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Abstract

The most well known algorithm with increasing digits is Engel series. Recently it was
shown that a certain continued fraction algorithm also produces increasing digits.
Their stochastic behavior seems to be almost the same as is known for Engel series. In
this note a whole class of algorithms with increasing digits is given. However, with
proper choice of a parameter the stochastic properties are different from the already
mentioned examples.
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1

The most well known example of an algorithm with increasing digits
is Engel series. This algorithm is induced by the map 7:]0,1] —
10,1] T(x) = (k+1)x — 1, 745 < x <} k > 1 (see e.g. GALAMBOS,
1976; PERRON, 1960).

HARTONO et al. (2002) and KRAAIKAMP and WU (2003) consider
the continued fraction like map

S:10,1]—10, 1]
S() =1, ey
VT k1o e
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Surprisingly, the ergodic behavior of both maps is very similar. For
both algorithms one finds

(1) Tim, o 250 — 1 g e
(2) The underlying maps 7" and S are ergodic with respect to Lebesgue
measure.

One wonders if all maps with increasing digits behave in the same
way. The aim of this note is to show that there are maps with in-
creasing digits for which property (1) does not hold and property (2)
is unlikely to be true.

Let
1 1
Blk)=|——, - k=12....
©= e )+
Then we define the generalized continued fractions by the map
—1 k-+1
T.(x) = + (k+1)x
1+e— kex
As usual we also consider the continuous extension

1 1
T —— ) = limy_o. 7. ——+h ) =0.
€<k+1> HA—0+ ‘<k+1+>

The parameter € = e(k) should satisfy e(k) +k+ 1 > 0.
Some elementary calculations show

, x€B(k).

@ T(}) =1
! ___ l4etk
() Tj(f) T (l+e—kex)” oo ) . (k1)?
(C) TE(%) =k+1+ €, (T:_) (m) = hmh*,()+TE(m + h) = krite
We distinguish three cases
(1) —k — 1 <€ < 0: Then the pole of T, satisfies
1+e 1
= <—.
¢ ke k+1
(1.1) —k—1<e< —k: T, has a fixed point
1 1 1 1
k)=——— with ——<a<- and O0<T/(-|<lL.
al) =-Fg Mt ppse<p o (k)

(1.2) —k <e<0: T, has no fixed point in the open interval

11 1
X and T(-)>1
}k+1’k[ an €(k>—
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(2) €=0: Then Ty(x) = (k+ 1)x — 1 is the map associated with
Engel series.
(3) € > 0: Then

¢ = 1+e€ S l
ke k’
(3.1) 0<e<k*+k: T. has no point of intersection with the line
1
N

in B(k) and

1<(THY <F11> :

(3.2) k* + k < e: T. has a point of intersection with the line

in B(k), namely

ke +1

As usual we define ky(x) =k if T57!(x) € B(k). Then the digits
satisfy ky(x) <k (x) <ks(x) <....
The local inverse branches of T, are given as

Bk) = £ and 0<(Tj)’(kl><1.

14+ (14 ¢€)x
Vik)x = ——-—".
(K)x = T T ex
Therefore we find
As + Byx
Viki,... k) = ———
( 1 ) s) CS+DSX

where the numbers Ay, B, C;, D; satisfy the relation (ks = b)

Csr1 Dyyy o Cs Dy b+1 be
As+1 Bs+1 B As Bs 1 I+e
Therefore

CSBS - Ast
AB(ki, ... k) = C(Cet DY)
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A further calculation shows

CS‘BY _A‘vDs
)\(B(kl,...,ks,b)): —

(Csb + Dy)(Cy(b+ 1) + Dy)

2
We now suppose: €(k) > (1 + 7)(k* + k) for some constant y > —1.
Lemma. D; > k(1 + 7)C;.
Proof. Fors = 1 wesee Dy = ke > ki(1 +7)Ci = k3 (ki + 1)(1 + 7).
Then a calculation shows
Dsi 1 = beCy + (1 + €)Dy
> b*(b+1)(147)Cy + b*(1 +7)Dy
= b2(1 +7)Co1-

Theorem. For almost all x we find ky,1 > k> + ky for infinitely many
values of s.

Proof. A calculation shows

AB(ky, ... ks, b))
A(B(ky, ... ky))

Cy(Csky + Dy)
t<b s (Cb + D) (Cs(b+1) + D)

Csk? |
Ci(k2+ k) +Ds — 2+~
Remark. Note that the condition ¢ > (1 + ~)(k* + k) for a constant
v > —1 includes all maps from case (3.2) and a range within case

(3.1). It is very likely that these maps are not ergodic (compare known
results on Sylvester series).

ky<b<ks(k+1)

<1.

3

We now suppose —b — 1 < ¢(b) < —b — p for a constant 0 < p < 1.
We introduce the sets

Mﬁkzh@%ﬂ, B@):}ﬁ%,dﬂ.

Note that TB(k™) = B(k"). Therefore if (ki ,k;y,...,k

—,bT) is an
admissible block, then k; < b.
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Theorem. The set E:=|J,°, B(r") is absorbing.
Proof. Calculations show
alks
B k) = J <‘>CSBX—ASD; . (CBy —ADy)alk,)
0o (Cy+Dyx) Cy(Cy+ Dya(ky))
(CsBy — A,Dy)
 C(=Celk) +Dy)’
AB(ky ...k, ,b")) J By = AsDs AD
a(b) C +Dx
_ (CsBy—ADy)(b+€(b))
~ (Cye(b) = Dy)(Cib+Dy)’

=

We first observe
b+ €(b) —b + |e(b)] - p

Cie(b) — Dy Cile(b)| + Dy = Cy(b 4 1) + D,

Hence

- sBs _Ast
3 Bk kb)) 2 p(C ) .
b:kr‘rl S(C;Y(kﬁ‘ + 1) _I_DS)

Next we estimate the ratio
—Cselky) + D5 Csle(ks)| + Dy > Cy(ks + p) + D;

= > p.
Cl t )+ Dy Gk + 1) +Dy = Colks + 1)+ D, =
Since Cgky + D; > 0, this is true.
Therefore
Z ABky -k ki) < (1= pP)ABK; - k).
s+1 =k

This shows that

We now consider maps for which we can show that they are ergodic.

Theorem. Suppose there is a constant 0< k<1 such that
le(b)| < b'=", then T. is ergodic with respect to Lebesgue measure.
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Proof. We follow the ideas outlined in HARTONO et al. (2002) (see
also THALER, 1979).
Observe that

BYCY - AYDS
wlky, ... kgsx) = ———"—.
(Cs + Dyx)
Furthermore since —k < e(k) either Tix =} for some s or

limg_, o ks (x) = 0.
We first show

1 ksCs
< <
27 kCy+ Dy —
for all k; > K(k).
(a) If € > 0 then C; > 0 and D; > 0. Therefore
kSCS
<
kSCS + DS o

We claim D, < k;C,. This is true for s = 1.
Furthermore

Ds+1 = bECS + EDS + Ds < bzcs + bDv + ksCs
< b*Cy + bD; + bCy = bCy.

(b) Now let —b'~* < e < 0. We prove by induction the following three
inequalities

0<C,, Dy<0, Cy+k '"™D;>0.

Note that for any w with 0 < w < k; '™ we get C; + wD, < 0.
Since Dy = be and C; = b + 1 we see that

Ci+Dib " =b+1+e">b+1—-b>0.

We further calculate

1

and
1
Dg1 = beCs+ (e + 1)Dy = eb (Cs + ZDS> + D, <0,

Cor1 +b7 D = Cy(b + 1 4 b%€) 4 Dy(1 + eb™ 1+ 4 b7 147)
= (Cs 4+ b~ "7"Dy) + (Cyb + Dy) (1 + b~ ).
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Since b > k; and D; <0 we get
Cy+b "Dy > Cy+ k"D >0
and

1
Cb+Ds = b<CS +EDS> > 0.

Furthermore 1+ b '"%¢>0. Hence we obtain Cor1 +
b~'*%Dg,; > 0. Then we finally obtain
ks Cs k¢
— < —2 <2 for k> K(k).
KC 4D, k-1 =2 for k=K
We could also replace the constant 2 on the right-hand side by
c(k), say and we obtain

ksCs k¢
< § <
kscs + Ds o k? -1- C(,{)

for ks > 2. It is not possible to include k; = 1 in such an estimate
as the case ¢(1) = —1 shows.

Now let A be an invariant set, i.e. T-'A = A. We define

1

d(b) == b J ca(t)dt
0
and
§(b b )._)\(AmB(bl,...,bS))_)\(T_‘YAOB(bl,...,bS))
b ST NB by by) A(B(by,...,by))
i 1 1
= (becA(t)w(bl,...,bs; t)dt) <Jbsw(b1,...,bs; t)dt) .
0 0
Then
1
%d(bs) < 6(by,...,bs) <16d(bs) and
1
dib) —db+1)=——(6(b) —d(b+1)).
(b) = d(b+ 1) = 5 (6(6) —d(b+ 1)
For s = 1 we need a more careful estimate.
If € >0 then
1 b+1
_ <upin <L
b+1+¢ (b + 1)
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If € <O then
b+1 1
T e —
(b+1) b+1+e

We calculate

0
If € >0 then
b+1
o(b) > d
()_b—i-l—i-e ()
Since bd(b+ 1) = (b + 1)d(b) — 6(b) we obtain
€
db+1) < | 14+———— |d(D).
(b1)< +b2+b+be> (®)
If € <0 then
b+1+e€
6(b) > ——d(b
) 2 )

and we obtain

B2 +b

Since |¢[ <b'™* the products [T, (1 + i) and [[,2, (1 — 255)
both are convergent. Therefore there is a constant v >0 such that
d(c) <~d(D) for all ¢ > b.

The martingale theorem now shows that

im0 6(b1 (x), ..., bs(x)) = ca(x)

almost everywhere.

Since lim,_,»b,(x) = oo almost everywhere for almost all points
x,y and numbers r > 1 there is a number s > r such that

O(b1(x),...,bs(x)) <25676(bi(y),...,b.(y)).
Therefore, if A(A) <1 we immediately get A(A) = 0.

db+1) < <1 ‘ )d(b).
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