
Sitzungsber. Abt. II (2004) 213: 3–22

The Evolution of Fluctuations
in the Laser Model

By

Heide Narnhofer

(Vorgelegt in der Sitzung der math.-nat. Klasse am 22. Jänner 2004
durch das w. M. Walter Thirring)

Abstract

The time evolution of a system consisting of two-level atoms and a laser field is
compared with the evolution of a mean field theory. The evolution on the quasilocal
level is extended to the fluctuation algebra, where with the modifications necessary for
time-dependent states it can be described as a quasifree automorphism. The spectral
properties of these automorphisms are related to the stability properties of the
underlying quasilocal state.
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1. Introduction

The laser model describing the interaction of a laser radiation with
matter consisting of two-level atoms is both of physical interest as of
mathematical subtlety. It was investigated starting with [1–3] and
finally treated with all mathematical rigor in [4] showing interesting
features like phase transition. We are here interested in its simplest
version, i.e. we take into account only one laser mode and ignore all
interactions except the interplay of the laser field with the atoms.
Already here a nontrivial time evolution results. For finitely many
atoms the time evolution is given by a Hamiltonian and therefore
corresponds to an automorphism of the underlying von Neumann



algebra. In the thermodynamic limit, when the number of atoms tends
to infinity, there exist several limits. We can consider the expectation
value of a single spin and that of a finite product of spins. Then the
relevant algebra is the quasilocal C� algebra influenced by the Weyl
algebra of the laser field. For this Weyl algebra we take for the
thermodynamic limit a sequence of states on the laser field with
photon number increasing proportional to the number of atoms but at
the same time with increasing correlations between the photons so
that the entropy of the laser field remains finite. For this sequence
of states the evolution of the expectation values of characteristic
quantities in the course of time was evaluated in [5], also similar
results though in a wider context can be found in [6], [7]. We obtain a
time evolution on the quasilocal level. The fact that we are dealing
with an automorphism group is lost in the limit due to the scaling of
the Hamiltonian.

In [4] however the bosonic creation and annihilation operators of
the laser field are replaced by bounded operators in an appropriate
scaling. The advantage is that some limits can be controlled more
easily. We will call this model mean field model. As an additional
advantage we will note that the time evolution remains an automor-
phism on the quasilocal algebra though this automorphism is time-
dependent and does not preserve the group structure. In this note we
want to restore this automorphism property to some extent also for
the laser model. In order to find an automorphism for the whole
system we have to include the algebra of fluctuations of the atoms,
therefore studying the time evolution on a mesoscopic scale. The al-
gebra of fluctuations was introduced in [8]. Its time evolution was
discussed for time-invariant states and interactions with finite range,
where it is closely related to the time evolution on the quasilocal
level. But already in [9] it was observed that the time evolution
shows new features if it results from a mean field theory, even if the
state remains invariant in time. This fact was applied in experiment
[10] to construct mesoscopic entanglement. This experiment was
analyzed in the framework of the fluctuation algebra in [11]. There-
fore it is evident that the fluctuation algebra can change though the
change cannot be observed locally. Here we will show that provided
the state is invariant in time, i.e. our setting corresponds to the
setting of [10] the evolution of the laser field can be understood as
the time evolution of the fluctuation algebras of two systems inter-
acting by a mean field Hamiltonian, identifying the fluctuations of
one system with the laser field. If the state is not invariant then the
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mean field time evolution describes a time evolution different from
the one with a laser mode, mainly because it does not allow that the
number of photons changes. But on the quasilocal level the two time
evolutions have such a strong similarity that it is natural to extend
the time evolution of matter and laser also to the fluctuation algebra
of the matter. The fact that on the quasilocal level it is possible to
describe the evolution by an automorphism makes it possible to
define a natural map between the fluctuation algebras corresponding
to different times. But this map does not describe the time evolution
of the fluctuation algebra. It has to be combined with the action of
the Hamiltonian on the fluctuations. We obtain in this way a quasi-
free time evolution on the Weyl algebra of fluctuations, that is not
trivially related to the time automorphism on the quasilocal algebra.
For the special case that the underlying quasilocal state is invariant
or periodic in time, the evolution on the fluctuation level satisfies the
group property and therefore can be expressed by an effective
Hamiltonian that is quadratic. For invariant states this Hamiltonian
is bounded from below if the invariant state is stable, so that the
fluctuations though not invariant remain bounded. For an unstable
state the fluctuations increase exponentially. If we consider periodic
states then they are always stable and again the corresponding
Hamiltonian is bounded from below but now admits a zero fre-
quency, that corresponds to a linear increase of the correlations be-
tween the laser field and the fluctuations in the course of time and
consequently in an increase of the entropy of the state of the laser
algebra. We observe therefore that though the time evolutions on the
quasilocal level and on the level of the fluctuations are different they
show the same stability behavior.

2. The Quasilocal Model

We concentrate on the simplest example treated in [4] and [5], namely
a system of N atoms with two energy levels interacting with a one
mode laser. To be more precise, we are interested in the effect of a
field of many photons with strong correlations on a quasilocal spin
system. We describe the time evolution by a Hamiltonian

H1
Nð�Þ ¼ �

XN
j¼1

� j
z þ �

1ffiffiffiffi
N

p
XN
j¼1

½ð� j
x þ i� j

yÞb� þ ð� j
x � i� j

yÞb� þ kb�b;

ð1Þ
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where ~�� j are Pauli matrices scaled as ½�x; �y� ¼ i�z and b; b� are
bosonic annihilation and creation operators satisfying ½b; b�� ¼ 1. In
the following we will also study a Hamiltonian of a mean field model
describing the coupling of two spin systems, the � k also being Pauli
matrices,

H2
N ¼ �

XN
j¼1

� j
z þ

�

N

XN
j;k¼1

ð� j
x�

k
x þ � j

y�
k
y Þ: ð2Þ

We can consider this Hamiltonian again to describe the interaction of
atoms with a laser in so far as the laser consists of photons to whom
we can assign as individual property their polarization that we can
relate to the Pauli matrices � . We assume that we start with M pho-
tons and that this number is not changed in the course of time. In our
Hamiltonian we have restricted ourselves for simplicity to N ¼ M,
but the calculations would be similar if M increases proportional to
N. What we miss in the second model is the possibility that photons
are created or annihilated, what we gain is the mathematical facility
that � is a bounded operator and that the scaling in the Hamiltonian is
the natural scaling in a mean field theory. We will see in the following
that the two models describe a very similar behavior.

We assume that the system is initially in a state that factorizes in
the lattice points of the atom system

!ð~��kÞ ¼~ss; !ð�j~cc
kj~��kjÞ ¼ �jð~cckj~ssÞ; ~cck2R3: ð3Þ

In the mean field model the same holds for the � field

!ð~�� kÞ ¼~aa; !ð�j~cc
kj~�� kjÞ ¼ �jð~cckj~aaÞ: ð4Þ

Finally we assume that there are initially no correlations with the
laser field

!ð~��k~�� lÞ ¼~ss~aa: ð5Þ
If the laser field is described with creation and annihilation operators
then again

!Nð~��kei�bþ�b�Þ ¼~ss!Nðei�bþ�b�Þ; ð6Þ
where !N is a Gaussian state on the laser system. For N ! 1 the
mean photon number will increase so that we need the existence of

lim
N!1

!NðbÞffiffiffiffi
N

p ¼ aei�; lim
N!1

!Nðb�bÞ
N

¼ a2: ð7Þ
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For such a sequence of states the time evolution of the state
determined by H1

N respectively by H2
N converges in the limit N ! 1

in the following sense:

Theorem 1. Assume that for the laser model the state satisfies (3),
(6), (7) and that the time evolution is governed by (1) with � ¼ 1=

ffiffiffi
2

p
.

Then

lim
N!1

!ðeiH1
Nt~��e�iH1

NtÞ ¼~ssðtÞ;

lim
N!1

!ðeiH1
Nt�kjk � � � �

l
jl
e�iH1

NtÞ ¼ sjkðtÞ � � � sjlðtÞ;

lim
N!1

1ffiffiffiffi
N

p !NðeiH
1
Ntðb� þ bÞe�iH1

NtÞ ¼
ffiffiffi
2

p
axðtÞ;

lim
N!1

1ffiffiffiffi
N

p !NðeiH
1
Nt~��kðb� þ bÞe�iH1

NtÞ ¼
ffiffiffi
2

p
~ssðtÞaxðtÞ;

lim
N!1

1ffiffiffiffi
N

p !NðeiH
1
Ntðib� � ibÞe�iH1

NtÞ ¼
ffiffiffi
2

p
ayðtÞ;

lim
N!1

1ffiffiffiffi
N

p !NðeiH
1
Nt~��kðib� � ibÞe�iH1

NtÞ ¼
ffiffiffi
2

p
~ssðtÞayðtÞ; ð8Þ

where the vectors~ssðtÞ and ~aaðtÞ have to be determined by the differ-
ential equation

d

dt
sz ¼ �syax þ sxay;

d

dt
sx ¼ �sy � szay;

d

dt
ax ¼ �sy � kay;

d

dt
sy ¼ ��sx þ szax;

d

dt
ay ¼ sx þ kax: ð9Þ

Proof. The differential equation (9) has as constant of the motion

s2
x þ s2

y þ s2
z ¼ const; a2

x þ a2
y � sz ¼ const: ð10Þ

According to the expected time evolution the state factorizes in the
lattice points. We can describe the state by the same density matrix at
every lattice point, �kðtÞ ¼ ð1 þ~ssðtÞ~��kÞ=2. Since j~ssðtÞj ¼ s, we can
write �kðtÞ ¼ �k � �k

t where �k
t is an automorphism at the lattice point

k rotating the state. Therefore for the quasilocal state !t ¼ ! � �t
S.

Here �t
S are automorphisms of the lattice algebras corresponding to

the atoms considered as quasilocal C� algebras. This automorphism is
strictly local and we consider it to be implemented for the local
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algebra over a subset ½0;N� by UNðtÞ. Notice however, that the UNðtÞ
do not satisfy the group property, UNðt1 þ t2Þ 6¼ UNðt1ÞUNðt2Þ. If we

define the 3�3 matrix VðtÞ by~ssðtÞ ¼ VðtÞ~ssð0Þ we have ~HHNð0ÞUNðtÞ ¼
UNðtÞ~HHNðtÞ where ~HHNð0Þ ¼

PN
j¼0 ~��

j~aa and ~HHNðtÞ ¼
PN

j¼0ðVðtÞ~�� jÞ~aa.
If we now estimate

!ðAeiH1
N tUNðtÞ�BÞ¼!ðABÞþ

ðt
0

dt0ih�jAB0eiH
1
Nt

0 ðH1
N� ~HHð0ÞÞUNðt0Þj�i

¼!ðABÞþ
ðt

0

dt0ih�jAB0eiH
1
Nt

0
UNðt0ÞðH1

Nðt0Þ

� ~HHðt0ÞÞj�i;

H1
Nðt0Þ � ~HHNðt0Þ ¼

X
~��

� ~bbffiffiffiffi
N

p �~aa

�
: ð11Þ

Here A;B are operators of A½0;N�ð�Þ and we have used that the state is
cyclic and separating (we assume j~ssj<1) so that B can be replaced by
an operator B0 from the commutant that can be commuted through.
Further ~HHðtÞ ¼

P
~�� j ~cðtÞcðtÞ implements the rotation of ~�� j at the time t

and is therefore determined by (8) and (9) whereas H1
NðtÞ is the total

Hamiltonian with rotated ~��. Finally it remains to proof strong con-
vergence limN!1ðH1

NðtÞ � ~HHðtÞÞj�i ¼ 0: Here the t-dependence is
fixed on the basis of the differential equation and is therefore under
control. We use the fact that

st-lim
N!1

1

N

XN
j¼1

~�� jj�i ¼~ssj�i

together with the clustering properties (6). It follows that
limN!1 �bðeiH

1
Nt

0
UNðt0ÞÞ ¼ 1 where �b is the conditional expectation

over the b-field with respect to the given state ! and the limit can be
taken in the strong topology of the quasilocal �-field. To obtain the
correct time behavior for the b-field we estimate

!N

�
eiH

1
n te�itkb�b

�
bxffiffiffiffi
N

p � axðtÞ
�
eitkb

�be�itH1
N

�

¼
ðt

0

dt0!NððeiH
1
n t

0
e�it0kb�bð�y � syÞeitkb

�be�itH1
N Þ: ð12Þ

Here we profit from the fact that in the commutation relation between
H1

N and b we remain only with � for which we already control the
time evolution. Compare also the related result in a larger context in
[6] and [7].
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Theorem 2. Assume that in the mean field model the state satisfies
(3), (4), (5) and that the time evolution is determined by (2) with
� ¼ 1. Then

lim
N!1

!ðeiH1
Nt�k

jk
� � ��l

jl
�jm � � ��jne�iH1

NtÞ ¼ sjkðtÞ � � � sjlajm � � �ajnðtÞ; ð13Þ

where sjðtÞ and ajðtÞ are solutions of the differential equations

d

dt
sz ¼ �syax þ sxay;

d

dt
az ¼ syax � sxay;

d

dt
sx ¼ �sy � szay;

d

dt
ax ¼ �azsy;

d

dt
sy ¼ ��sx þ szax;

d

dt
ay ¼ azsx: ð14Þ

Proof. Here we have as constant of the motion

sz þ az ¼ const; s2
x þ s2

y þ s2
z ¼ const; a2

x þ a2
y þ a2

z ¼ const:

ð15Þ

As before the state restricted to the �-field, now together with the
�-field can be written !t ¼ ! � �t. Again we consider this auto-
morphism to be implemented on the local level by UNðtÞ. In (11) we
can now take A;B to be local operators belonging both to the �- and
the �-field. Otherwise the argument remains unchanged. We are
permitted to arrange an appropriate c-number in UNðtÞ and estimate

lim
N!1

ðH2
N � ~HHð0ÞÞj�i

¼ lim
N!1

X 1

N
ð� j

x�
k
x þ � j

y�
k
y Þ �

X
ð� j

xax þ �yayÞ

�
X

ð� kx sx þ � ky syÞ � ðsxax þ syayÞNj!i ¼ 0 ð16Þ

so that again we control the time evolution on the quasilocal level.
Let us characterize once more the time evolution in the thermo-

dynamic limit resulting from (2): We obtain a rotation on every lattice
point, but the time evolution is not unitarily implementable since
weak limit points are state-dependent. The individual �t

S; �
t
T do not

satisfy the group property reflecting the interaction between atoms
and photons. Notice that due to the fact that the time evolution of
the quasilocal state is the result of automorphisms on the C� algebra
the mean entropy of the quasilocal state !t remains unchanged in the
course of time.
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If we turn to the time evolution corresponding to H1
N then again we

have similar constants of the motion (10). This guarantees that the
time evolution with respect to the atoms reduces to a time-dependent
automorphism. However due to the scaling it is difficult to interpret
the time evolution of the laser field as an automorphism. In addition
we did not determine how !tðb�bÞ behaves in the course of time,
which on one hand is necessary to describe the time evolution on the
algebraic level and of course also tells us how the number of photons
changes in time. In fact we will see that the time evolution can be
interpreted as automorphism only if we add the fluctuation algebra of
the atoms which we have to discuss next.

3. The Fluctuation Algebra and Its Time Evolution

Following [8] we can consider the limit

lim
N!1

!

 
e
i

P
~aað~��k�!ð~��kÞÞffiffi

N
p

e
i

P
~bbð~��k�!ð~��kÞÞffiffi

N
p

!
¼ !ðei~aa~SSei~bb~SSÞ: ð17Þ

In [8] it was shown that this defines new operators W!ð~aa~��Þ ¼ ei~aa
~SS that

form a Weyl algebra, where the commutation relations are deter-
mined by the state, namely

ei~aa
~SSei

~bb~SS ¼ e�!ð½~aa~SS;~bb~SS�Þei
~bb~SSei~aa

~SS: ð18Þ
This Weyl algebra is called fluctuation algebra and is state-dependent.
In addition the construction not only defines the operators but at the
same time gives a state ! (we use the same letter) on this fluctuation
algebra that in fact is a Gaussian state. For the � algebra we can consider
the same procedure and obtain another Weyl algebra ðei~aa~TTÞ. If however
we start with the laser algebra ðb; b�Þ and assume together with

lim
N!1

ð!NðbÞ �
ffiffiffiffi
N

p
aei�Þ ¼ 0

that

lim
N!1

ð!Nðb�bÞ � a2NÞ<1;

then we can define new creation and annihilation operators

A� ¼ lim
N!1

ðb� � ae�i�
ffiffiffiffi
N

p
Þ: ð19Þ

Their expectation values are zero for t ¼ 0 and

!ðA�AÞ ¼ lim
N!1

ð!Nðb�bÞ � a2NÞ ð20Þ
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exists according to our assumption. Evidently ðA�;AÞ form again a
Weyl algebra, that according to the definition we can also call fluc-
tuation algebra of the laser. Together with the fluctuation algebra of
the atoms we have in both situations, whether we have fixed the
photon number or not, two Weyl algebras, one for the atoms and one
for the laser, that are combined to a tensor product and are in a
Gaussian state.

If the state of the underlying system evolves in time then the com-

mutation relations of ei~aa
~SS change, since their definition is state-de-

pendent. However there is always a spin direction in which the state
of the � field is oriented, !tð~��Þ ¼~ssðtÞ and in fact in our situation
j~ssðtÞj ¼ s independent of t (remember the constant of the motion

ðs2
x þ s2

y þ s2
z ÞÞ. Therefore the Weyl algebras are isomorphic, where the

isomorphism rotates~ss0 into~sst. The corresponding statement is true for

ei
~bb~TT whereas eið�Aþ�A�Þ determined by (19) does not change in time.
More precisely we generalize (17) and consider the Weyl operator

in the fluctuation algebra corresponding to !

W!ðCÞ ¼ w-lim e
i
PN

j¼1

C j�!ðC jÞffiffi
N

p

in its dependence on C, where C is some quasilocal operator and Cj

its translate. The weak limit is taken in the state !. The Weyl algebra
W! consists of all equivalence classes of W!ðCÞ, i.e. we identify
W!ðCÞ with W!ðDÞ if !ðW!ðCÞW!ð�DÞÞ ¼ 1. Defining a time
evolution we might think of using

eiHNte
i
PC j�!ðC jÞffiffi

N
p

e�iHNt:

But here there appear several difficulties. First the Weyl operator

e
i
PC j�!ðC jÞffiffi

N
p

converges only in a weak sense. Time evolution that changes the un-
derlying quasilocal state destroys the convergence. Therefore we have
to subtract the correct value moving to the appropriate fluctuation
algebra. Next we have to take care that the limits N ! 1 in the
Hamiltonian and for the fluctuation algebra are coupled and this can
have the consequence that the time evolution of the quasilocal algebra
and of the fluctuation algebra are not trivially related. Therefore we
divide the time evolution into several steps that we hope will preserve
the algebraic relations so that in the final estimate we can use uni-
tarity to control convergence.
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Definition 1. Consider an automorphism �t on the underlying quasi-
local algebra. This automorphism defines first a map between the
states, !t ¼ ! � �t, and secondly an isomorphism �̂�t between the
Weyl algebra W! and W!t

via

�̂�tW!ðCÞ ¼ W!t
ð��tCÞ: ð21Þ

Remark. To show that �̂t�t is in fact an isomorphism all we need is to
control the Weyl relations

W!ðCÞW!ðDÞW!ðCÞ�1
W!ðDÞ�1 ¼ e�!½C;D�

¼ �̂�tðW!ðCÞW!ðDÞW!ðCÞ�1
W!ðDÞ�1Þ:

which is evidently satisfied.
This does not allow yet to talk about time correlations inside of the

fluctuation algebra. These correlations can easily be defined if ! is
invariant under �t:

Definition 2. Let �t be an automorphism on the underlying quasilocal
algebra and ! ¼ ! � �t. Then we can define an automorphism ���t on
the Weyl algebra W! by

���tW!ðCÞ ¼ W!ð�tCÞ: ð22Þ
If the state is sufficiently clustering and the automorphism sufficiently
local then it has been shown [8], [12] that

lim eiHNte
i

P
ðCk�!ðCkÞÞffiffi

N
p

e�iHNt ¼ ���tW!ðCÞ:
This means that for an invariant state ���t � �̂�t ¼ id. But already in [9]
it was shown that for mean field theories this does not hold in general.
This is even of more interest because it has consequences in exper-
iments. In [10] on the basis of this evolution mesoscopic entangle-
ment was produced. In [11] this experiment was analyzed in the
framework of the fluctuation algebra.

Since the state ! can change on the quasilocal level it is clear that
we have to look for a generalization of (22), i.e. the evolution of the
fluctuations. We expect that we can formulate the evolution as an iso-
morphism between the fluctuation algebras corresponding to different
times. Therefore we introduce the following map:

Definition 3.

~��tW!t
ðCÞ ¼ w-lim eiHNte

i
PN

j¼1

Cj�!t ðCjÞffiffi
N

p
e�iHNt: ð23Þ

12 H. Narnhofer



Now the ‘‘weak’’ limit (where the limit is taken in the sense of (17))
has to be taken in ! and it has to be shown that this limit exists. Since
the correction term !tðCjÞ is taken in !t we start with an expression
that is well defined in W!t

and is mapped by ~��t into an operator in
W!. Again under the assumptions of [8] and [12] this map reduces
to ~��tW!t

ðCÞ ¼ W!ð���tCÞ. But in [9] we had examples where the state
is invariant on the quasilocal level but the state on the fluctuation
algebra changes in time. Nevertheless the result in [8], [12] encour-
ages us to define

Definition 4.

~��tW!t
ðAÞ ¼ W!ð��t AÞ: ð24Þ

Here we only assume that ��t exists as a linear map on an appropriate
subset of the quasilocal algebra that in the special examples has to be
specified. Obviously ��t must satisfy ! � �t ¼ ! � ��t . Finally we can
consider

Definition 5.

�0
t ¼ ~��t � �̂�t: ð25Þ

This is a map from W! into W!. Under the assumption that ��t exists
we have �0

t W!ðCÞ ¼ W!ð��t ��tCÞ. In our example �0
t will turn out

to be actually an automorphism but not the identity as in [8], [12].
To show that the limit (23) and consequently also (25) exists in our

models (1) and (2) we examine first formally the corresponding evo-
lution equations on the fluctuation algebra, e.g. the derivative of (23)
~��tðSkÞ,

d

dt
SkðtÞ ¼

d

dt
lim
XN
j¼1

eiH
2
Nt
� j
k � !ð� j

kÞffiffiffiffi
N

p e�iH2
Nt

¼ lim i

�
HN ;

Xk
j¼1

� j
kffiffiffiffi
N

p
�
� d

dt

!ð� j
kÞffiffiffiffi
N

p : ð26Þ

As a first control we realize that the differential equation for the
commutation relations demands

i

�
HN ;

Xk
j¼1

� j
kffiffiffiffi
N

p
�P

� j
lffiffiffiffi

N
p þ i

�
HN ;

Xk
j¼1

� j
lffiffiffiffi
N

p
�P

� j
kffiffiffiffi

N
p ¼ d

dt
!ð½� j

k; �
j
l �Þ; ð27Þ

which in fact is satisfied if we use the evolution equation of the
quasilocal state. The similar condition has to hold for �. Finally we
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argue that the differential equation can be integrated to an automor-
phism group (25).

More explicitly we calculate for the time evolution determined
by (2)

d

dt
Sz ¼ lim

d

dt

P
� j
z � Nszffiffiffiffi
N

p

¼ lim

�
�
P

� j
y

P
� kx

N
ffiffiffiffi
N

p þ
P

� j
x

P
� k
x

N
ffiffiffiffi
N

p þ
ffiffiffiffi
N

p
syax �

ffiffiffiffi
N

p
sxty

�
¼ aySx � axSy � syTx þ sxTy: ð28Þ

Here the clustering property of the quasilocal state is essential and
guarantees that the term proportional to

ffiffiffiffi
N

p
cancels. Similarly

d

dt
Sx ¼ �Sy � aySz � szTy;

d

dt
Sy ¼ ��Sx þ axSz þ szTx;

d

dt
Tz ¼ axSy � aySx þ syTx � sxTy;

d

dt
Tx ¼ �azSy � syTz;

d

dt
Ty ¼ azSx þ sxTz; ð29Þ

or for the laser system

d

dt
Sz ¼ aySx � axSy � syAx þ sxAy;

d

dt
Sx ¼ �Sy � aySz � szAy;

d

dt
Sy ¼ ��Sx þ axSz þ szAx;

d

dt
Ax ¼ �Sy � kAy;

d

dt
Ay ¼ Sx þ kAx: ð30Þ

Note that the quadratic evolution equation of the quasilocal state turns
into a linear evolution equation on the fluctuation algebra. It is a map
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between the Weyl algebras because the commutation relations on the
derivation level can be controlled via

d

dt
½Sx; Sy� ¼

d

dt
sz ¼

�
d

dt
Sx; Sy

�
þ
�
Sx;

d

dt
Sy

�
¼ sxay � syax ð31Þ

and similarly for the other commutation relations, e.g.

d

dt
½Sx; Sz� ¼ � d

dt
sy ¼ ��sx þ szax;

d

dt
½Ax;Ay� ¼ ½Sy;Ay� þ ½Sx;Ay� ¼ 0: ð32Þ

It remains to argue that the differential equation defines automor-
phisms (25). First we take ��t in (24) to be the same linear map on the
�; �;Ax;Ay as the one corresponding to the differential equations (28),
(29) resp. (30). We observe

Lemma.

!ð�t�kÞ ¼ !ð��t �kÞ ð33Þ
and similarly for the other expressions.

Proof. (28), (29), (30) are homogeneous differential equations for
operators with expectation value 0. This implies that they satisfy
e.g.

d

dt
!ð~��tSkÞ ¼ 0 ¼ d

dt
!ð��t �k � �t�kÞ;

where we take ��t to be determined by (28), (29), (30).

To demonstrate the existence of the limit in (25) we calculate

lim
N!1

!

�
e
i~bb

P
ð~���!tð~��ÞÞffiffi

N
p

eiHNte
i~aa

P
ð��

t
~���!tð��t ~��ÞÞffiffi

N
p

e�iHNt

�
� !ðei~bb~SSei~aa~SSÞ

¼ lim

ðt
0

dt0!

�
e
i~bb

P
ð~���!tð~��ÞÞffiffi

N
p

eiHNt
0
e
i�~aa

P
ð��

t0
~���!�t0 ð~��ÞÞffiffi
N

p

�
�
i

�
HN ;~aa

P
ð��t0~��� !�t0 ð~��ÞÞffiffiffiffi

N
p

�
�

ffiffiffiffi
N

p d

dt0
~aað��t0~��� !�t0 ð~��ÞÞ

�

� e
ið1��Þ~aa

P
ð~���!t0 ð~��ÞÞffiffi

N
p

e�iHNt
0
�
: ð34Þ
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We can control how to commute

e
ið1��Þ~aa

P
ð~���!t0 ð~��ÞÞffiffi

N
p

through, since it acts linearly. Therefore we only have to estimate the
commutator [ , ] with its correction term. We can apply our result on
the quasilocal level where of course we have to take into account that
(16) converges sufficiently fast because now we have an additional scal-
ing like

ffiffiffiffi
N

p
. All remaining operators are unitaries and do not effect the

strong convergence to 0. In the same way we can replace � by � or

~aa

P
ð~��� !ð~��ÞÞffiffiffiffi

N
p

by axAx þ ayAy. We collect the result in

Theorem 3. Under the assumption on the state (3), (4) with the
Hamiltonian (2) resp. (3), (6), (7) and the Hamiltonian (1) the time
evolution of the fluctuations determined by (23) satisfies the differ-
ential equations (28), (29) resp. (30). Combined with the natural map
between the fluctuation algebras induced by the evolution of the
quasilocal state (25) the time evolution corresponds to an automor-
phism on the fluctuation algebra, that is not trivial.

In this way we obtained a time evolution that in fact is an
automorphism on the fluctuation algebras of the �- and the �-field
respectively of the laser field together with the fluctuation algebra of
the �-field. By taking the corresponding conditional expectation
values we can reduce the time automorphism on the tensor product of
the Weyl algebras to a completely positive map on the individual
factors. This seems to be natural especially for the laser algebra, if we
take the observation of the fluctuation algebra of the � field as being
outside of our experimental facilities. This positive map will in
general not be an automorphism so that the entropy of the laser field
need not be constant in time. Whether it increases or decreases or
fluctuates depends on the details of the underlying quasilocal state.

4. Stationary and Periodic States

The time evolution of the quasilocal states admits invariant states as
well as periodic states. We cannot assume that an arbitrary state
converges to a limit state. This may be forbidden by the constants of
the motion. But for given constants of the motions we can at least find
periodic states. These preferred states can be stable or unstable under
small perturbations. We will study how the time evolution of the
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fluctuation algebra looks like in these special states and whether we
can find some relations with the stability of the quasilocal states.

We are essentially interested in the long time behavior of the qua-
silocal state and how the fluctuations are effected. According to the es-
timates in [4] the limit of the reliability of the time evolution of the
quasilocal state is determined by the size of the fluctuations. Since the
evolution equation on the fluctuation algebra is linear the fluctuations
either are periodic or they depend linearly or exponentially on time.
Therefore the time scale on which the evolution of the quasilocal state
is reliable based on the estimates in [4] is in general of the order lnN
but is longer for periodic fluctuations. Therefore we expect � or hope �
that the fluctuations of the stable quasilocal states behave periodically.

In fact we will show that the stability behavior on the quasilocal
level and on the level of the fluctuation algebra is the same, at least in
the simplest examples.

Example 1. We will assume in the following that � and k in the
Hamiltonian in H

1;2
N vanishes, which corresponds to the fact that the

interaction between the fields is dominating. Then only those states
can be invariant in time for which sx ¼ sy ¼ 0, ax ¼ ay ¼ 0. sz re-
spectively sz; az can be arbitrary. If however sy ¼ ay ¼ 0 whereas
sx; ax 6¼ 0 but small compared to sz; az, then sy; ay will evolve in the
same direction or in different directions, depending on the relative
directions of sz; az and sx; ax so that their contribution to ðd=dtÞsz �
�sza

2
x þ s2

xaz annihilates or adds up depending whether szaz>0 or
<0. Though in general this annihilation will not be complete we can
consider states with the same sign of az; sz as more stable than the
others. (If we consider H1

N this corresponds to take az ¼ 1.)
If we turn now to the fluctuation algebra in this invariant state then

the equations reduce to

d2

dt2
Sx ¼ �sz

d

dt
Ty ¼ �szazSx: ð35Þ

As we expected the fluctuations in fact rotate if we are in a stable
state where azsz>0 but increase exponentially if we are in an unstable
state where azsz<0.

Example 2. As another typical solution we consider the quasilocal
state periodic in time for which

d

dt
sz ¼

d

dt
az ¼ 0;

sx ¼ s cos �t; sy ¼ s sin �t; ax ¼ a cos �t; ay ¼ a sin �t;
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which is a solution of the equation of motion if

� ¼ asz � �s

s
¼ azs

a
: ð36Þ

(For H1
N we take az ¼ 1. Now also in this model the photon number is

constant.) Again to simplify our calculations we only consider � ¼ 0.
Then we observe that necessarily szaz>0 or for the laser model
1>s2a�2 ¼ sz>0. The evolution equation for the fluctuation algebra
becomes for the evolution corresponding to H1

N

d

dt
Sz ¼ sAy cos �t � sAx sin �t � aSy cos �t þ aSx sin �t: ð37Þ

We define

S1 ¼ Sx cos �t þ Sy sin �t; S2 ¼ �Sx sin �t þ Sy cos �t;

A1 ¼ Ax cos �t þ Ay sin �t; A2 ¼ �Ax sin �t þ Ay cos �t: ð38Þ

This is in fact the desired isomorphism �̂�t between the fluctuation
algebras. We can verify

½A1;A2� ¼ i;

½Sz; S1� ¼ i sin �t cos �t � i sin �t cos �t ¼ 0;

½Sz; S2� ¼ is sin2 �t þ is cos2 �t ¼ is;

½S1; S2� ¼ iðcos2 �t þ sin2 �tÞsz ¼ isz;

so that all c numbers that appear in the commutation relations are
invariant in time and S1; S2;A1;A2 evolve in the same Weyl algebra.
With these new variables the differential equation reduces to

d

dt
Sz ¼ sA2 � aS2;

d

dt
S1 ¼�szA2 þ �S2;

d

dt
S2 ¼ aSzþ szA1 � �S1;

d

dt
A1 ¼ �S2 þ �A2;

d

dt
A2 ¼ S1 � �A1; ð39Þ

which combines to

d2

dt2
S1 ¼ ð�sz � �2ÞS1 þ 2sz�A1 þ a�Sz;

d2

dt2
A1 ¼ �ð�2 þ szÞA1 þ 2�S1 � aSz;
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d2

dt2
S2 ¼ ð�a2 � sz � �2ÞS2 þ ð2sz� þ asÞA2;

d2

dt2
A2 ¼ �ð�2 þ szÞA2 þ 2�S2: ð40Þ

Thus we have reduced the differential equation to one with constant
parameters that correspond to rotation frequencies ��� of the fluctuation
algebra given by ���4 � ���2ða2 þ 4s2=a2Þ ¼ 0 where we have used (36)
together with az ¼ 1. Therefore one frequency ���2

1 ¼ a2 þ 4s2=a2 gives
a rotation whereas the other a linear increase of the fluctuations. If the
differential equation is based on H2

N then again Sz þ Tz is constant in
time and though the time derivative of T2 contains Tz finally again only
S2 and T2 are coupled in the equation that determines the rotation
frequency. This shows that both Hamiltonians lead to a qualitatively
similar time evolution both on the level of the quasilocal algebra as for
the fluctuation algebra.

We can assign to the time evolution of the fluctuation algebra com-
bined with the laser algebra an effective Hamiltonian

H ¼ �2asðA2S2 þ A1S1Þ þ a2ðS2
1 þ S2

2 þ S2
z Þ þ s2ðA2

1 þ A2
2Þ

¼ ðaS1 � sA1Þ2 þ ðaS2 � sA2Þ2 þ a2S2
z ; ð41Þ

which demonstrates once more that we succeeded to reduce the
problem to automorphisms, but due to our special choice of �̂�t these
automorphisms satisfy even the group property.

Analyzing the spectrum of the Hamiltonian we observe that it consists
of a harmonic oscillator plus an operator with absolutely continuous
positive spectrum so that the total spectrum is positive and absolutely
continuous. This corresponds on the basis of the evolution equation that
the frequency ���2 ¼ 0 cannot be suppressed by initial conditions and on
the basis of the fluctuation algebra that the state changes in time.

Again we wonder whether the corresponding time evolution of the
quasilocal state is stable under perturbations. We write sz ¼ s cos 	,
sx ¼ s sin 	 sin
, sy ¼ s sin 	 cos
, ax ¼ a sin �, ay ¼ a cos � where s
is constant in time whereas a ¼ að	Þ. The evolution equations (9) in
these variables read

sin 	
d

dt
	 ¼ �s sin 	 sin
 cos �þ s sin 	 cos
 sin � ¼ s sin 	 sin ð
� �Þ;

s cos 	 sin

d

dt
	 þ s sin 	 cos


d

dt

 ¼ �as cos 	 cos �;

s cos 	 cos

d

dt
	 � s sin 	 sin


d

dt

 ¼ as cos 	 sin �;
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which combines to

sin 	
d

dt

 ¼ �a cos 	 cosð
� �Þ;

da

dt
sin � þ a cos �

d

dt
� ¼ �s sin 	 cos �;

da

dt
cos � � a sin �

d

dt
� ¼ s sin 	 sin �:

In addition we have

a
d

dt
� ¼ �s sin 	 cosð
� �Þ

and therefore

a sin 	
d

dt
ð
� �Þ ¼ ð�a2 cos 	 þ s sin2 	Þ cosð
� �Þ:

Here ðd=dtÞð
� �Þ ¼ 0 if s sin2 	0 � a2 cos 	0 ¼ 0 which corresponds
to the periodic solution, where ðd=dtÞ	 ¼ 0. If we perturb 	 slightly
then

d2

dt2
	 ¼ �s cos2ð
� �Þð�a2 cos 	 þ s sin2 	Þ

¼ �s cos2ð
� �Þ sin 	0ða2 þ 2s cos 	0Þð	 � 	0Þ

so that the solution is in fact stable under perturbations of the possible
	0 that corresponds to the permitted value sz>0.

5. The Entropy Balance

Since it was necessary to introduce the fluctuation algebra of the atoms
in order to describe the evolution of the laser as an automorphism, the
evolution reduced to the laser alone is only a completely positive map
that may increase or decrease the entropy. In the special situation
when sx ¼ sy ¼ ax ¼ ay ¼ 0 when the quasilocal state is invariant this
does not yet imply that the state over the laser is invariant. We start
with a product state over two Weyl algebras. If we are in the stable
situation then the two Weyl algebras rotate. For a special state over
both Weyl algebras the rotation is not felt by the state and it is
invariant in time. But in general the state will be periodic. If however
the quasilocal state is unstable the fluctuations increase exponentially
and the state changes.
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In the case when sz is constant and the quasilocal state rotates
around the z-axes then we have seen that the solution of the fluctua-
tion algebra contains the frequency 0 which means that we have a
linear increase of the evolution A1ðtÞ � A1 þ tS2. If we therefore
evaluate, ignoring the periodic part

tr �A � �S � �te
i�A1 � tr �Ae

i���A1����2ct2 ;

which shows that in the course of time !ðA�AÞ increases whereas
!ðAÞ ¼ 0. Therefore the entropy of the state over the laser algebra
increases, which corresponds to the fact that information moves into
the correlations between the laser and the fluctuations.

6. Conclusion

We have studied the time evolution of two level atoms interacting
with a laser in an appropriate thermodynamic limit. Based on the
results in [4] we extended the time evolution of the quasilocal state to
the fluctuation algebra as defined in [8]. This extension is necessary if
one wants to keep the total entropy fixed. We observed that even
when the state on the quasilocal level does not change in time for the
local algebra on the level of the fluctuation algebra it changes pro-
ducing increasing correlations between the fluctuations. In the con-
trolled examples the amount how the fluctuations change was related
whether the underlying quasilocal state is stable or unstable under
small perturbations, in the stable situation the fluctuations change at
most linearly in time, otherwise exponentially.
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