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Abstract

The well-known natural bijective correspondence between Boolean algebras and
Boolean rings is generalized from Boolean algebras to MV-algebras. The ring-like
structures arising this way correspond in a natural bijective manner to so-called strong
De Morgan algebras.
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1. Introduction

The fundamental operations in logic are disjunction, conjunction and
negation. Describing them algebraically leads to lattice-like struc-
tures with some sort of complementation. In the classical case one
obtains Boolean algebras which correspond to Boolean rings in a
natural bijective way. Ring addition and ring multiplication can
be logically interpreted as exclusive disjunction and conjunction,
respectively.
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The natural bijective correspondence between Boolean algebras
and Boolean rings was generalized from Boolean algebras to ortho-
modular lattices in [9] and [17], to ortholattices in [2], to bounded
lattices with an involutory antiautomorphism in [10], to pseudocom-
plemented semilattices in [4], to generalized orthomodular lattices
in [6] and to generalized ortholattices in [5]. In [3] the interplay
between the structures introduced in [2] and [10] is investigated.
The structures introduced in [10] were studied in more detail in
[11]-[15].

The interplay between lattice distributivity on the one side
and associativity of ring addition and ring distributivity on the
other side is of importance when applying the considered struc-
tures in the foundations of axiomatic quantum mechanics. E.g.,
the fact that in the associativity law only four operation symbols
are involved whereas the number of operation symbols occur-
ring in the distributivity law is five has some physical mean-
ing concerning the complexity of the corresponding physical
experiments.

2. MV-Algebras

First we introduce the notion of an MV-algebra. These algebras
provide an adequate semantics for the infinite-valued Lukasiewicz
logic (cf. [1]).

Definition 2.1. An MV-algebra is an algebra (A,®,—,0) of type
(2,1,0) satisfying the following axioms:

MV1) x@y)@z=xd (yPz),
MV2) x@y=ydux,

MV3) x@0=ux,

MV4) —-—x=ux,

MV5) x@&1=1and

MV6) —(x@y)Sy=-(-ydx)Dx

where 1 denotes the element —0.
Example 2.1. (B, V, ’,0), where (B, V, A, ', 0, 1) is a Boolean algebra,
is an MV-algebra.

Example 2.2. ([0,1],®,-,0), where x@®y:= min(x+y,1) and
- := 1 —x for all x,y€ [0, 1], is an MV-algebra.

Lemma 2.1. In an MV-algebra (A, @, —,0) it holds x ® —x = 1 for all
X€EA.
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Proof. For all x€A we have
X w=udx=-("10x)Px=-(wxdl)dl=1. O

In every MV-algebra (A, ®,—,0) a binary operation ® is defined
by

xOy:= —|(—|x@ —|y)
for all x,y€A. In (B,V,’,0), where (B,V,A,’,0,1) is a Boolean
algebra, ® = A and in ([0, 1],®,—,0) defined in Example 2.2,

x®y=max(x+y—1,0) for all x,y€][0,1].
The following result is well-known (cf. [1]).

Proposition 2.1. If (A, @, —,0) is an MV-algebra and one defines
xVy:==(x®y) Dy

and
xAy:i==(-(x®-y) & ~y)

for all x,y €A then (A, V, A, 0, 1) is a bounded distributive lattice the
corresponding partial order of which is given by x <y if and only if
xPy=1(x,ycA).

For more results on MV-algebras we refer to the monographs [7]
and [16].

3. Pseudorings

We now want to associate suitable ring-like structures to
MV-algebras. In this context it should be mentioned that connections
between MV-algebras and semirings were investigated in [8].
Definition 3.1. A pseudoring is an algebra (R, +, -, 1) of type (2,2,0)
satisfying the following axioms:

(P1)  (xy)z = x(yz),

P2) xy =yx,

P3) xl =ux,

P4) 1+ (1+x) =nx,
P5) x0=0,

(P6) (1 +x(1+y))(1 +y) = (1 +y(1 +x))(1 +x) and
P 1+ +x(14+y)(1+y(1+x)=x+y

where 0 denotes the element 1 + 1.

Remark 3.1. Axioms (P2) and (P7) imply the commutativity of +.
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The following theorem establishes a natural bijective correspon-
dence between MV-algebras and pseudorings:

Theorem 3.1. If A is a set then the formulas
x+y:==(x®y)®-(xDy),
xy = (~x @ )

and

x@y:=14+1+x)(1+y),
wx:=14+x

for all x, y €A induce mutually inverse bijections between the set of
all MV-algebras on A and the set of all pseudorings on A.

Remark 3.2. It holds x +y = (x ® —y) & (—x @ y) for all x,y€A.
Hence in (B,V,’,0), where (B,V,A,’,0,1) is a Boolean algebra, +
coincides with the symmetric difference and in ([0, 1], &, —,0) de-
fined in Example 2.2, + coincides with the distance of real numbers.

Proof of Theorem 3.1. If (A, ®,—,0) is an MV-algebra and x + y :=
—(x® —y) ® (- D y) and xy := —(—x @ —y) for all x,y €A then

l+x=-(1®x)® (-1 dx)=x,
1+1=-1=0,
(xy)z = ~(==(x & ~y) & 7z) = ~((~w & ~y) & z)
=2(x @ (my @ ) = ~(x ® 7(~y & 7)) = x(yz2),
xy ==(-x @ —y) = ~(-y & ) = yx,
xl ==(xd-1) =x,
1+ (1+x)=-x=ux,
X0 = ~(-x @ —0) = 0,
(T+x(T+y)(1+y) = (=(x(=w)(~y)
= =(==(~x @ ~my) & )
“((xdy) @y) = (-(-y & x) Bx)
—(==(my & ) & )
= (=((x)))(~x) = (L + y(1 +x))(1 +x),
L+ (1 +x(142)(1 +y(1 +x)) = ~((=(x(=9) (= (r(~x))))
= (2 (x B ) & 2(my B )
=(x@y)d(y®x)=x+y
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and

L+ (1 +x)1+y) = (%)) =—(-x&-y)=xy
for all x,y,z€A.

If, conversely, (A,+,-,1) is a pseudoring and x®y:= 1+
(14+x)(1+y)and —x:= 1+ x for all x,y€A then

0=1+0=1+(14+1)=1,
xey)@z=14+0+0+0+x)1+y)1+2)

=1+ (1 +x)1+y)A+2) =1+ 1 4+2)((1+y)(1 +2)
=14+(1+x) 1+ I+ 4+y)(1+2))=xd (yD2),
x®y=1+0+x)1+y)=1+(1+ )(1+)—y@x
x@0=1+1+x)14+0)=1+14+x)1=1+(14+x) =
——x=1+(1+x)=x
x@1l=1+1+x)1+14+0)=1+1+x)0=1+0=1,
(wdy)ey=1+1+1+ 1+ 1+ 1+x)(1+y)(1+y)
=14+ 0+x(1+y)(Il+y)=1+1+y(1+x)(1+x)

=1+(1+(1+(1+(1+(1+y))(1+X))))(1+x)
=-(yex) &
—(x @ y) © (ﬂx@y)
=14+ 1+ 1+ 1+ 1+x)(1+(1+Y)))
X(1+ 1+ 0+ 1+ 1+x)(1+y)))
=14+ 04+ +)0)0+x(14+y)=x+y
and
(@) =14+ 1+ 1+ (1 4+x)(1+(1+y) =xy
for all x,y,z€A. O

4. Strong De Morgan Algebras

In this section we want to show that MV-algebras correspond in a
natural bijective way to certain algebras that are similar to so-called
De Morgan algebras. This yields also a natural bijective correspondence
between these so-called strong De Morgan algebras and pseudorings.

Definition 4.1. A De Morgan algebra is an algebra (A, V,A,’,0,1)
of type (2,2, 1,0,0) such that (A, V, A, 0, 1) is a bounded distributive
lattice and ’ is an antiendomorphism of (A, V, A). A strong De Morgan
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algebra is an algebra (A,V, A, (“;a€A),0,1) where (A,V,A,0,1) is
a bounded lattice, for each a €A, ([a, 1], V, A, ¢, a, 1) is a De Morgan
algebra, ()" = x for all x,y €A with x>y and

z z

(v (y V) = (v (x v 2))
for all x,y,z€A.

Theorem 4.1. If A is a set then the formulas
xVy:==(-xdy) dy,
xAy:=-(=x®-y) &),

X =-x®a
and
x@y:=(x"Vvy),
—x = x"

forall x,y, a € A induce mutually inverse bijections between the set of all
MV-algebras on A and the set of all strong De Morgan algebras on A.

Proof. First let (A,®,—,0) be an MV-algebra and put xVy:=
A(x@y) Dy, x Ay :=(=(x D —y) @ —y) and x* := —x @ a for all
x,y,acA. It is well-known that (A,V,A,0,1) is a bounded
distributive lattice the corresponding partial order relation of which
is given by x <y if and only if ~x®y =1 (x,y €A). Moreover, for
X, y,acA

a<x*=-x®a since -aP-xPa=1,

a<x<y implies —(-y®a)® (-xda)=-(-yda)dadx

=-(-ady)dyd =1, ie y' <x

and

a<x implies —(-x®a)®da=-(-ad®x)Px=x, ie (x)=x.
Put xoy := (xVy)’ for all x,y€A. Then
xoy=(7(x®y)®y) By ="(yExDy) O xBy="xDYy
for all x,y €A and hence

z

(xV V) =xo(yor) = x@yBz=yBxDz

=yo (xoz) = (y V (x\/Z)Z)(xvz)z7

OV =a(-(~ux@y)@y)By=-(yBx DY) BxBy=xDYy
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and

xOZﬂx@OZ—\x

for all x,y,z€A.
Conversely, if (A,V,A,(“;a€A),0,1) is a strong De Morgan

algebra and x @y := (x" Vy)’, =x :=x% and x oy := (x vV y)” for all

X,y €A then
xo(yoz)=yo(xoz),
(x00)00=x"=x,
x@®y=(xo00)oy,
x®y=(x00)oy=(x00)o((yo0)o0)=(yo0)o((xo0)00)
—(yo0)ox=y®x,
(x®y)@z=28(xdy) = (z00)o((x00)oy)
= (x00)o((z00)oy)=xB(z&y) =x® (y®2),
x®0=(x00)o0=x,
——x =% =,
xel="v1) =1,
oy = ()" vy =@vy)
(x®y) @y =((xVy) Vy) =((xVy)) =xVvy
and hence
“(x@y) By =—(vdx) Sx,
~(=x @) @ y) = ~(=(-w@y) @) = (V) =x Ay
and
~«x®a=(xVa)'=x* if x>a
for all x,y,z,a€A. O
Combining Theorems 3.1 and 4.1 yields
Theorem 4.2. If A is a set then the formulas
xVy:=1+1+x(1+y)1+y),
x Ay = (14 (14+x)y)y,
x:=14x(1+a)
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and

}')0

x4y = ((x° \/yo)yo V ((x v y)?)0) =)
xy o= (v )"

for all x, y, a€ A induce mutually inverse bijections between the set
of all pseudorings on A and the set of all strong De Morgan algebras
on A.

As an immediate consequence of Theorems 3.1, 4.1 and 4.2 and
their proofs we obtain

Corollary 4.1. If (R, +,-, 1) is a pseudoring and
(R,V, A, (;a€R),0,1)

denotes the corresponding strong De Morgan algebra then (i) and (ii)
hold:

(i) a<bifand only if a(1+b) =0

(i) (R,V,A,°%,0,1) is a Boolean algebra if and only if
(1 +xx)x = 0 for every x€R.
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