

and

dA

dt
sin!2t � sin l�x

dx

þ dB

dt
sin!1t � sin ðl� l0Þ�x

dx

¼ �ðtÞ
�

A sin!1t � sin ðl� l0Þ�x

dx

� B sin!2t � sin l�x

dx

�
; ð13Þ
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respectively, with the abbreviation

�ðtÞ ¼ 4edxÊEðtÞ
�2�h

lðl� l0Þ
l20ð2l� l0Þ2

: ð14Þ

These equations can be met if

dA

dt
¼ ��ðtÞB; ð15Þ

dB

dt
¼ �ðtÞA; ð16Þ

which allows two general conclusions. The first is immediately
evident if we multiply Eq. (15) with A, Eq. (16) with B, and integrate
their sum. This results in Eq. (11) and confirms the normalization
criterion.

To reach the second conclusion, the electron current density has to
be considered first. From the general equation

~SS ¼ e�h

m

�
�~rr���~rr�

�
ð17Þ

and Eqs. (9) and (10), the current density reads

Sx ¼�
8e�h�

md2
x dydz

AB sin!21t � sin2 g�y

dy

� sin2 n�z

dz

�
��

l� l0

2

�
sin

l0�x

dx

� l0

2
sin
ð2l� l0Þ�x

dx

�
; ð18Þ

with the abbreviation

!21 ¼ !2 � !1: ð19Þ

The current effective in the radiation process (influence current) is
derived from

Iinfl ¼
1

dx

ðdx

x¼0

ðdy

y¼0

ðdz

z¼0

Sxdxdydz; ð20Þ

which yields

Iinfl ¼ �
8e�h

md2
x

AB
lðl� l0Þ

l0ð2l� l0Þ
sin!21t: ð21Þ

Analysis of Photon Shapes and New Quantization Rule 159



With Eqs. (4) and (14), the voltage U ¼ Exdx becomes

U ¼ �
2�h

4e
�ðtÞ l

2
0ð2l� l0Þ2

lðl� l0Þ
sin!21t; ð22Þ

and the radiated power is calculated as

P ¼ �IinflU ¼
�2�h2

md2
x

l0ð2l� l0Þ�ðtÞAB: ð23Þ

This result implies that �ðtÞAB varies slowly with time such as to
justify the replacement of sin2 !21t in the averaging process by 1=2.
For ‘‘extremely short’’ photons, however, this is not the case and
further considerations will be necessary.

From Eqs. (15) and (16), we have

�ðtÞAB ¼ � 1

2

dA2

dt
; ð24Þ

so that ðþ1
�1

�ABdt ¼ �A2

2

����
þ1

�1
¼ 1

2
ð25Þ

Taking Eqs. (23), (24), and (7), and (8) together, we obtain the total
energy of the photon

W ¼
ðþ1
�1

Pdt ¼ �h2

2m

�
�

dx

�2

l0ð2l� l0Þ ¼ �h!21; ð26Þ

with

!21 � 5:713 � 1014s�1

�
nm

dx

�2

l0ð2l� l0Þ: ð27Þ

This result is not new but reassuring, since it states that regardless of
whether the Fourier spectra show a long or short high-frequency tail,
the energy formula W ¼ �h!21 is not violated. The basis holds, it is the
frequency within the envelope which counts, and not parts of the
Fourier spectrum. Extremely short photons may be an exception and
will be dealt with in Section (III-B).

III. Case Studies: Long and Short Photons,
Spontaneous and Stimulated Emission

Obviously the photon is shaped by its environment. Suppose it may
radiate freely without stimulation. Then the Hertzian dipole [3]

160 F. Paschke



appears as a proper model. Its radiation resistance offered to the
current of amplitude ÎI flowing through the dipole of length dx is,
calculated for the radian frequency !,

R ¼
�
!dx

c

�2
ffiffiffiffiffiffiffiffi
�="

p
6�

: ð28Þ

Here c ¼ ð�"Þ�1=2
is the velocity of light, " is the permittivity and �

the permeability of vacuum. The non-propagating electromagnetic
energy stored in the near field, calculated outside a sphere of radius
dx=2, is time-averaged over rapid oscillations with 2!, but allow-
ing slow variations of ÎI,

W ¼ �ÎI2

2�

�
dx

3
þ 2c2

3!2dx

�
: ð29Þ

The corresponding energy of a small-band signal stored in a reactance
Xð!Þ is

W ¼ ÎI2

4

dX

d!
; ð30Þ

which is sometimes referred to as Foster’s theorem [4]. From Eqs.
(29) and (30), it can be seen that the near field may be represented
by an inductance L and capacitance C in series with the radiation
resistance, Eq. (28), with the values

L ¼ 2�dx

3�
; C ¼ 3�"dx

4
: ð31Þ

The fact that the energy stored in the near-field is represented by an
inductance and a capacitance does not indicate a quasi-stationary
approximation or an engineer’s approach; it simply reflects the non-
propagating (evanescent) nature of the near-field. Figure 1 depicts the
current loop representing the radiation into free space. In Maxwell’s
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Fig. 1. Equivalent circuit for the interaction of the electrons inside a quantum box of
extension dx with a dipole field; R is the radiation resistance, the inductance L and the

capacitance C represent the energy stored in the non-propagating near field



field theory, the total current density (electron-current density plus
displacement-current density) equals curl~HH and therefore is source-
free. Thus, with a quasi-one-dimensional electric field within the
quantum box, averaging of the total current over 0 � x � dx yields
the influence current of Eq. (20) plus the capacitive current across the
box,

I ¼ Iinfl þ Ci

dU

dt
; ð32Þ

with

Ci ¼
"dydz

dx

� "dx; ð33Þ

so that the voltage across the well becomes

�U ¼ 1

C

ðt

�1
Idt þ RI þ L

dI

dt
: ð34Þ

Note that the application of the Hertzian model appears reasonable
only for a cubic electron trap (dx ¼ dy ¼ dz), of course, since
otherwise the error caused by calculating the stored energy outside of
the well using a spherical boundary would lead to unacceptable
errors. Now we look out for solutions of Eqs. (15), (16), and
(32)–(34).

A. Low-frequency photon radiating spontaneously
into free space

For negligible loss, the resonance frequency of the circuit shown in
Fig. 1 would be given by the reactance zero of L, C, and Ci in series,

!0 ¼
c

dx

�
2þ 3�

2

�1=2

: ð35Þ

While the radiation resistance, Eq. (28), would strongly dampen and
prevent resonant behavior, it can still be argued that all frequencies !
far below !0 are considered as ‘‘low’’. Since the model for the
potential well implies constant electric field across dx, which holds
for

!21dx

c
� �

2
; ð36Þ
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the radiation frequency has necessarily to be considered as low. With
the time-varying amplitudes ÎIinfl and ÛU from Eqs. (21) and (22), the
current from Eq. (32) reads

I ¼
�
� ÎIinfl þ Ci

dÛU

dt

�
sin!21t þ !21CiÛU cos21 t: ð37Þ

Taking the the power balance of the circuit shown in Fig. 1 for a
narrow linewidth photon one obtains

ÎIinflÛU

2
¼
��
� ÎIinfl þ Ci

dÛU

dt

�2

þ
�
!21CiÛU

�2

�
R

2
þ dW

dt
: ð38Þ

The left hand side stands for the power delivered by the electron. On
the right-hand side, the first term is the power dissipated in the sink,
represented by the radiation resistance of Eq. (28). The second term
considers the power fed into or delivered from the near-field energy.

It will be proven below, that the time constant � associated with the
time variations of ÎIinfl and ÛU exceeds all other time constants by many
orders of magnitude, so that

!21� � 1 ð39Þ
and all time derivatives of the amplitudes in Eq. (38) can be
neglected. Furthermore,

1

R
� !21Ci; ð40Þ

so that Eq. (38) can be reduced to the simple condition

RÎIinfl

ÛU
¼ 1; ð41Þ

which, under the conditions (39) and (40) for the exact determination
of the near-field energy to become superfluous, should hold also for
non-cubic traps. With Eq. (41), solutions of Eqs. (15), (16), (21) and
(22) are readily found and read for �1 < t <1

A ¼ e�t=�

ð1þ e�2t=�Þ1=2
; ð42Þ

B ¼ 1

ð1þ e�2t=�Þ1=2
; ð43Þ

� ¼ 1

2�

1

cosh t=�
: ð44Þ
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The time constant is calculated with the aid of Eqs. (21), (22), (28),
and (41), which gives

� ¼ �
2md2

x

32e2

1

R

l30ð2l� l0Þ3

l2ðl� l0Þ2

¼ 3

4�

m3d4
x

e2�h2�3=2"1=2

l0ð2l� l0Þ
l2ðl� l0Þ2

� 1:51 � 10�7s

�
dx

nm

�4
l0ð2l� l0Þ
l2ðl� l0Þ2

: ð45Þ

The condition (39) is easily met since from Eq. (27),

!21� � 8:6 � 107

�
dx

nm

�2�
l0ð2l� l0Þ
lðl� l0Þ

�2

: ð46Þ

Thus a spontaneously emitted photon shows a very small linewidth.
The power radiated into space is from Eqs. (23) and (42)–(44)

P ¼ �h!21

2� cosh2 t=�
: ð47Þ

The shape of this type of photon and the dynamic occupation of the
two electron levels is shown in Fig. 2. The linewidth in the Fourier
spectrum is approximately given by 1=ð2�Þ, of course. It agrees with
the result obtained from current theories [5] for dipole interaction

Fig. 2. Spontaneously radiated normalized energy Pnorm ¼ 2P�=ð�h!21Þ per unit time
(power, thick line) of a photon as a function of time according to Eq. (47). A2 and B2

are the occupation probabilities (42)–(44) of the electron on the higher and lower
energy level, respectively
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with light; the dipole matrix element (not to be confounded with the
permeability �) is calculated to be

j�dpj ¼
4edx

�2
� lðl� l0Þ
l20ð2l� l0Þ2

; ð48Þ

under the condition that l0 is an odd number, again in agreement with
a result derived earlier in the present article. For even values of l0 the
transition probability (and �dp) is zero. It is of interest to estimate the
maximum electric field which occurs at t ¼ 0. From Eqs. (44) and
(14) we find

ÊEmax ¼
�3

6

e�h3�3=2"1=2

m3d5
x

l l0ð2l� l0Þðl� l0Þ

� 5:39
V

m
l l0ð2l� l0Þðl� l0Þ

�
nm

dx

�5

: ð49Þ

The fact that the photon takes an infinitely long onset to finally take
off in its essential part within 2� followed by an infinitely long
trickling time, is typical for perturbation-free nonlinear systems on
the brink towards instability. Any perturbation, however small, could
shorten the tiny tails or prevent the take-off. Quite a similar behavior
is exhibited by a classical mechanical mass experiencing a quasi-
elastic restoring force proportional to �ð1� �2Þ, with � as normalized
displacement from the stable steady state, when moving unperturbed
from the unstable steady state � ¼ �1 to � ¼ þ1: the trajectory �ðtÞ is
given by a hyperbolic tangens function of time, as is the integral of
Eq. (47), the radiated energy of the photon.

B. Photon under dominance of an external field
(stimulated emission)

Here the case of a strong constant-wave stimulation, ÊE � ÊEmax is
considered with � from Eq. (14) being time-independent. The
solutions of Eqs. (15) and (16) for this case are simply periodic and
read

A ¼ cos�t; B ¼ sin�t: ð50Þ
A power of

P ¼ �h!21� sin 2�t ð51Þ
is radiated by the quantum box in the time interval 0 < t < �=ð2�Þ
and absorbed in the time interval �=ð2�Þ < t < �=� such as to pump
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the electron back to its original level. The process is repeated
periodically with the period, calculated with the aid of Eq. (14),

T ¼ �

�
¼ �3�h

4edxÊE

l2
0ð2l� l0Þ2

lðl� l0Þ
� 5:1 � 10�6s

dx

nm
ÊE

V=m

l2
0ð2l� l0Þ2

lðl� l0Þ
: ð52Þ

The shape of the stimulated photon and the partition of the electron
between the two levels is shown in Fig. 3. The difference to the
photon emitted spontaneously, Fig. 2, is remarkable. When calcu-
lating the Fourier spectrum of a photon far from its source, the
following relations [3] between radiated power of a monochromatic
Hertzian dipole, PH , and the far-field amplitudes in spherical
coordinates ðr; #; �Þ have to be taken into account:

ÊE# ¼
�

3

4�
�
�
�

"

�1=2

� PH

�1=2

� sin#
r
¼
�
�

"

�1=2

ĤH�: ð53Þ

Applied to the present case, the field amplitudes in the time domain
show an envelope proportional to ðsin 2�t=TÞ1=2

with 0 � t � T=2.
The corresponding Fourier spectrum of a single photon is shown by
the solid curve in Fig. 4. A base band appears with a width of about
6=T , and side bands show widths of about 3=T . The author cannot
share the view that the line width of a single photon emitted through
stimulation agrees with that of a spontaneously emitted photon,
1=ð2�Þ. The slow natural decay is caused by the weak field produced
by the emitting photon itself, given by Eqs. (14) and (44). Here the
electric field is orders of magnitude larger. With an infinitely long
sequence of photons the spectrum breaks up into discrete lines of zero

Fig. 3. Radiated normalized energy Pnorm ¼ PT=ð2�h!21Þ per unit time (power, thick
line) of a photon under stimulation as a function of time according to Eq. (51). A2 and
B2 are the occupation probabilities (50) of the electron on the higher and lower

energy level, respectively
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width located at ! ¼ !21 	 2�n
T

, with n as integer, described by a
Fourier series; the dots in Fig. 4 show location and relative strength of
these spectral lines. The transition from the broad-band single photon
to a small-band sequence of photons is demonstrated by Fig. 5, the
spectrum for five photons, where all side bands show up clearly, quite
well agreeing with current high-field theories [6].

The electric field acting on the electron is a collective field
associated with all photons even though only one of them can be
absorbed or emitted. T=2 is the apparent time the captured photon has
to dwell on the quantum box before re-emission. Taking as an
example dx ¼ 10 nm, l0 ¼ 1, l ¼ 3, and ÊE ¼ 5ÊEmax, Eq. (52) leads to
T=2 ¼ 1:31 � 10�4 s, a time in which a ‘‘free’’ photon would travel
about 39.4 km.

What is the balance of power for the incident wave, thought to be
a plane TEM wave? Take n0 as the number of quantum boxes per
unit volume, which for the sake of simplicity are assumed to

Fig. 4. Amplitude spectrum of a single photon emitted by strong stimulation (solid
curve) and of an infinitely long sequence of such photons (dots), with the dots
indicating location and relative strength of the spectral lines (A in arbitrary units)
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be uniformely oriented in space. In the emission interval
0 < t < �=ð2�Þ, the photon energy �h!21n0 is radiated per volume
element, half of which in the direction of the incident wave, the other
half is radiated back into the source impedance ð�="Þ1=2

and
dissipated, provided that the source is far enough away. Thus the
power loss �P of the incident wave caused per volume element is
given by the loss of the energy �h!21n0 in the absorption inter-
val, reduced by the gain of �h!21n0=2 in the emission interval,
resulting in

�P ¼ �h!21n0

2T
¼ 2edxn0!21ÊE

�3

lðl� l0Þ
l20ð2l� l0Þ2

: ð54Þ

Thus the apparent conductivity of the medium would be

� ¼ 2�P

ÊE2
¼ 4n0edx!21

�3ÊE

lðl� l0Þ
l2
0ð2l� l0Þ2

; ð55Þ

which formally leads to a power-absorption coefficient �ð�="Þ1=2
.

Note, however, that the decay of the incident wave is principally a
nonlinear effect and therefore non-exponential (in the validity range
of Eq. (55), the electric-field amplitude can be shown to drop linearly
with distance, the magnetic-field amplitude along a hyperbola, and
the radiated power along a parabola). Equation (55) reflects a
reduction of absorption at high densities of the electric field known in
the literature as absorption saturation effect [5]. A true saturation
would be caused by the effect that at increasing stimulating field, the
photon may become so short in time T=2 that in the averaging
process leading to Eq. (23), sin2 !21t cannot simply be replaced by
1=2. Thus W ¼ �h!21 is not unconditionally valid, corroborating a
result obtained by Keller [2]. Calculating the total energy of the
photon again from the products of Eqs. (21) and (22) under the
condition that Eq. (26), W ¼

Ðþ1
�1 Pdt ¼ �h!21, has to stay valid, we

reach the requirement

!21T ¼ ð2N � 1Þ� ¼ �5�h2

8emd3
x ÊE

l3
0ð2l� l0Þ3

lðl� l0Þ
; N > 1; ð56Þ

with N 6¼ 1 as an integer. N ¼ 1 has to be excluded since it would
lead to � ¼ !21, a condition not allowed when reexamining the
derivation of Eqs. (15) and (16) from Eqs. (9) and (10). Thus the
shortest photon would consist only of a 3=4 period of an oscillation
within its envelope (with N ¼ 2). It looks as if a new quantization
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rule with a quantum number N becomes visible for very short photon-
duration times.

Alternatively, if the condition were imposed that a photon has to
contain full periods of oscillations (here N ¼ 1 is allowed),

!21T ¼ 4�N; ð57Þ
then Eq. (26) would become invalid and had to be replaced by

W ¼ �h!21

1� ð1=ð4NÞÞ2
> �h!21; ð58Þ

which qualitatively agrees with Eq. (106) and Fig. 3 of [2] but yields
lower values, which may be caused by the different models used. The
author prefers to keep W ¼ �h!21 valid and to accept the necessary
quantization rule, Eq. (56). In both cases, there is a lower limit for
T ¼ �=�, and from Eq. (14), an upper limit for the electric field
strength to succeed in stimulating the photon emission. With

!21Tmin ¼ Nmin�; ð59Þ
Nmin ¼ 3 if W ¼ �h!21 is maintained and Nmin ¼ 4 if full periods are
required, the extreme value of the electric field amplitude for
stimulating photon emission is

ÊEextr ¼
�4�h2

8emd3
x

1

Nmin

l30ð2l� l0Þ3

lðl� l0Þ

� 9:38 � 108 V

m

�
nm

dx

�3
1

Nmin

l30ð2l� l0Þ3

lðl� l0Þ
: ð60Þ

How could the quantization rule predicted by Eq. (56) be tested by
experiment? One possibility exists through observation of absorption
represented by conductivity, Eq. (55), as a function of the stimulating
field. Since interaction leading to absorption occurs only at field
states given by Eq. (56), corresponding absorption lines should show
up. Figure 6 demonstrates the simple relation, but indicates also
difficulties: Only for very high values of the stimulating field a
separation between quantum states appears principally observable,
but the absorption is very low. For conventional field strengths, the
quantum states are so close to each other that a quasi-continuum
exists. Estimates show that the extreme value of field strength,
Eq.(60),canbereachedwithapowerdensityof, say,1012 W=cm

2
,which

is not out of the world, but the difficulty probably lies in the other
high-field effects, such as ionization, more than two states involved in
the interaction, etc., which may overlap the quantization phenomenon
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sought for. If absorption is limited to quantum states, so is stimulated
emission: At very large fields it should occur only at discrete fields
given by Eq. (56).

IV. Shapes, Dispersion, and Uncertainties

The photon is shaped by its environment (here, the impedance of
space around its source for the spontaneously emitted photon and the
electric field of an incoming photon for the stimulation of a photon’s
emission). So is the electron, whose spectral components are being
rearranged by dispersion (inherent to material waves), as well as
reflection and evanescence caused by barriers. The high-frequency
components of an electron-wave packet are able to spill over the
barriers, and frequency components in the evanescent region, par-
ticularly their high-frequency part, may tunnel through the barrier.
Both effects lead to a rearrangement of the spectral components such
as to cause the spectrum of a passing electron to shift toward higher
frequencies (energies) at reduced bandwidth, which is associated with
an increased uncertainty in time. There is a reflected part consisting
predominantly of the lower frequency components, so that the
electron, if reflected, experiences a shift in the spectrum towards
lower frequencies (energies), under observation of the uncertainty
principle.

The photon emitted spontaneously had been calculated on the basis
that the radiation resistance of the Hertzian dipole exists for all times.
Suppose a perfect reflector is placed at a radius r; then for a time 2r=c
the condition of Eq. (41) prevails, but then the first reflection is back
at the source and starts terminating the power flow. Thus for t > 2r=c,

Fig. 6. Quantized states of conductivity, Eq. (55), as a function of power of the
stimulating field. The stimulating field is normalized to the extreme value, i.e., the

state N ¼ 2, the conductivity to the corresponding value for this state
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Eq. (41) becomes invalid and, since the critical time falls into the
onset of emanation, the radiation process is interrupted. Since in the
following discussion time intervals are considered which are long
compared to the emanation time but short to the time the reflections
take to get back to the source, the photon emitted spontaneously is
excluded from further discussions.

The photon is, according to the present theory, emanated with a
constant angular frequency !21 within an envelope, whose shape and
extension, here T=2 for stimulated emission, determine the bandwidth
of its Fourier spectrum. There is no uncertainty of energy, it has to be
�h!21 and stay at that level. As far as a rearrangement of the spectrum
by dispersion, reflection, and evanescence is concerned, there is no
reason why the photon should behave differently, in principle, from
the electron: the spectrum can be reshuffled, here under obedience of
Maxwellian rules. If a photon meets a barrier, for example produced
by a periodic structure of dielectric materials (a filter for electro-
magnetic waves), the high-frequency components may lie in an upper
pass-band and spill over the barrier formed by a stop-band, through
which other components may pass by tunnelling. There is a reflected
fraction of the photon, which travels in opposite direction to the
passing fraction. Such a separation should be of no concern, since in
the dipolar shape of a photon, the shell containing the photon’s mass
expands rapidly. There is no need to talk about probabilities to find
the particle at a certain time at a certain place, such as in the case
of the electron. The photon’s shape appears as determined by the
distribution of the electromagnetic field. Are A2 and B2 probabilistic
or deterministic distribution functions? The conservation of energy, a
reformulation of Eq. (23),

d

dt
ð�h!2A2ðtÞ þ �h!1B2ðtÞÞ þ PðtÞ ¼ 0; ð61Þ

does not require a probabilistic interpretation, but does not inhibit it.
There is no need to interpret A2 as the probability to observe the
electron at the time t on level �h!2 and B2 the probability to observe
the electron on level �h!1. In the authors’s opinion, A2 is the part of the
electron which, at the time t, is with certainty on level �h!2 and B2 the
part of the electron which is with certainty on level �h!1. The result
for stimulated emission speaks for the deterministic interpretation:
The electron has to leave level 2 at t ¼ 0 and has to land at level 1 at
t ¼ T=2 (see Fig. 3). It is forced to do so by the well-defined external
field. In the case of spontaneous emission, stochastic processes are
expected to cause perturbations which, as indicated in Section III-A,

Analysis of Photon Shapes and New Quantization Rule 171



were disregarded in the theory but will certainly influence the
radiation process.

On the other hand, the solution of the Schrödinger equations
presented here is far from being rigorous: All non-resonant terms
on the right-hand sides of Eqs. (2) and (3) were neglected. This
casts some doubts on the efficacy of the theory to obtain far-
reaching conclusions even though all results appear as physically
convincing.

It should be remarked, that a calculation of the interaction of
a very short photon with a periodic structure made of dielectric
materials requires unconventional methods, since it is restricted
to few polarizable particles; it is not possible in such a case to
take polarization collectively into account by a dielectric
constant.

V. Conclusions

The electron changes its quantum state only by an odd quantum
number. The photon emanated by the electron consists of constant
frequency oscillations within an envelope. The photon emitted by
stimulated emission is of other shape than the photon emitted
spontaneously and has a much larger linewidth that increases with the
square root of intensity (power). The high-frequency components of
the Fourier spectrum are associated with the limited time-duration of
the photon and are absolutely necessary to satisfy the energy relation
W ¼ �h!21. Thus the bandwidth of the Fourier spectrum is not limited.
Dispersion, reflection and evanescence may reshape the photon.

Stimulated emission of photons occurs only for a stimulating
electric field below a certain very high level. When approaching the
limit, photons become very short and cause considerations about the
validity of W ¼ �h!21 in such an extreme case, although the formula
can be maintained under certain quantization conditions for the
duration of the photon oscillations.
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