Anzeiger Abt. II (2003) 139: 17-19

Anzeiger

Mathematisch-naturwissenschaftliche Klasse Abt. II Mathematische, Physikalische und Technische Wissenschaften

© Österreichische Akademie der Wissenschaften 2004 Printed in Austria

On the Distribution of the Number of Vertices of a Random Polygon

By

Christian Buchta

(Vorgelegt in der Sitzung der math.-nat. Klasse am 11. Dezember 2003 durch das w. M. August Florian)

Abstract

Assume that n points P_1,\ldots,P_n are distributed independently and uniformly in the triangle with vertices (0,1), (0,0), and (1,0). Consider the convex hull of (0,1), P_1,\ldots,P_n , and (1,0). Denote by N_n the number of those points P_1,\ldots,P_n which are vertices. Let $p_k^{(n)}(k=1,\ldots,n)$ be the probability that $N_n=k$. BÁRÁNY, ROTE, STEIGER, and ZHANG [1] proved that $p_n^{(n)}=2^n/[n!(n+1)!]$. We derive for $k=1,\ldots,n-1$ the values of $p_k^{(n)}$ and thus obtain the exact distribution of N_n . Knowing this distribution provides the key to the answer of some long-standing questions in geometrical probability, e.g., to the distribution of the number of vertices of the convex hull of n points distributed independently and uniformly in a convex polygon.

Mathematics Subject Classification (2000): 52A22, 60D05. Key words: Convex hull, random points, random polygons.

*

Theorem 1. For $n \in \mathbb{N}$ and k = 1, ..., n the probabilities $p_k^{(n)}$ are given by

$$p_k^{(n)} = \frac{2}{n(n+1)} \sum_{i=k-1}^{n-1} (n-j) p_{k-1}^{(j)},$$

18 C. Buchta

with $p_0^{(0)} = 1$ and $p_0^{(j)} = 0$ for $j \in \mathbb{N}$. Alternatively, these probabilities are given by

$$p_k^{(n)} = 2^k \sum_{i_1(i_1+1)(i_1+i_2)(i_1+i_2+1)\cdots(i_1+\cdots+i_k)(i_1+\cdots+i_k+1)}^{i_1\cdots i_k},$$

where the sum is taken over all $i_1, \ldots, i_k \in \mathbb{N}$ such that $i_1 + \cdots + i_k = n$.

The proof of Theorem 1 will be published in a forthcoming paper, which will also describe how the distribution of the number of vertices of the convex hull of n points distributed independently and uniformly in a convex polygon arises in terms of the probabilities $p_k^{(n)}$. Here we will only state the following consequence of Theorem 1:

Theorem 2. The expected value and the variance of the random variable N_n are given by

$$EN_n = \frac{1}{3} \left(2 \sum_{k=1}^n \frac{1}{k} + 1 \right),$$

$$\text{var } N_n = \frac{1}{27} \left(10 \sum_{k=1}^n \frac{1}{k} + 12 \sum_{k=1}^n \frac{1}{k^2} - 28 + \frac{12}{n+1} \right).$$

The asymptotic version of the first formula in Theorem 2, i.e. $EN_n \sim \frac{2}{3} \log n$ as n tends to infinity, is a classical result due to RÉNYI and SULANKE [4]. The asymptotic version of the second formula, i.e. var $N_n \sim \frac{10}{27} \log n$ as n tends to infinity, is due to GROENEBOOM [3]. It was obtained by approximating the process of vertices of the convex hull of a uniform sample by the process of extreme points of a realization of a Poisson point process: The "left-lower boundary" of the convex hull of a uniform sample of size n from the interior of the square $[0, \sqrt{n}]^2$ is associated with the "left-lower boundary" of the convex hull of a realization of a Poisson point process on \mathbb{R}^2_+ with intensity Lebesgue measure. For comments on GROENEBOOM's paper see [2].

References

- [1] BÁRÁNY, I., ROTE, G., STEIGER, W., ZHANG, C.-H. (2000) A central limit theorem for convex chains in the square. Discrete Comput. Geom. 23: 35–50
- [2] BUCHTA, C. (to appear) An identity relating moments of functionals of convex hulls. Discrete Comput. Geom.

- [3] GROENEBOOM, P. (1988) Limit theorems for convex hulls. Probab. Theory Relat. Fields **79**: 327–368
- [4] RÉNYI, A., SULANKE, R. (1963) Über die konvexe Hülle von *n* zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. Verw. Geb. **2**: 75–84

Author's address: Prof. Dr. Christian Buchta, Institut für Mathematik, Universität Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria.