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Abstract

In a previous paper [4] we generalized the Rogers-Ramanujan identities by proving
formulas for the Carlitz g-Fibonacci polynomials F,(7) which reduce to the finite
version of the Rogers-Ramanujan identities obtained by I. SCHUR for ¢t = 1. The
g-Fibonacci polynomials can be interpreted as the weight of a set of lattice paths in R?
which are contained in the strip —2 <y < 1. In this paper we extend these results to
lattice paths contained in more general strips. We determine the recursions satisfied by
the corresponding polynomials and derive identities of the Rogers-Ramanujan type
which are related to some identities by KIRILLOV [6] and FODA and QUANO [5].
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0. Introduction

In a previous paper [4] we proved a finite version of the identity

r i(5i-1) g

F(t) = Z%)ztl = Z(—l)iq 2 thl’

1>0 i€z 1> il

which for t = 1 reduces to SCHUR’s polynomial analog [8] of the first
Rogers-Ramanujan identity (cf. [1]). In this paper we consider more
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generally the chain of formal power series

o i((2k+3)i—1) P—i?
a(tg)=> di =Y (-1Yq 2 > T4 k>0,
>0 i€z 1> (Q)z—i(Q)m
which for ¢t = 1 reduces to
1 Z( 1)i i((2k+3)i—1)
- _ q 2
<Q)OO icZ

We give a polynomial version of a(, q) which satisfies a recursion
of order 2k and determine this recursion explicitly.
Then we do the same with the chain of formal power series
1271'2

bi(tg) =3 e = (~1)ig* PSS L

>0 iez 1> (Q)H(Q)Hi

For t = ¢ = 1 some of these results have already been proved in [3].
For t = 1 these chains also occur via BAILEY’s lemma (cf. [7]).
I want to thank OLE WARNAAR for some useful remarks concerning
the fermionic form of a;(n,t,q).

1. The Combinatorial Background

We consider lattice paths in R? of finite length, which start at the origin
(0, 0), where at each step only two moves are allowed, a northeast move
(i,j) = (i+1,j+ 1) and a southeast move (i,j) — (i+1,j—1).
Define a peak as a vertex preceded by a northeast step and followed
by a southeast step, and a valley as a vertex preceded by a southeast
step and followed by a northeast step. The height of a vertex is its
y-coordinate. The peaks with height at least 1 and the valleys with
height at most —2 are called extremal points. Let D(v) be the set of
the x-coordinates of the extremal points of the path v. Let

dv)=|D()| and  v)= > i

i€D(v)

Then the weight of the path v is defined by w,(v) = ¢""#"). The
weight of a set of paths is the sum of the weight of all paths.

Let in the terminology of [4] A denote the set of all lattice paths with
k = | %] northeast steps and [ = | 5! | southeast steps, which start at
(0, 0). Let A, (r, —s) be the set of those paths which are contained in the
strip —s <y <r. Let further A”'(r, —s) (resp. A”(—s, r)) be the set of all
paths in AY such that at least m points are outside the strip satisfying the
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following condition: The height of the first (from left to right) such point
is >r (resp. <—s), the height of the second point is < —s (resp. >r),
the height of the next point is again >r (resp. < —s), and so on. Thus
each path in A”(r, —s) and A”'(—s, r) leaves the strip —s <y <r at least
m times and oscillates between points above the strip and below the
strip. By a simple inclusion-exclusion argument it is clear that

wi(Au(r, —s)) = wi( AO +Z "w (A (r, —s))
m>1
+§: )" w (A" (=5, 7). (1.1)

Here we have
VJ n+1
=
MM$—§:¢[2] 2 ||/
>0 I

by [4], (3.7).
By [4] Lemma 3.1 we have

w,(AﬁHl(r, —S)) = g Z q(l+2i+1)(l—2i—1)

1>2i+1
-1 -
% LEJ — X2i+1 + 2(21 + 1)
L [4+2i+1
[ n+1 .
% \‘ ) J +X2,'+1 — 2(21 + 1) l‘[
L [1—2i—1

where

(r+8)i® + (r—s)i.

xoi = (r+9)i, x4 =F+s)i+r, yi= )

This implies
wi(AY (r, )

—(r+s—4HQRi+1)+s—r
= ! Z q(l+2i+1)(172i71) { 3 J
e [+2i+1
n+1+r+s—4)2i+1)+r—s
X { 2 J tl,
1—-2i—1
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V kA 1J +2(2i)
' ; i)(1—2i — X2 !
A2 ~)) = ¢ 30 g | [
122 [+2i
n .
X bJ 2 = 2(20) ] /!
[—2i
n+1—(r+s—4)(2i)
— q}'zi Z q(l+2i)(l_2i) 2
1>2i l_|_ 2i
n+ (r+s—4)(2i)
X 2 r.
[—2i

Let now s = r + 1. Then we have in either case
—(r+s—4)i+ IJ

n
(Al _q Zq V(I+i) \‘ D)

1>i l-|—l
n+ (r+s—4)i
X 2 i
[—i
Here
r+s)i2 —i
)’527( 2) .

Under the same assumption we get
Wt(Ailel(—S, r)) . Z q(l+2i+1)(172i71)

[>2i+1
fn+1 .
" { 5 J—x2i+1+2(2l+1)
[+2i+1
i '
% \;EJ +X25+1 — 2(2l + 1) l‘l,
[—2i—1
but now we have
_ (r+s)it—i

Xoip1 = (r+s)i+s and y;, =
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Therefore this becomes

—(r+s—4)(2i+1)J

n
— i+l Z q(l+2i+1)(172i71) { >

== I4+2i+]1
n+1+(r+s—4)2i+1)
X 2 !
[—2i—1

And

(A2 (— = ¢ Zq(urzz )(1—2i) [{_J — X2i +2(2i)]

1>2i l+ 2l

n+1 .
" { 5 J+x2i—2(2l) y

=2

n—(r+s—4)(2i)
— q)_’zi Z q(l+2i)(172i) 2

=2 [+ 2i
n+1+(r+s—4)(2i)
X { 2 J !
I —2i
Thus in each case we get
n—(r+s—4)i
wi(AL (s, 7)) —qy’Zq () {fJ
= I+
n+1+(r+s—4)i
X { 2 J /
[—i

This is the same as

T {n+(r+;—4)(—i)J

T - (—)
n+1—(r+s—4)(—i
X { 2 J .
I+ (—i)
If we set w;(Al(r,—s)) =f(i,n), then we have therefore

wi(A,(=s,r)) =f(=i,n).
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Let now A, = A,(—k — 2,k + 1) be the set of all lattice paths in
R? which start at the origin (O 0), consist of | 4 | northeast steps and
L%J southeast steps, and are contained in the strip —k—1<y<k.
By ai(n,t,q) = wi(A,x) we denote its weight. Then the above

reasoning gives

n+ (2k — l)iJ
. 2k+3z 1)
aw(n,t,q) = > (1) Zq i) { 2
i€z 1>l [—i
n—(2k—1)i+1
X 2 /! (1.2)
[+i

Here [’H denotes the g-binomial coefficient. We always assume that
[’;] = 01if n<O0. For t = 1 by using the g-Vandermonde formula this
reduces to

i((2k+3)i-1) n
a(n 1) =Y (-1'q 2 {n+<2k+3>iJ . (13)
icz )

In accordance with the language used by physicists we call (1.2) the
,,bosonic* representation of the polynomial a(n,t,q).

For the form of the corresponding ‘“‘fermionic” representation I am
indebted to OLE WARNAAR.

Theorem 1.1 (O. WARNAAR). The ‘fermionic” representation of
ar(n,t,q) is given by
J
«(n,1,q) = Z Mighi +N2H nEm =22 N ()
ny,...,n; >0 j=1 l’lj
where N; :”j+”j+1 + oty

For t = 1 by the g-Vandermonde formula this theorem simplifies to
a polynomial identity of FODA and QUANO [5] and KIRILLOV [6]:

i((2k+3)i—1) n
d(=Dig T | |n+(2k+3)i
ieZ 2

P J
2 2 n+n —2> N;
Z qN”NH 22N )

M = >0 =1 nj

In order to prove this we give ﬁrst another lattice path representa-
tion of ax(n,t,q).
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Lemma 1.1. ax(n,t,q) is the weight of the set of all non-negative
lattice paths starting at (0, 0) and ending in (n, 0), where besides a
northeast move (i, j) — (i+ 1, j + 1) and a southeast move (i, j) —
(i+1,j—1) also a horizontal move (i, 0) — (i + 1, 0) is allowed
and the maximal height of the peaks is k. Here the weight of a vertex
is ¢"'t where m is its x-coordinate and the weight of a path is defined
as the product of the weight of its peaks.

It is easy to find a bijection between these two lattice path
models. Starting from the first model we map a northeast move
from (i,—1) — (i+1,0) and a southeast move from (i,0) —
(i+1,—1) into a horizontal move (i,0) — (i +1,0). The non-
negative paths remain the same and the negative paths from
(i,—1) — (j,—1) are reflected on the line y = — % into a nonnegative
path (1,0) = (j, 0).

This map obviously has a unique inverse.

We now follow the argument used in Lemma 2.1 of BRESSOUD [2]
and apply it to our case: g& = ¢g" 3 t(%=1) ig the weight of the
unique path of length 2k with k peaks of height 1. The factor [”;k]
is the generating function for partitions into at most k parts or,
equivalently, into exactly k parts where zeroes are permitted, each
of which is <n —2k (cf. [1]). If these parts are denoted by
ay > a, > --- > a, > 0, we insert a; horizontal steps in front of the
northeast step of the first peak and a; — a;,1 horizontal steps in front
of the northeast step of the (k — j + 1)-th peak. Let F(n;ny,...,ng_1)
be the weight of all paths of length n, where each path has n; peaks
of “relative height” j (for the definition see [2]). If we replace for
each peak the set consisting of the northeast path leading to the peak
followed by the southeast path which leaves the peak with the set
consisting of two northeast paths followed by two southeast paths
(called “volcanic uplift” in [2]) then we get the set of all paths
of length n + 2N, where each path has n;.il = n; peaks of relative

height j + 1. For the weight F(n +2N;;nJ,...,n}), where N =
ny+---+nf, we get in this way F(n+2NS;ny,....n}) =
F(n;nl,...,nk,l)q(N;)_. As shown in [2], we can now insert nf
peaks of relative height 1 in all possible ways into such a path such
that

F(n—i—ZN;+2nT;nT,n;k,...,nz<) =F(nyny,...,ng—1)
n—|—2N1* —ni"]
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This implies

F(nyny,...,ng) =gV [n—i—n:ﬂ— 2N ]F(n—ZNl;ng,...,nk). (1.6)

Starting with

F(n; k) = ¢° [";k]

we get by induction

k .
qN]2+...+N£ H |:I’l + nj — 2 Zji=l Nl:| )
=1 nj

For k=0 we have ay(n,t,q) =1, a well-known result of I
SCHUR [8].
For k = 1 we have shown in [4] that

2l n—
al(”ﬁ&]) n+1 qt qu |: :|
k<n
For t = 1 this is SCHUR’s finite version of the Rogers-Ramanujan

identities [8]. These polynomials are a g-analogue of the Fibonacci
polynomials and satisfy the recurrences

a (I’l, t) CI) - al(l’l - 17 qta CI) + qtal (Vl - 27 qzt) q)
and

al(nv f q) =a (I’l - la f, Q) + qn_ltal(n - 25 £ Q)

For k> 1 we show that a(n, t, g) satisfies a recurrence of order 2k and
determine this recurrence explicitly.
Since for n <2k no path in A, ; reaches the boundary we see that

((n,t,q) = ZqF[H] V;IJ / (1.7)

>0 l /

for n<2k.

Remark 1.1. Theorem 1.1 can slightly be generalized to give
an extension of the whole result of FODA and QUANO [5] to arbitrary ¢:

Let A, 4, be the set of all lattice paths in R? with northeast steps
and southeast steps which start at the point (0,k+ 1 —r), are
contained in the strip —k — 1 <y <k and end in either (n,0) or
(n,—1). By ax,(n,t,q) = wi(A,x,) we denote its weight.
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Then for 1 < r <k -+ 1 we have

i((2k+3)i—(2k+3—2r)

ayr(n,t,q) = Z(—l)iq p Zq(l—i)(l+i)

i€’z 1>
[ n+(2k—1)i+r—k—1]]
o
L [—i i}
[|n—(2k—1)i+k+2—r|]
X { 2 J 7/
| [+i i
_ Z tquN12+~~+N,§+N,+~~+Nk
e >0

r—1 J k J
n+n;—2) N; n+r—j—1+n—2) N;
xH J ,:Zl H ! l=21 l
Jj=1 n; j=r n;

In order to prove this we shift each such lattice path one unit
downward, such that the new path starts in (0, kK — r). In order that
the new path has the same weight as the old path we have to
exchange in the new path the peaks of height 0 and the valleys of
height —2. For under this map all extremal points are again mapped
onto extremal points, except the peaks of height 1 which are mapped
onto peaks of height 0. If we replace the latter peaks with the
corresponding valleys of height —2, we get again an extremal point.
On the other hand the image of a valley of height —1, which is not
an extremal point, is mapped onto a valley of height —2, which is an
extremal point. So we replace it with the corresponding peak of
height 0, such that the weights are preserved. In this way we obtain
the set of all lattice paths starting at (0, k — r) which remain in the
strip —k — 2 <y <k — 1. We iterate this operation till we come to
the set of paths starting at (0, 0) which remain in the strip —2k +r — 2
<y < r— 1. Then the computation given above leads to the bosonic
form of ay ,(n,t,q).

The fermionic form follows again by induction starting with

e Tn—k—1
al,l(n7t7Q) = qu +k|: k :|tk7

k=0

which is equivalent with the extension of the second Rogers-
Ramanujan identity in [4].
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2. Some Useful Polynomials

Now we define some polynomials which we will need later.
Let

rn(-x7 tv 6]) = rnfl(-x7t7 CI) +X(1 - qnilt)rnfl(-xa q2t7 Q) _x”nfz(X,quv q)
2.1)

with initial values ro(x,2,q) = 0, ri(x,t,q9) = 1.
It can be shown that

n—1
rn(xa taQ) =1 +xrn—1(x>q2t’ q) - tqu’rj(x,qzt, Q)7
j=0

but we shall not need this.

We have
n—1 k )
ra(x,t,q) =Y x* Y d(n k)
k=0  j=0

for some coefficients d(n, k,j).
Comparing the coefficients we get the recursion

d(nak7j) —d(l’l— 17 k:]) _qzjd(n - 17 k — 17])
+ ¢ 3dn—1,k—1,j—1)+q¢%d(n—2,k—1,j) =0.
Now it is easy to verify that

R M

satisfies this recursion.
To prove this observe that if we set

do(n.k.j) = (~1g* ) m [n B i k +j] ’
then

dO(n7k7.j) —do(l’l - 17kaj) - (_1)jqkj+(£) |:I;:|

()

S U |
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Therefore

() [E— 1
do(n—Lk—l,j>—do(n—2,k—1,j)=<—1Yq<k‘”f+(2)[ | ]
J

—2—k+j
an—l—k|:n +-]:|

j—1
This gives
do(n,k,j) —do(n—1,k,j) = g”(do(n — 1,k = 1,j) = do(n—2,k = 1,j))
= (- 1)quj+()+n 1 [k—=1][n—2—k+j ‘
j—1 j—1
And this is the same as ¢"*¥ 3dy(n — 1,k — 1,j — 1).
Therefore dy(n, k,j) satisfies the recurrence. Since for n =0, 1 we

obviously have dy(n, k,j) = d(n,k,j), the two sequences coincide.
Therefore we get the explicit formula

n—1

ra(x,t,q) = Z r(n,k, t)xk (2.2)

k=0
with
Fn, k) = g(—l)fﬂqkﬂ(%) m {”‘ 1},‘"”]. (2.3)

This can also be written in the form
k

r(n,k,t) = Z (_l)kqu(kféﬂ) {k}

j=max(0,2k—n-+1) J

x[n_l_k+J]1L[ 1

The first terms of the sequence r,(x, ¢, q) are

”0207

r2:1+(1_qt)x7

e e (ool
<

ot | aman e o= @na - g



-l (- L)
(oo le-e)e
(o[-

+(ofJoon Jo-do-eo)e

+ (=g (1 —g'n)(1 - g0’
For g =1 these polynomials are intimately connected with the
Fibonacci polynomials: Let F,(x,s) be the Fibonacci polynomial,
defined by F,(x,s) = xF,_1(x,s) + sF,_2(x,s) with initial values
Fo(x,s) = 0,F;(x,s) = 1. Then we see from the recursion

ra(x, 1) = (14 (1 = 6)x)ry—1(x, 1, 1) — xry—a(x,1, 1)

r4:1

=1

that
ra(x,t,1) = F,(1 4+ (1 — £)x, —x).
Consider now

PalX,1,9) = uy1(x,1,9) = xra(x,¢°1, ). (2.4)
Then we can recover r,(x,t q) by
ra(x,t,q) = Zx’ (n—1—j,¢%1,x). (2.5)

This is easily seen by 1nduct10n. For this holds for n =0 and n = 1.
From 7,,1(x,1,q) = pa(x,t,q) + xr.(x,¢*t,q) we see that if it holds
for n then it also holds for n 4 1. Now

ra(x,1,q) = ra1(x,1,9) +x(1 — ¢" ' 1)ru_1 (x, ¢°1,q) — xra_2(x,4°1,q)
can be reformulated as
pu(x,1,q) — puoi(x,1,q) = —q”txrn(x q’t,q)

thZx/ (n—1—j,¢7"t,x).

Therefore we see that py(x, t, ) is also characterlzed by the recursion

pe(x,t,q) = peo1(x,1,9) — 't > Fpi i(x, 471, q) (2.6)
=1
with po(x,t,q) = 1.
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From (2.2) we get the explicit formula

pe(x,1,q) _1+Z Z g+ []’::}Hk_;ﬂ}. (2.7)

We also need the polynomials

hk(x7 f q) :Pk(Xz,t, CI) _xpk—l(xzaqt7Q)a k> la (28)

and ho(x,t,q) = 1.
Thus Ay (x,t,g) can be written in the form

2k
he(x,t,q) = 1 —x+ Y (i, 1)x, (2.9)
i=1
where
cr(2i,1) = (—1)-ftfq"f'+(’i)[l._1} [k_fﬂ] (2.10)
=0 j=1 /
and
i+ 1,0 = S (=1 g+ () [;:}H"_ﬁf‘l]. (2.11)

Jj=0

Then these polynomials are uniquely determined by the recursion

k
hk(x7 f 61) = hk—l (X, Z q) - qkt szjhk—j(xv q21t7 Q) (212)
j=1

with initial values ho(x,t,q) = 1, hi(x,t,q) = 1 — x — gtx>.
In terms of ry(x,t,q) for k > 1 they are given by

hi(x,1,q) = re (1, q) — xr(x%, g, q) — X¥ri(, 4°, q)
+ X1 (¥, 4’1, q). (2.13)
For g =1 we get
hi(x,2,1) = Fro (1 — 1) + 1, —x%) — x(x + 1)
XF(x*(1 = 1)+ 1, =) + F°F (31— 1) + 1, —x%).
For t =1 this reduces to
Frya(1, =x%) — xFip (1, —x%)

1 1
= X! (Fk+2(—, —1) — Fiq <—,—1>)~
X X
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Let now

Ji(x,1,9) = pil(x,1,9) — xpea(x, 41, q) (2.14)
for k > 2.
This can also be written in the form

jk(x7 Z Q) = I"k+1(X, f C]) —er(x, th, q) _xrk—l(xa qzta q)

+ ¥*ria(x, g, q). (2.15)
Therefore for k > 2 we get
k
Jelet,q) =Y s(k, i, 0)x (2.16)
i=0
with
s(kyit) =r(k+1,i1) —r(k,i — 1,¢°t) — r(k — 1,i — 1,4°1)
+r(k—2,i—2,q4"). (2.17)

If we introduce the polynomials
lk('x7 tv q) = Tk+1 (X, t? q) — XIk—1 (X, 01257 Q)v
then we get
jk('x7 £ q) = lk(x7 Z q) - Xkal (X, qzta q)

These polynomials are analogues of the Lucas polynomials: Define
now the Lucas polynomials L,(x,s) by the recurrence L,(x,s) =
xL,_1(x,s) + sL,—»(x,s) with the initial values Ly(x,s) =2,
Li(x,s) = x.

For ¢ = 1 and k > 2 ji(x,1,1) reduces to

Je(e, 1, 1) = L(x(1 — ) + 1, —x) — xLg—y (x(1 — £) + 1, —x).

For t =1 we get L;(1,—x) — xL;— (1, —x).
In the same way as above we see that the sequence ji(x,1,q)
satisfies also the recurrences

. . X . X,
Ji(x,t,q) = ji—1(x,t,q) —5(1 - qk+1t)Jk71(xa q2t, q) +5]k72(x7 qzl, q)

and

k—1
jk(x7 f Q) :jk—l (xa f q) - qkt lejk—l(xv CIZIt, Q) (218)
=1
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for k>2 with the initial conditions
jl(xvtvq) =1 +x_th>
Ja(x,t,q) =1 — (14 gt +¢*t)x — g*t(1 — *1)x*. (2.19)

3. The Main Result

Theorem 3.1. For k>1 the sequence (ax(n,t,q)),-, satisfies the
recurrence B

hk(A7t7Q)ak(n7t7Q) :07 (31)
where A denotes the operator Aw,(t) = w,_;(g’1).
This means
2k

a(n,1,q) —a(n—1,qt,q) + > cili,ha(n — i,q't,q) = 0, (3.2)
i=1

where ci(i,t) is defined by (2.10) and (2.11).
It also satisfies a second recursion

1
hk<El7qnt75>ak(n7t7q) =0, (33)

where E7w, (1) = wy_;(1).
This means

2k

ak<n7t7 Q) - Clk(l’l - 17qt7 CI) + de(iaqnt)ak(n - i,t,CI) - 07 (34)
i=1

where
di(2i,1) = (—1)~ftfq(’é)+f—f<i+">[l._ 1] [k_fﬂ} (3.5)
= Jj—1 J
and
Qi1 =S (—1)"“tfq(’2'>”‘-"("+">[l:_1} [k_”.j_l}.
= Jj—1 J

For k = 0 we have ay(n,t,q) = 1.
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The initial values are

v(n,t,q) = Zq [H] {%J i for 0<n<2k-—1.

>0 l l

Corollary 3.1. Let

i((2k43)i=1) =)
ar(t,q) = im ar(n,t,q) = Y (—1)'q 2 i S
e ; %,: (9)-i(a) i
E @ N2+ +N;
‘ ; (3.7)
a1 >0 <q)n1 o (q)nk

where we set (q), = (1 —¢q)(1 —¢*) - (1 —¢").
Then this formal power series satisfies the functional equation

2k
a(t,q) — ar(qt,q) + Y cxli,an(q't,q) = 0. (3.8)

i=1

Typical Example. As an example choose k = 2. Then

a(n,t,q) = (—1) qu” {MJ VH;&J t

icz =i i I4i
_ Ztk+lq(k+l)z+lz[n—k—2l] [n—2k—3l]‘
k150 k l

This sequence begins with

{1,1,1+gt,1 +qt + ¢*t,1 + qt + 24t + 't + ¢*#*
1+ gt + 2%t + 2t + ¢*t + ¢* 1> + P72 + ¢°F% 1 + gt + 24°t
124+ 24"t + @t + ¢ + 247 +3¢° +2¢"F + ¢ + ¢°F ).

For t = 1 this reduces to
n

n+7i
2
The sequence ax(n,t,q) satisfies the recurrences

(12(7’1, th) - (,12(7’1 - lvqt7Q) - Q(l + Q)ZUZ(H - 2)q2ta q)
+ ¢*tary(n = 3,4°t,q) — °t(1 — ¢’t)ar(n — 4,4*1,q) = 0

. 12 l
an 1,9) = S (~1)g T

ieZ
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and
a(n,t,q) —ax(n —1,t,q) — ¢">(1 + q)tax(n — 2,1,q)
+ ¢ tay(n — 3,t,q) — ¢"t(1 — ¢"*t)ax(n — 4,t,q) = 0.
From the second recurrence we get for ¢t = 1 the recursion
ar(n,1,q) —arx(n—1,1,q9) — ¢"*(1 + @)ar(n — 2,1,q)
+¢" 2a;(n—3,1,q9) — ¢" *(1 — ¢")ar(n — 4,1,q) = 0.
If we let n — oo we get

k+1)>+12

; 7i2 _l (
a2(t7 q) = Z Z Z qilk+l.

icz ‘1)1+z >0 (@)i(q),

For this formal power series we get the functional equation

ax(t,q) — ax(qt,q) — q(1 + q)taz(q*t, q) + ¢°tax(q’t, q)
—¢t(1 = ¢tax(q*t,q) = 0.

t.q) =Y d)q"t

>0

If we write

then we have

1 &
. i 4 ?
4l = ;( b (q)l—i(CI)lJri‘

Comparing coefficients we see that this sequence satisfies the recursion
(1=ghd(l) = (1+q+q"" —q)d(l - 1) +qd(l-2) = 0.

Proof of Theorem 3.1. Consider lattice paths with L%J northeast
steps and L%J southeast steps. Let w,(¢) be the weight of the set
of paths of length n which start at (0,0) or (0,—1). From the
properties of the weight function it is clear that these weights are
equal. Let w k( ) be the weight of those paths which begin with at
least k northeast steps, wyx(f) be the weight of those paths which
begin with at least k southeast steps. Let w,x = w', +w; « be the
weight of the set of paths which begin with at least k northeast steps
or at least k southeast steps.

Consider now the set of lattice paths satisfying —k —1 <y <k.
Here we have w, (f) = wy,—i(qt), because of the symmetry of the
weight.
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Therefore
wa (1) = WIl(t) +w, (1) = W:.,l(t) +wa-1(qt),
which gives
Wi (1) = wa 1) — w1 ().
We observe that each path which begins with 1%, i.e. with at least k
northeast steps, begins with one of the following steps: 1¥*!, 1¥01,
1001, ..., 1k0*11, 1%0*.

Here 1 denotes a northeast step and 0 denotes a southeast step.
For k = 1 this reduces to 11, 10. Therefore we get

W;J{,l (1) = W;j,z(t) + qtwa—a(q°1)
or
wzz(t) = wu(t) — wa_1(qt) — gtwa_s(g*1).

The weight of a path beginning with 1¥0'1 is the same as ¢*#-times the

weight of the paths which start at (0,2[) and begin with 1¥-/*! for

I<k,ie. g"tw} o, 1.1(¢"1). For I =k we get ¢*tw,_o(q*1).
Therefore we have

k=2
Woi(1) = W (1) + Clktz W:72j72,k7j(q21+2t) + g twan(q™1).
7=0

This gives
Wy (1) = (1= A — qtA)wy(t) = hi (A, 1, q)wa(1),
w,(t) = wo(t) — q2m’:—2,2(‘12f) —q'twy_s(q'1)
= (m(A,1,9) — ¢’thi(A,¢°1,q)A% — g 1A )w, (1)
= hy(A,t,q)wn(1).
With induction we see that in general
Wrer,k—i-l(t) = (A, 1, @)wa(2).

Since for a path with —k — 1 <y < k we have w;kﬂ (1) = 0 we get
the recursion '

hk(Avta Q)ak(na th) = W;lL.kJrl(t) =0.

The second recurrence (3.3) can be reduced to the first one by the
following observation: Each path ends in (n,0) or (n, —1). From the
symmetry of the weight it suffices to consider the first case. Let now
(for this proof only) w;’k(t) be the weight of those paths which end
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with at least k southeast steps, w, ,(¢) be the weight of those paths
which end with at least k northeast steps. Then with the same rea-
soning as above we get

k7
woi () = w1 (1) + qn_ktZWI—Z/‘—Lk—]( )+ ¢ wa (1)
=0

This gives the second formula.

4. A Related Theorem

Let B, x be the set of all lattice paths in R? which start at the origin
(0, 0), consist of L%J northeast steps and L"“J southeast steps, and
are contained in the strip —k <y < k. By bi(n,t,q) = wi(B,x) we
denote its weight.

Then for k>1 it follows in the same way as above that

el 1) = Y1 Y g0
icz >
n n+1
— i(k—1 i(k—1
x {2J+’( ) { 2 J*’( ar (4.1)
[—1i [+
For t = 1 this reduces to

n
bi(n,1,q) = Z(_l)lql () [ {EJ +i(k+1) (42)
ieZ 2
Theorem 4.1. For k > 2 we have the recursion
jk(szta Q)bk(n7t7Q) =0. (43)

For k=1 we get
bint,q)= [ (1+4"")
0<i<|3]
and therefore the recursion
bi(n,1,q) = (1+q)bi(n = 2,4°1,4) =0,

which corresponds to the polynomial 1 — (1 + qt)x*
For n<2k the initial values are given by

o= |3 [

>0 / l
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For even numbers we also have a second recurrence: The sequence
by(2n,t,q) satisfies

1
Jk <E2,q2"t,5>bk(2n, t,q) =0  for k>2.

For k =1 we have b;(2n,t,q) — (1 + ¢*"~'t)b1(2n — 2,1,q).
Proof. In this case we have
W1 () = wa(1),
Wi (1) = wia () + qtwa—2(4’1),
w1 (1) = w5 (1) + wa—2(q’1),
and therefore we get
Wi (1) = wa(1) = wa2(g*1) = giwa—2(g*1)
and
Wi (1) = wis () + ¢, o (¢°1) — tq’ twa_a(q't) + ¢ twa_a(q'1),
w, (1) = w,5(1) + quwrlm(qu)
This gives
w3 (1) = wa(t) = waa(q°t) — qiwy 2 (1) — ¢ twi2(¢*1)
+ @ Pw,_a(q*t) — Ptwa_a(q*).
For k>3

k=3
Wk () = W1 (£) = g6 Wi 2ki(q7 1)
j=0
is the weight of all paths which start with £ 1’s or k£ 0’s and pass
through the points (2k — 1,1) or (2k — 1, —1).
This can be written in the form

qkt(wn72k+2(q2k_2t) - qzk_lfwnfzk(qzkt)) + qktwank(qzkt)

— qktA2k72(1 _ qq2k72tA2 +A2)Wn(t)
= ¢"1A% )1 (A%, P q)wa (1),

From this the theorem follows immediately.
For the second recursion observe that for even numbers n the path
ends at (n, 0) and therefore the same reasoning as above is possible.
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For odd numbers n we could not find a general formula for the
minimal recurrences. We have only computed the first recurrences,
which are given by the following formulas:

b1(2n + 1 t q) - (1 +q2n71 )bl(zn - 17t7Q) = 07

by(2n + 1,1,q) — (1 + ¢ (1 + q)1)b2(2n — 1,1,q)
" (1 — g 1)b2(2n—3 t,q) =0,
bs (2n—|—1 t,q) — 1+ +¢ +¢))bs(2n — 1,1,q)
7" g =@ — "+ (1 + g+ q))bs3(2n — 3,1,q)

_ qZ” 1(q" — (14 q)g™ Pt + ¢*'1*)b3(2n — 5,1,q) = 0.

Let
b(t,q) = lim b(n,t,9) = > (=1)'¢" > ¢ ————
n—00 ieZZ z; (@)1-i(a)
= d(1,k)g"".
1>0
This gives
l qkiz
d(l.k)= ) (=1)
izz_l (9)1-i(q).4
and

S k) = Sy
>0 ( )00 ieZ
For k = 1 we get again well-known results:

It is easy to see that

2
ql

V=g -

Therefore
12

2(1 — A _fﬁ) =g (1+q)(1+¢)(1+4)-
>0

1 121
S

z

In this case we have the recursion
(1—g?)d(l, 1) — g 'd(I— 1,1) = 0.
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From the recurrence by (n,t,q) — (1 + qt)bi(n — 2,¢*t,q) = 0 we get
bi(2n,t,q) = (1+qt)(1+¢1) - (1+g" ') = [Z} ¢
qZ
Therefore we get

li|<k

For n — oo this becomes
Syt !
= @@ =) =) (1 =¢%) - (1= ¢*)

For k — oo this gives

1 Pa
WZ(_U T = Ur9+ra0+g)

XieZ

We conclude this paper by determining the fermionic form of by (n, t, q).

Here we can apply the same argument as above. We have only to
account for the fact that for the relative height k there do not appear
all possibilities but only those induced by the weight

5| &
F(n;k) = [ 2 ] q.

k 1p
This follows from

n n
bi(n,t,q) = [ bJ ] "t

=0 k ]p
Therefore from (1.6) we get by induction

n| k2l k=1 J

F(n;ny,...,n;) = quz+ N EJ_I-;M H n+nj_2;Ni
ny qzj:1 n;

This leads to

Theorem 4.2. The fermionic representation of bi(n, t, q) is given by

ny k=l
g = 3 g EIRb

ny q

=
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Remark 4.1. Theorem 4.2 can also be generalized to give an exten-
sion of Theorem 1.2 in FODA and QUANO [5] to arbitrary ¢

Let B, 4, be the set of all lattice paths in R? with northeast steps
and southeast steps which start at the point (0,k+ 1 —r), are
contained in the strip —k < y < k and end in either (n, 0) or (n, —1).
By by (n,t,q) = wi(Bux,) we denote its weight.

Then for 1 <r <k -+ 1 we have

n—k—1+r| *l

be (n,1,q) = Z l,NqN+ N2 N - +Ny {fJ_i—ZlNi

ek >0 ny P
k1 J )
XH n+nj—2;Ni—max(O,]+l—r) ' (4.5)
Jj=1 n;
For this holds for k = 1 since
5 [n
biant,q) =Y 5l-1-142) e
k=0 k o
and
17" , n—1—1+1
bl,l(nata CI) = b1,2(n - laqt7Q) = qu * 2 tk‘
k=0 k >

q
If we know (4.5) already for k, then for »>1 it follows immediately
from (1.6). For r = 1 we obviously have by | (n,1,q) = bi2(n — 1, qt, q)
from which the corresponding formula follows.
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