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Abstract

Several digital point sets used in quasi-Monte Carlo integration can be regarded as
special cases of or having common special cases with a recently introduced
construction, namely cyclic digital nets. We will in particular investigate the
relationships to polynomial lattice rules, Korobov-type polynomial lattice rules and
constacyclic shift-nets.

1. Introduction

In high-dimensional numerical integration, an appropriate choice of
node set becomes increasingly more important as the dimension of the
problem gets larger. One way to assess the quality of a node set is by the
measure of uniformity called discrepancy, which is a worst-case error
of the numerical integration of characteristic functions of intervals.

A particular efficient way to obtain point sets with low discrepancy
is to use so-called digital nets. Several well-investigated construction
methods exist, e.g. polynomial lattice rules, which can be defined to
model a polynomial analogue to Kronecker sequences (incidentally,
rank 1 lattice rules, i.e. finite rational Kronecker sequences, can be
regarded as digital ð0; 1; sÞ-nets over a residue class ring). Other
digital net constructions, such as shift-nets, have yielded very good
results (with respect to their quality parameter) in computer searches.



This article aims to clear up the relations of the above-mentioned
constructions and the more recent constructions of cyclic digital nets
and their generalization, hyperplane nets.

2. Cyclic Digital Nets and Hyperplane Nets

The notion of cyclic digital nets was first introduced by Niederreiter
in [2].

Definition 1 (Cyclic Digital Net, 1st Definition (Deprecated)). Let
integers m � 1; s � 2 and a finite field Fq be given. Fix an element
�2Fqm and consider the set of polynomials

P� :¼ f f 2P; f ð�Þ ¼ 0g � P :¼ f f 2Fqm ½x�; degð f Þ<sg:
For each j ¼ 1; . . . ; s choose an ordered basis Bj of Fqm over Fq and
define � as the mapping

�: f ðxÞ ¼
Xs

j¼1

�jx
j�1 2P� 7! ð�1;1; . . . ; �1;m; . . . ; �s;1; . . . ; �s;mÞ2Fmsq ;

where ð�j;1; . . . ; �j;mÞ is the coordinate vector of �j with respect to the
chosen basis Bj.

We denote by C� the orthogonal subspace in Fmsq of the image
N � :¼ �ðP�Þ. Let

C� ¼ ðC>
1 � � �C>

s Þ2Fm� sm
q

be a matrix whose row space is C�. Then the Cj are the generator
matrices of a cyclic digital net.

It has been established in [4] that there is a both computationally
more convenient and perhaps theoretically more transparent way to
define and investigate cyclic digital nets. It uses a representation of
Fqm in the matrix ring Fm�m

q . We define this representation with the
following lemma slightly more general, not only for fields but also
arbitrary polynomial residue class rings. The notations introduced in
the lemma (specifically the maps  ;�) will be used throughout the
paper. Also we use the notation Fq½x�� :¼ Fq½x�=�ðxÞFq½x� in analogy
to the common integer residue class ring notation Zm :¼ Z=mZ.

Lemma 1. Let Fq be a finite field and E ¼ Fq½x�� ; �ðxÞ2Fq½x�, an
arbitrary polynomial residue class ring with �ðxÞ of degree m>1. Let
� be the residue class of x in E, let

�m ¼ t0 þ t1�þ � � � þ tm�1�
m�1; ti2Fq
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and define

� :¼

0 0 0 � � � t0
1 0 0 � � � t1
0 1 0 � � � t2

..

. . .
. ..

.

0 � � � 0 1 tm�1

0
BBBBB@

1
CCCCCA
:

Furthermore, consider E as an m-dimensional Fq-vector space with
the ordered basis f1; �; . . . ; �m�1g by the map  : E ! Fmq ,

 ðgÞ :¼ ðg0; . . . ; gm�1Þ; g ¼
Xm�1

i¼0

gi�
i2E; gi2Fq:

Finally define a map �: E ! Fm�m
q by

�ðgÞ :¼
Xm�1

i¼0

gi�
i;

g as above. Then, for any a; g2E

 ðagÞ ¼ �ðaÞ ðgÞ:
Proof. This follows quite easily by first showing the lemma for a; g
equal to powers of � and then using linearity. &

The result shown in [4] regarding cyclic digital nets is as
follows:

Theorem 1. Let m; s; Fq and �2Fqm ¼ Fq½x�� with an irreducible
� 2Fq½x� be given and define s matrices Bj ¼ ð ðbj;1Þ; . . . ;  ðbj;mÞÞ�1

,
where the bj;l constitute the chosen basis Bj. Then the generator
matrices of the net are given by Cj ¼ ð�ð�Þj�1

BjÞ>, j ¼ 1; . . . ; s.
Furthermore it follows that Cj is regular for j ¼ 1; . . . ; s.

Apparently any set of regular matrices can be factored to conform
to this scheme, i.e. given Cj, choosing Bj ¼ �ð�Þ�jþ1

C>
j yields Cj as

a digital cyclic net generator matrix. There are situations, when this
is not a problem, e.g. when we first choose some bases Bj and
then search through all � to optimize some quality parameter of
the ensuing net (this was done in [4]). But in most cases, it is
preferable to consider a restricted version of the original definition,
where only a constant fixed basis Bj ¼ B is allowed. This was
proposed by Niederreiter in [3] and we will adopt this view in the
following
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Definition 2 (Cyclic Digital Nets, 2nd Definition). As Definition 1,
but with Bj ¼ B for all j ¼ 1; . . . ; s.

Actually we will make two more generalization steps from here:
The first is to allow arbitrary polynomial residue class rings Fq½x�� to
stand in the place of Fqm in Definition 1, and the second is to
allow arbitrary �i instead of only the powers �i�1. This second step is
a slightly generalized version of the hyperplane nets, defined in
Definition 2.10 in [4].

Definition 3 (Cyclic Digital Nets, 3rd Definition). As Definition 2,
but using an arbitrary polynomial residue class ring Fq½x�� instead
of Fqm .

Or, putting it differently, using the notation and prerequisites of
Theorem 1, the generator matrices are given by Ci ¼ ð�ð�i�1ÞBÞ>;
i ¼ 1; . . . ; s, with �2E ¼ Fq½x�� , � 2Fq½x� and some fixed regular
matrix B2Em�m.

Definition 4 (Hyperplane Nets, 1st Definition). As Definition 2, but
using different elements �i in the place of the powers of �.

Or, putting it differently, using the notation and prerequi-
sites of Theorem 1, the generator matrices are given by Ci ¼
ð�ð�iÞBÞ>; i ¼ 1; . . . ; s with �i2Fqm , and some fixed regular
matrix B2Fm�m

q .
(This is Definition 2.10 in [4].)

Definition 5 (Hyperplane Nets, 2nd Definition). As Definition 3, but
using different elements �i in the place of the powers of �.

Or, putting it differently, using the notation and prerequisites of
Theorem 1, the generator matrices are given by Ci ¼ ð�ð�iÞBÞ>;
i ¼ 1; . . . ; s with �i2E ¼ Fq½x�� , � 2Fq½x� and some fixed regular
matrix B2Em�m.

Remark 1. The ‘‘officially valid’’ definitions of cyclic digital and
hyperplane nets are the 2nd and 1st, respectively. The first
definition of cyclic digital nets is deprecated for the reasons given
above.

Note that Definitions 2, 3 and 5 are special cases of increasing
generality (and Definition 1 is the most general).

Cyc:Dig:Net; Def: 2 � Cyc:Dig:Net; Def: 3

� Hyperplane Net ð� Cyc:Dig:Net; Def: 1Þ:

(Cf. also Figs. 1 and 2.)
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3. Polynomial Lattice Rules and Shift-Nets

Now we want to make the connection to the polynomial lattice rule
(PLR) construction.

There are several equivalent definitions of PLR, first defined in [1].
We will use the approach by Hankel matrices.

Definition 6 (Polynomial Lattice Rules). Given polynomials
f ; gi2Fq½x�, degð f Þ ¼ m� 1 � degðgiÞ; i ¼ 1; . . . ; s, if giðxÞ=f ðxÞ ¼P

j>wi
gi; jx

�j;wi2Z are the Laurent expansions in 1=x, let generator
matrices Ci be defined by the m�m Hankel matrices associated to the
series of the coefficients. In detail,

Ci ¼

gi;1 gi;2 � � � gi;m

gi;2 . .. gi;m
..
.

..

.
gi;m . .. gi;2m�2

gi;m � � � gi;2m�2 gi;2m�1

0
BBBB@

1
CCCCA:

The corresponding digital net is called a polynomial lattice rule. The
specific choice of g1 ¼ 1; gi ¼ gi�1

2 ; i ¼ 3; . . . ; s is called a Korobov-
type polynomial lattice rule.

Fig. 1. The relations to the original definitions of cyclic digital and hyperplane nets

Fig. 2. The relations to the generalized definitions of cyclic digital and hyper-
plane nets
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We claim that

Ci ¼ P�ðgið�ÞÞ; P ¼

0 � � � 0 1

..

.

. .. . .. f1

0 . .. . ..

..

.

1 f1 � � � fm�1

0
BBB@

1
CCCA

(i.e. P is the Hankel matrix associated to 1=f ðxÞ ¼ x�mþP
j>m fj�mx

�j), where, following the notation and framework of the
previous section, � is the residue class of x in Fq½x�f .

Indeed, if giðxÞ ¼
Pm�1

j¼0 Gi; jx
j, then the map associated to the first

column of Ci is (by �m we denote the truncation map of the series to
the vector of the first m positively indexed coefficients)

giðxÞ
f ðxÞ ¼

Xm�1

j¼0

Gi; j
x j

f ðxÞ 7! �m
giðxÞ
f ðxÞ

� �
:¼

gi;1

..

.

gi; j

..

.

gi;m

0
BBBBBB@

1
CCCCCCA

¼ P

Gi;0

..

.

Gi; j

..

.

Gi;m�1

0
BBBBBB@

1
CCCCCCA

since �m is linear and P ¼ ð�mð1=f ðxÞÞ; �mðx=f ðxÞÞ; . . . ;
�mðxm�1=f ðxÞÞÞ. So altogether

Ci ¼
�
�m

�
giðxÞ
f ðxÞ

�
; �m

�
xgiðxÞ
f ðxÞ

�
; . . . ; �m

�
xm�1giðxÞ

f ðxÞ

��

¼ Pð�ðgiðxÞmod f ðxÞÞ; �ðxgiðxÞmod f ðxÞÞ; . . . ;
�ðxm�1giðxÞmod f ðxÞÞÞ

¼ P�ðgiÞ;
where � maps polynomials to vectors of coefficients.

Now, since Ci ¼ C>
i , we also have Ci ¼ �ðgiÞ>P, with a regular

matrix P. The effect of P is only a reordering of the sequence
associated to the generator matrices �ðgiÞ>. Thus we arrive at

Theorem 2. For f 2F½x�; degð f Þ ¼ m an arbitrary (i.e. not neces-
sarily irreducible) polynomial, let � ¼ �xx be the residue class of x
in Fq½x�f , and Ci the generator matrices of a PLR associated to
the polynomials g1; . . . ; gs, then CiP

�1 are identical to the genera-
tor matrices of the hyperplane net associated to the vector
ðg1ð�Þ; . . . ; gsð�ÞÞ2Fsqm (and with the powers of � as the choice for
the ordered basis B).
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As a special case, cyclic digital nets (understood under Definition
3) and Korobov-type PLR are equivalent in the same way. If f is
chosen irreducible, this holds also for cyclic digital nets under
Definition 2.

Schmid [5] introduced the so-called shift-net construction, which
has yielded good results in computer searches. We can also in-
corporate this construction into the scheme of cyclic digital nets. In
fact, we can even do this for a generalization of shift-nets (also
investigated by Schmid, but as of yet unpublished), constacyclic shift-
nets (the name is a reference to constacyclic codes in coding theory).
Their construction is as follows: Starting from an appropriate matrix
C1 ¼ ðc1; . . . ; cmÞ and some nonzero k2Fq, construct the matrices
C2; . . . ;Cs; s � m by shifting the column vectors and multiplying the
reentrant vectors by k, i.e.

Ci ¼ ðci; ciþ1; . . . ; cm; kc1; . . . ; kci�1Þ:

(Clearly, plain shift-nets correspond to the case k ¼ 1.)
If

� :¼
�

0

Im�1

���� k0
�

(Im�1 the identity matrix of size m� 1), then it is easy to see that
Ci ¼ C1�

i�1. Observe that � is the companion matrix to the
polynomial xm � k, i.e. in our notation � ¼ �ð�Þ in the residue class
ring Fq½x�=ðxm � kÞFq½x�. Our aim is to connect Ci with the transpose
of �ð�Þ, as this is the form of the generator matrices of cyclic digital
nets. In the following we will assume C1 to be regular.

Let J be the skew diagonal identity matrix. For any matrix A,
the transformation JAJ generates the ‘‘point inverse’’ (or ‘‘doubly
reflected’’) matrix of A with respect to its entries. For Toeplitz
matrices such as � this is identical to the transposed matrix, so

Ci ¼ C1�
i�1 ¼ C1ðJ�ði�1Þ>JÞ ¼ ðJC>

1 Þ
>�ði�1Þ>J ¼ �0ð�i�1Þ>J;

where �0 is taken with respect to the basis of Fqð�Þ given by the
columns of ðJC>

1 Þ, i.e. using the bijection  of the canonical basis
of powers of �, the ordered basis that is used in the construction
is B ¼ fb1; . . . ; bmg, where ðJC>

1 Þ
�1 ¼ ð ðb1Þ; . . . ;  ðbmÞÞ. We

arrive at

Theorem 3. If the first generator matrix of a constacyclic shift-net C1

(with constant k) is regular, the resulting point set is a reordering of
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the cyclic digital net (under Definition 3) associated to � in the
extension Fq½x�=ðxm � kÞFq½x� and with the ordered basis B chosen as
above.
If xm � k is irreducible, then this holds also for cyclic digital nets

under Definition 2.

We conclude by representing the found results in two graphs, with
arrows representing the relation ‘‘is a special case of’’. In addition,
the constructions in Fig. 1 are special cases of the constructions in the
same place in Fig. 2.
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