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Abstract

In this article the fundamental properties of the physical-mathematical laws are
studied upon which music is based. Thus this article is not a study of music as such,
but a study of the properties of the component elements which are the ‘‘building
blocks’’ of music in the hands of the composers. These ‘‘building blocks’’ are the
musical sound frequencies – the musical tones. It is the intrinsic physical-
mathematical structure of the musical tones, and the interrelationships among these
tones, which is studied. The physical-mathematical properties of the tones, together
with the physical-mathematical laws governing the relationships between the tones,
that forms the musical tone system which is discussed in this article.

The fundamental properties of musical tones (also referred to as intrinsic internal
musical properties) rest upon the laws of physics and mathematics. As such, they are
independent of cultural priorities regarding the perception of beauty in musical tones,
even though these fundamental properties form the basis upon which the various
musical systems are built. The cultural priorities find their way into music via the
composers, the musicians and the public in general.

The arguments used in this article are based mostly upon physics (acoustics) and
mathematics. The language used rests upon the concept of symmetries and leads to a
geometrical interpretation of the basic internal properties of music in the form of a
(mathematically scaled) lattice in a three-dimensional space. Each dimension rep-
resents a ‘‘rescaled octave system’’, based upon the three prime numbers 2, 3, and 5.
The (scaled) lattice points represent the possible musical tones – with respect to some
reference tone. The various musical scales are represented by subsets of lattice points
satisfying certain conditions. This geometrical picture leads to a convenient and easy
interpretation of the properties of the individual musical scales, and moreover, serves



to illustrate clearly the relationships between the various musical scales. As examples,
early western and modern western musical scales are treated in some detail. And,
for the purpose of comparison, two eastern musical scales (Japanese Noh-scales) are
discussed, in addition.

A map of the musical lattice tones from the 3-dimensional geometrical lattice space
upon the line of musical frequencies leads back to the standard theory of musical tones.

A careful distinction needs to be made between the concept of a mathematical
scale transformation, as it pertains to lattice points and musical ratios, and the musical
scales (staff) which are used to write down musical scores (notes).

1. Introduction

This introduction serves as a summary of both standard and well es-
tablished properties of acoustics, as well as a summary of the new results
which are derived in this article based upon those properties [1].

The frequency ratios of the
�

2
1

�
-octave system can be expressed in

the form

�lin

�
n;

�

2�
; �0

�
¼ 2n

�
1 þ �

2�

�
�0;

0 � �

2�
� 1; n ¼ 0;�1;�2; . . .

�linð0; 0; �0Þ ¼ �0;

�linðn; 1; �0Þ ¼ �linðnþ 1; 0; �0Þ ð1:1Þ

with �0 an arbitrarily chosen sound frequency (within the range of
frequencies of human hearing). Eq. (1.1) states that the range of
frequencies �lin can be segmented into a set of musically equivalent
intervals, called octaves, distinguished by pitch ð2nÞ only. The entire
set, Eq. (1.1) will be called an octave system (Fig. 1).

For a given value of n, the frequency interval

2n
�

1 þ �

2�

�
�0; 0 � �

2�
� 1; ð1:2Þ

will be called the n-th octave, with n ¼ 0 the basic octave. The reason
for this segmentation of the line � of frequencies into (musically

Fig. 1. The standard 2-based octave system with respect to the reference tone �0
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equivalent) octaves results from the fact that the human mind perceives
the ratio of two simultaneously sounded frequencies � and �0

�

�0

¼ 2 ð1:3Þ

as pleasing, i.e. as a consonance.
The arbitrarily chosen frequency �0 will be called the reference

frequency for the octave system. The parameter �=2� has been chosen
in this form since 0 � �=2� � 1 represents a cycle (Sect. 3).

An exponential form for the frequency ratios of the
�

2
1

�
-octave

system is given by

�exp

�
n;

�

2�
; �0

�
¼ 2nþ

�
2��0; 0 � �

2�
� 1; ð1:4Þ

with

�exp

�
0;

�

2�
; �0

�
¼ 2

�
2��0; 0 � �

2�
� 1; ð1:5Þ

the basic octave. Due to the difference in the two laws for �lin and �exp,
the frequencies �lin and �exp differ for �=2� ¼ �=2� for all parameter
values except for the values

�

2�
¼ �

2�
¼ 0; 1 ð1:6Þ

for which the two frequencies agree, Fig. 2. In fact, the parameter
values are related to each other by

�

2�
¼ log2

�
1 þ �

2�

�
: ð1:7Þ

That is, for a given frequency �lin ¼ �exp the values of the two param-
eters �=2�, �=2� disagree, or for the same parameter value �=2� ¼ �=2�
two different frequencies �lin 6¼ �exp are obtained, except for �=2� ¼
�=2� ¼ 0; 1. The octave property is thus represented by

� ¼ �linðn; 0; �0Þ ¼ �expðn; 0; �0Þ ¼ 2n�0; ð1:8Þ

i.e. the frequencies for which the two frequencies agree (the conso-
nances of the octave system based upon the reference frequency �0).

The parameter values �=2� ¼ �=2� ¼ 0; 1 characterize the octave
tones of the

�
2
1

�
-octave system – namely the initial points and the

endpoints of each octave on the line of frequency ratios, Eq. (1.8) and
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Fig. 1. These octave tones can be looked upon as (scaled) lattice
points on the line of frequency ratios.

Eq. (1.7) is a relationship of musical frequency ratios (defining
musical tones) to the intervals (distances) between musical tones.
That is, for two tones given by �1=�0 and �2=�0, the interval between
the two tones is defined as

�1

2�
� �2

2�
¼ log2

�
�1

�0

�
� log2

�
�2

�0

�
¼ log2

�
�1

�2

�
:

Thus, the intervals for the octave tones �=�0 of Eq. (1.8) with respect
to �0 are given by

�

2�
¼ log2

�
�

�0

�
¼ n log2

�
2

1

�
¼ n:

This shows that in the lattice picture of musical tones, Fig. 1, the
interval between neighboring lattice points is equal to 1 (i.e., equal to
1,200 cents), while the lattice point n corresponds to the frequency
ratio

�
2
1

�n
.

It will be shown that, in addition to the
�

2
1

�
-octave lattice system,

two ‘‘rescaled octave systems’’ can be introduced which are based
upon the frequency ratios 3

2
and 5

3
. These ‘‘rescaled octave systems’’

are given as �
�

�0

�
¼

�
3

2

�m

and
�

�0

¼
�

5

3

�r

:

The product of these three octave systems constitutes the musical
tones which are discussed in this article, namely the frequency ratios

�

�0

¼
�

2

1

�n�
3

2

�m�
5

3

�r

� ðn;m; rÞ; ð1:9Þ

n;m; r integers. Eq. (1.9) can also be interpreted as representing
musical lattice points in a (mathematical) 3-dimensional space.

The interval distances for the ‘‘rescaled
�

3
2

�
-octave system’’ are

given by

�

2�
¼ log2

�
3

2

�m

¼ m log2

�
3

2

�

and for the ‘‘rescaled
�

5
3

�
-octave system’’ by

�

2�
¼ log2

�
5

3

�r

¼ r log2

�
5

3

�
:
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The familiar logarithmic formula for the intervals between musical
tones of the type given by Eq. (1.9) then becomes

�

2�
¼ log2

�
�

�0

�
¼ nþ m log2

�
3

2

�
þ r log2

�
5

3

�
; ð1:10Þ

that is a linear expression in terms of three discrete parameters n;m; r.
The coefficients of Eq. (1.10), log2

�
2
1

�
, log2

�
3
2

�
and log2

�
5
3

�
, rep-

resent the interval distances along the three lines of the
�

2
1

�
-octave,

and the rescaled
�

3
2

�
- and

�
5
3

�
-octaves. See Figs. 8, 9, 13 and 15.

For the lattice points �=2� ¼ 0 holds and thus the corresponding
frequencies are well defined and can be compared,

�ðn; 0; �0Þ
�ðn0; 0; �0Þ

¼ 2n�n0 : ð1:11Þ

Since the reference tone �0 can be arbitrarily chosen it is possible
to associate an octave system with any musical tone, in particular also
with the tones of a musical system, like the musical system of the
ancient Greek Lyre, the diatonic Pythagorean musical system, etc.
Considering for the moment the natural diatonic musical system, each
of the tones (the German notation for the tones is used; see Sect. 6)

c d e f g a h c1

�00 ¼ 1�0 ð9
8
Þ�0 ð5

4
Þ�0 ð4

3
Þ�0 ð3

2
Þ�0 ð5

3
Þ�0 ð15

8
Þ�0 2�0 ð1:12Þ

serves as a reference tone �0 for its own octave system

�ðn; 0; �0 ¼ cÞ
ð�0 ¼ cÞ ¼ 2n; �

�
n;

�

2�
; �0 ¼ c

�
¼ 2n

�
1 þ �

2�

�
� ð�0 ¼ cÞ;

�ðn; 0; �0 ¼ dÞ
ð�0 ¼ dÞ ¼ 2n; �

�
n;

�

2�
; �0 ¼ d

�
¼ 2n

�
1 þ �

2�

�
� ð�0 ¼ dÞ;

�ðn; 0; �0 ¼ eÞ
ð�0 ¼ eÞ ¼ 2n; �

�
n;

�

2�
; �0 ¼ e

�
¼ 2n

�
1 þ �

2�

�
� ð�0 ¼ eÞ;

..

. ..
.

ð1:13Þ
with all the tones 2n�0 properly defined ð�=2� ¼ 0Þ, i.e. consonances.
It holds then

�ðn; 0; �00Þ
�ðn; 0; �0Þ

¼ �00
�0

: ð1:14Þ

Thus, the ratio of the �00 octave system with respect to the �0 octave
system exists and is given by the ratio of the reference frequencies.
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The internal musical properties of a musical system can be expressed
as ratios between octave systems. For the case of the example given
by Eq. (1.12) it holds �0 ¼ c ¼ 1, and �0 is any of the 8 tones.

Since early on in time (Chinese sources � 600 B.C., Pythagoras
� 500 B.C.) it has been known that the ratios of the set of numbers ([1]
and [2]),

f1; 2; 3; 4; 5; 6g ð1:15Þ
yield the consonances, imperfect and perfect, ‘‘within an octave’’.

It will be shown that the (smaller) set of the three prime numbers

f2; 3; 5g ð1:16Þ

forms a basis for the intrinsic musical properties of 3-parameter
musical systems. It are the ratios of the 2-, 3-, 5-based octave systems
from which intrinsic musical properties derive. The musical system
can formally be represented by a 3-dimensional lattice ðn;m; rÞ with
the lattice points corresponding to the musical tones, Fig. 15. The
various musical scales form subsystems of the general system. Thus,
the subsystem ðn; 0; 0Þ corresponds to the standard octave system,
Fig. 1. The subsystem ðn;m; 0Þ contains the ancient Greek Lyre and
the Pythagorean musical system, Figs. 7 and 8. The other musical
systems are contained in ðn;m; rÞ proper.

2. Assumptions

The following assumptions are made:

(a) The sound frequencies considered, as far as they apply to music,
are always understood to be limited to the range of the frequencies of
the musical instruments ðc�3 to c5, i.e. 24 Hz to 212 Hz).

(b) The linear change of sound frequencies �lin is given by

�linð�; �0Þ ¼ ��0; 0 � �<1; ð2:1Þ
�0 some arbitrarily chosen (reference) frequency and � a real parameter.
Then �lin represents all frequencies among which the sound fre-
quencies are contained.

(c) The exponential change of sound frequencies is given by

�expð�; �0Þ ¼ 2��0; 0 � �<1; ð2:2Þ
� a real parameter. Thus for a given value �0, and for a given fre-
quency �lin ¼ �exp the values of the parameters � and � will be dif-
ferent (except for � ¼ 1, � ¼ 0 and � ¼ 2, � ¼ 1).
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(d) The human mind perceives two distinct tones � and �0 (sound
frequencies), which are heard simultaneously, as agreeable (con-
sonant) if they differ by a factor of 2,

�=�0 ¼ 2; ð2:3Þ
for any chosen reference frequency �0.

Choosing �0 ¼ �0, the frequencies � of this interval are given by

�2½�0; 2�0� ¼ �0½1; 2� or
�

�0

2½1; 2� ð2:4Þ

where the square brackets denote the closed interval 1 � �=�0 � 2.
The interval Eq. (2.4), for arbitrarily chosen �0, corresponds to the
primary (basic) octave, with the two endpoints of the interval

� ¼ �0; 2�0 or
�

�0

¼ 1; 2 ð2:5Þ

forming a perfect consonance.
Taking the consonance property of the octave into account, Eq.

(2.1) can be rewritten in the form (Eq. (1.1)),

�lin

�
�

2�
; �0

�
¼ �0

�
1 þ �

2�

�
; 0 � �

2�
� 1; ð2:6Þ

where �=2� is a real parameter. The values 0 � �=2� � 1 then cover
the frequencies of an octave.

Since �0 can be arbitrarily chosen, the endpoint of the octave Eq. (2.6)
can also be chosen as the starting point of an octave, namely the octave

�lin

�
�

2�
; 2�0

�
¼ 2�0

�
1 þ �

2�

�
; 0 � �

2�
� 1; ð2:7Þ

and, since moreover the choice of �0 does not affect the octave prop-
erty (perfect consonance), the octave Eq. (2.7) has again the prop-
erties of the octave (2.6), except for a difference in pitch, �0 being
replaced by 2�0 (a rescaling). The line of all sound frequencies � can
thus be segmented into octaves which have identical musical prop-
erties, except for the pitch (a rescaling of the basic interval �0½1; 2�)

�lin

�
n;

�

2�
; �0

�
¼ 2n�0

�
1 þ �

2�

�
;

n ¼ 0;�1;�2; . . . ; 0 � �

2�
� 1; ð2:8Þ

where n ¼ 0 represents the basic octave. Note that due to the octave
property the negative values n ¼ �1;�2;�3; . . . can be ignored
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since for any value 2�n the octaves can be rescaled by the factor
2nþm,

2nþm � 2�n�0

�
1 þ �

2�

�
¼ 2m�0

�
1 þ �

2�

�
; m ¼ 0; 1;2; . . . ð2:9Þ

reproducing musically identical octaves (except for the pitch). Thus,
henceforth the values for the integer n will generally be restricted to
nonnegative integers. It is important to note that themusical properties of
all octaves are the same because they are given as ratios of frequencies.
Thus the scaling factors cancel and the ratios remain the same.

For the parameters � of Eq. (2.2) the form �=2� will be chosen.
Then the octave property applied to Eq. (2.2) yields

�exp

�
n;

�

2�
;�0

�
¼ �02nþ�=2�; 0 � �

2�
� 1; n ¼ 0;1;2; . . . ð2:10Þ

again segmenting the frequencies into octave intervals of identical
musical properties, except for the pitch.

The notation �=2� and �=2� for the parameters � and � has been
adopted in view of their significance to symmetry cycles (Sect. 3).

Fig. 2. The curves �lin and �exp as functions of the parameter nþ ð�=2�Þ. It holds
that �lin=�0 ¼ �exp=�0 if, and only if, �=2� ¼ �=2� ¼ 0; 1. These two values define
the octave tones. For all other values 0 � �=2�, �=2�<1 the two frequencies �lin and

�exp differ
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(e) The two frequencies �lin and �exp given by Eq. (2.8) and Eq. (2.10)
agree for the parameter values

�

2�
¼ �

2�
¼ 0; 1:

These parameter values define a lattice tone. For all other parameter
values there is a discrepancy between the frequency �lin and the fre-
quency �exp (Fig. 2).

(f) The octave property (consonance of the tones � and 2�) is as-
sumed to be universally true, all humans having essentially the same
receiving and analysing mechanism in their ear. The interpretation of
the analysed signal in the human mind will however depend upon
cultural influences. After all, the interpretation of the ratios of fre-
quencies 5

3
, 5

4
, 4

3
as consonances or as dissonances has changed with

time. Thus, while cultural influences do lead to different types of music,
reflecting itself in different musical scales and involving different
tones, the underlying musical structure upon which the various types
of music are built remains the same.

3. Cycles and Symmetries

If the frequencies are set to be equal it holds

� ¼ �lin ¼ �exp ¼ 2n�0

�
1 þ �

2�

�
¼ 2n�02

�
2�;

0 � �

2�
;

�

2�
� 1; n ¼ 0; 1; 2; . . . ð3:1Þ

with

�

2�
¼ log2

�
1 þ �

2�

�
; 0 � �

2�
;

�

2�
� 1 ð3:2Þ

(the inverse function to Eq. (3.1)).
The octave property, that is the equivalence of the endpoints of an

octave interval, combined with the equivalence of all octaves of the
octave system, Eq. (2.8), suggests to look upon the octaves as cycles.
The endpoint of the n-th octave,

� ¼ 2n�0

�
1 þ �

2�

�
;

�

2�
¼ 1;

is also the beginning point of the ðnþ 1Þ-st octave,

� ¼ 2nþ1�0

�
1 þ �

2�

�
;

�

2�
¼ 0;
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which, in turn, is equivalent to the beginning point of the n-th octave
(except for a scaling factor),

� ¼ 2n�0

�
1 þ �

2�

�
;

�

2�
¼ 0:

Thus, each octave can be represented as a frequency cycle

exp

�
i2�

�

�0

�
¼ exp

�
i2�2n

�
1 þ �

2�

��
¼ exp

�
i2�2n

�

2�

�
;

exp ½i2�2n� ¼ 1: ð3:3Þ
Eq. (3.3) maps the n-th octave upon a circle exp½i2���, 0 � � � 1,
such that for each value m one cycle is completed,

1

2n
ðm� 1Þ � �

2�
� 1

2n
m; m ¼ 1; 2; 3; . . . ; 2n: ð3:4Þ

That is, the n-th octave loops the circle 2n times (the scaling factor).
The exponent nþ ð�=2�Þ in Eq. (3.1) describes for 0� �=2�� 1 the

nonlinear (exponential) behaviour of the n-th octave. This exponent
can thus be used to characterize the n-th octave,

exp

�
i2�

�
nþ �

2�

��
¼ exp

�
i2�

�

2�

�
¼ exp

�
i2� log2

�
1 þ �

2�

��
;

ð3:5Þ

where now 0 � �=2� � 1 represents a single cycle for any octave.
The two cylindrical spirals (Fig. 3)

Sp

�
n;

�

2�

�
¼

�
ðx; yÞ ¼ exp

�
i2�2n �

2�

�
; z ¼ 2n

�
1 þ �

2�

��
ð3:6aÞ

Sp

�
n;

�

2�

�
¼
�
ðx;yÞ ¼ exp

�
i2� log2

�
1þ �

2�

��
; z¼ 2n

�
1þ �

2�

��
;

0 � �

2�
� 1; n ¼ 0; 1; 2; . . . ð3:6bÞ

intersect at the two endpoints of each octave n, �=2� ¼ �=2� ¼ 0
and �=2� ¼ �=2� ¼ 1. Thus, while one loop of a logarithmic spiral
defined in Eq. (3.6b) is completed, the spiral given by Eq. (3.6a)
completes n2 loops in a linear manner for each octave n.

A cylindrical spiral description has also been discussed in [3].
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An expression for the ð2=1Þ-octave property – restricted to the
plane – is given by the spiral

Sp

�
�

�0

�
¼ �

�0

exp

�
i2�

�

2�

�
¼ 2n

�
1 þ �

2�

�
exp

�
i2�

�

2�

�
;

n ¼ 0; � 1; � 2; . . . ; 0<
�

2�
� 1; ð3:7Þ

Fig. 3. The cylindrical spirals Spðn; �=2�Þ and Spðn; �=2�Þ. These spirals show the
cycle structure of the musical octave system. The parameter �=2� is used for both spirals
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where n denotes the n-th ‘‘expanding loop’’ around the origin of the
plane, Fig. 4.

4. Derivation and Analysis

In this section the basic results of this article are derived and
discussed.

Fig. 4. This is an illustration of the ð2=1Þ-octave property as a spiral structure in the
plane. This spiral structure is the cause for the logarithmic (exponential) law for the

frequencies �exp
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Eq. (3.1), the basic equation for the familiar 2-based octave system,
can be rewritten in the form

�

�0

¼ 2n

�
1 þ �

2�

�
¼ 2n�k

�
2k � 1 þ

�
1 þ 2k

�

2�

��
¼ 2n�k2kþð�=2�Þ;

ð4:1Þ
where the integer n denotes the n-th octave, and the integer k takes on
the values

k ¼ 0; 1; 2; . . . ; n:

Rewriting Eq. (4.1) in the form

�

�0

� 2n�kð2k � 1Þ ¼ 2n�k

�
1 þ 2k �

2�

�
¼ 2n�k

�
2kþð�=2�Þ � ð2k � 1Þ

�
;

ð4:2Þ
it is seen that the factor�

1 þ 2k
�

2�

�
; k ¼ 0; 1; 2; . . . ; n ð4:3Þ

in Eq. (4.2) has the property

1 �
�

1 þ 2k
�

2�

�
� 1 þ 2k; 0 � �

2�
� 1 ð4:4Þ

and represents a cycle based upon the number

1 þ 2k; k ¼ 0; 1; 2; . . . ; n: ð4:5Þ
That is, cycles based upon the numbers

2; 3; 5; 9 ð¼32Þ; 17; 33; . . . ð4:6Þ
are obtained. Considering Eq. (4.2) for the special case of n ¼ k, it
follows

�0

�0

¼ �

�0

� ð2k � 1Þ ¼
�

1 þ 2k
�

2�

�

¼ 2kþð�=2�Þ � ð2k � 1Þ ¼ ð1 þ 2kÞð�
0=2�Þ;

�0

2�
¼ logð1þ2kÞ

�
2kþð�=2�Þ � ð2k � 1Þ

�

¼ logð1þ2kÞ

�
2k
�

1 þ �

2�

�
� ð2k � 1Þ

�

¼ logð1þ2kÞ

�
1 þ 2k

�

2�

�
; ð4:7Þ
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with

2ð�=2�Þ ¼ 1 þ �

2�
; 0 � �

2�
;

�

2�
;

�0

2�
� 1; k ¼ 0; 1; 2; . . . :

Thus, from Eq. (4.7) follows�
1 þ 2k

�

2�

�
¼ ð1 þ 2kÞð�

0=2�Þ;
�0

2�
¼ logð1þ2kÞ

�
1 þ 2k

�

2�

�
;

ð1 þ 2kÞw
�

1 þ 2k
�

2�

�
¼ ð1 þ 2kÞwþð�0=2�Þ;

k ¼ 0; 1; 2; . . . ; 0 � �

2�
;

�0

2�
� 1; ð4:8Þ

which is the basic law for (scaled octave) cycles based upon the
numbers ð1 þ 2kÞ, w ¼ 0;�1;�2; . . . . The value k ¼ 0 yields the
familiar 2-based octave cycle,�

1 þ �

2�

�
¼ 2�=2�;

2n
�

1 þ �

2�

�
¼ 2nþð�=2�Þ;

�

2�
¼ log2

�
1 þ �

2�

�
: ð4:9Þ

The value k ¼ 1 yields the 3-based octave system�
1 þ �

2�

�
¼ 3�

0=2�;

3m

�
1 þ 2

�

2�

�
¼ 3mþð�0=2�Þ;

�0

2�
¼ 1

log23
log2ð21þð�=2�Þ � 1Þ ¼ log3

�
1 þ 2

�

2�

�
;

3n�0 � 3m�0

�
1 þ 2

�

2�

�
� 3mþ1�0;

m ¼ 0; 1; 2; . . . ; 0 � �

2�
;

�

2�
;

�0

2�
� 1 ð4:10Þ

and value k ¼ 2 yields the 5-based octave system�
1 þ 22 �

2�

�
¼ 5�00=2�;
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5r

�
1 þ 22 �

2�

�
¼ 5rþð�00=2�Þ;

5r�0 � 5r

�
1 þ 22 �

2�

�
� 5rþ1�0;

�00

2�
¼ log5

�
22þð�=2�Þ � 3

�
¼ log5

�
1 þ 22 �

2�

�
;

r ¼ 0; 1; 2; . . . ; 0 � �

2�
;

�

2�
;

�00

2�
� 1; ð4:11Þ

Fig. 5 and Fig. 6.
Higher scaling factors appear not to contribute, possibly because the

scaling becomes too large, involving too many
�

2
1

�
-octaves (see Fig. 3).

Considering Eq. (4.2) for the special values n ¼ 1, k ¼ 0 and
n ¼ 2, k ¼ 1, it can be seen that the numbers 4 and 6 are in fact
composite numbers, namely 2.2 and 2.3. That is, they are built up
from the basic set (2, 3, 5)

n ¼ 1; k ¼ 0:
�

�0

¼ 2 �
�

1 þ �

2�

�
¼ 2 � 2ð�=2�Þ;

for
�

2�
¼ �

2�
¼ 1 ð4:12Þ

and

n ¼ 2; k ¼ 3:
�

�0

� 2 ¼ 2 �
�

1 þ 2
�

2�

�
¼ 2

�
21þð�=2�Þ � 1

�
;

for
�

2�
¼ �

2�
¼ 1: ð4:13Þ

The 2-based, 3-based and 5-based octave systems are called octave
systems since they carry the octave system properties of the standard
musical octave system, which is based upon 2. This property is
inherited from the original 2-based octave system since the 3-based
and 5-based octave systems are obtained by means of similarity
(scaling) transformations which do not alter the musical properties
(ratios). This is analogous to the manner by which the n 6¼ 0, 2-based
octaves, inherit the properties from the basic n ¼ 0 octave,
�0 � � � 2�0, by means of the scaling transformation�

1 þ �

2�

�
; 0 � �

2�
� 1: ð4:14Þ
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For example, scaling the basic octave n ¼ 0 one obtains�
1þ �

2�

�
�0 �

�
1þ �

2�

�
� �

�
1þ �

2�

�
2�0; 0 � �

2�
� 1; ð4:15Þ

which yields for �=2� ¼ 1 the scaled octave n ¼ 1,

2�0 � �0 ¼ 2� � 22�0

that is, the next octave (together with its inherited musical properties).
The scaling (similarity) transformation which carries the

ð1 þ 2kð�=2�ÞÞ-based octave into the ð1 þ 2kþ1ð�=2�ÞÞ-based octave
is given by

ð1 þ 2kþ1ð�=2�ÞÞ
ð1 þ 2kð�=2�ÞÞ ð4:16Þ

which for �=2� ¼ 1 yields the scaling ratios

2

1
;

ð1 þ 2kþ1Þ
ð1 þ 2kÞ ; k ¼ 0; 1; 2; 3; . . . :

The combined octave system consists of the product of the three
octave systems given by the product of the scalings

ðn;m; rÞ �
�

2

1

�n�
3

2

�m�
5

3

�r

: ð4:17Þ

It follows that

ðn;m; rÞ ¼ ð100Þnð010Þmð001Þr; ð4:18Þ
where

ð100Þn; ð010Þm and ð001Þr; n;m; r ¼ 0;�1;�2 ð4:19Þ

represent the ð2
1
Þ-based, ð3

2
Þ-based and ð5

3
Þ-based octave systems with

respect to a frequency (tone) �0,

� ¼ ð100Þn�0; � ¼ ð010Þm�0; � ¼ ð001Þr�0;

n;m; r ¼ 0;�1;�2; . . . : ð4:20Þ
The three elements

ð100Þ; ð010Þ; ð001Þ ð4:21Þ
can be considered to be linearly independent orthogonal basis elements
of a 3-dimensional space. Then the correspondence

ðn;m; rÞ $ nð100Þ þ mð010Þ þ rð001Þ � ‘ðn;m; rÞ ð4:22Þ
maps the elements ðn;m; rÞ upon the lattice points ‘ðn;m; rÞ. This
map yields a (scaled) lattice for the system of musical tones. For
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simplicity the lattice points ‘ðn;m; rÞ will henceforth also be denoted
by ðn;m; rÞ as there is little chance for confusion of the two meanings
in the context of this article (Sect. 7).

The definition Eq. (4.17) also shows that the multiplication of two
frequency ratios (numbers) is equivalent to the vector addition of the
exponents. Both operations will be used interchangeably.

The numerical condition

A� ðnmrÞ �B ð4:23Þ
defines the lattice points ðn;m; rÞ for which the musical ratio, with
respect to a chosen reference frequency �0, falls within the parameter
values A and B. Thus, for A ¼ 1 and B ¼ 2, the condition�

2

1

�0

¼ 1� ðn00Þ �
�

2

1

�1

¼ 2 ð4:24Þ

implies that n ¼ 0; 1 only. That is, the basic n ¼ 0, 2-based octave, with
the lattice points (tones) �0 (¼ c) and 2�0 (¼ c1) is obtained. Similarly�

3

2

�0

¼ 1� ð0m0Þ �
�

3

2

�1

and

�
5

3

�0

� ð00rÞ �
�

5

3

�1

ð4:25Þ
yield m ¼ 0; 1 and r ¼ 0; 1, the basic m ¼ 0 and r ¼ 0, 3-based and
5-based octaves corresponding to the tones c; g and c; a of the lattice.

The numerical condition

1 � ðn;m; 0Þ � 2 ð4:26Þ
is equivalent to the condition

2m�n � 3m � 2m�nþ1: ð4:27Þ
This condition leads to the extended Pythagorean scale, Sect. 7 and
Fig. 9.

The general condition

1 � ðn;m; rÞ � 2 ð4:28Þ
can be reformulated as

2a � 3b5c � 2aþ1 ð4:29Þ
with

a ¼ m� n;

b ¼ m� r;

c ¼ r; ð4:30Þ
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corresponding to the elements/lattice points

ðn ¼ bþ c� a; m ¼ bþ c; r ¼ cÞ: ð4:31Þ
The various lattices shown in the figures can be derived from Eq. (4.23).
They define, via their lattice points, the intrinsic musical properties
of a musical system. External requirements, like the requirement of
‘‘equal spacing’’ between tones for mechanical instruments of western

culture ð12
ffiffiffi
2

p
Þ, will cause disturbances of the symmetry of the musical

lattice, i.e. will ‘‘break its symmetry.’’

5. Results and Summary

The musical tones, defined by their frequency ratios, can formally be
looked upon as lattice points (vectors) in a 3-dimensional lattice
space. The lattice lines represent – in a formal way – ‘‘rescaled octave
systems’’. That is, the lattice points along the

�
2
1

�
-octave line

correspond to the octave tones cn, n ¼ 0; � 1; � 2; . . . . The lattice
points along the rescaled

�
3
2

�
-octave line correspond to the tones with

frequency ratios
�

3
2

�m
, m ¼ 0; � 1; � 2; . . . . The lattice points along

the rescaled
�

5
3

�
-octave line correspond to the tones with frequency

ratios
�

5
3

�r
, r ¼ 0; � 1; � 2; . . . . All tones of the 3-dimensional

lattice system are then given by the frequency ratios
�

2
1

�n� 3
2

�m� 5
3

�r
–

the so-called numerical values of the lattice points ðn;m; rÞ. These
numerical values represent a map from the lattice structure onto the
line of frequency ratios – the standard theory of musical tones.

A geometrical picture for the 3-dimensional musical tone system is
thus given by

�

�
n;m; r;

�

2�

�
¼

�
2

1

�n�
3

2

�m�
5

3

�r

�
�

1 þ ð�=2�Þ
1

�‘�
1 þ 2ð�=2�Þ
1 þ ð�=2�Þ

�s

�
�

1 þ 22ð�=2�Þ
1 þ 2ð�=2�Þ

�t

� �0; ð5:1Þ

n;m; r ¼ 0;�1;�2; . . . ; ‘; s; t ¼ 0;1; ‘þ sþ t ¼ 1; 0 � �

2�
� 1;

whereby the frequency ratios

�

�
n;m; r;

�

2�
¼ 0

�

�0 ¼

�
2

1

�n�
3

2

�m�
5

3

�r

� ðn;m; rÞ ð5:2Þ
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correspond to the musical tones of the system, namely the octave
system, having the property �=2� ¼ �=2� ¼ 0; 1.

The musical system (5.1) rests upon three octave systems, namely
the systems

�

�
n; 0; 0;

�

2�

�
¼ 2n

�
1 þ �

2�

�
�0; n ¼ 0;�1;�2; . . .

ð2-based octave systemÞ;

�

�
0;m; 0;

�

2�

�
¼ 3m

�
1 þ 2

�

2�

�
�0; m ¼ 0;�1;�2; . . .

ð3-based octave systemÞ;

�

�
0; 0; r;

�

2�

�
¼ 5r

�
1 þ 22 �

2�

�
�0; r ¼ 0;�1;�2; . . .

ð5-based octave systemÞ; ð5:3Þ

0 � �

2�
� 1:

The relationship between the two bases used in Eq. (5.1) and
Eq. (5.3) is given by�

2

1

�n�
3

2

�m�
5

3

�r

¼ 2n03m0
5r

0
; ð5:4Þ

n0 ¼ n� m;
m0 ¼ m� r;
r0 ¼ r;

n ¼ n0 þ m0 þ r0;
m ¼ m0 þ r0;
r ¼ r0:

The scaling factors between these octave systems are given by

�ðn; 0; 0; �=2�Þ
�0

¼
�

2

1

�n ð1 þ ð�=2�ÞÞ
1

; n ¼ 0;�1;�2; . . .

�ð0;m; 0; �=2�Þ
�ðm; 0; 0; �=2�Þ ¼

�
3

2

�m ð1 þ 2ð�=2�ÞÞ
ð1 þ ð�=2�ÞÞ ; m ¼ 0;�1;�2; . . .

�ð0; 0; r; �=2�Þ
�ð0; r; 0; �=2�Þ ¼

�
5

3

�r ð1 þ 22ð�=2�ÞÞ
ð1 þ 2ð�=2�ÞÞ ; r ¼ 0;�1;�2; . . .

0 � �

2�
� 1 ð5:5Þ

with

�0 ¼ �ð0; 0; 0; 0Þ ð5:6Þ
the reference frequency.
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For n ¼ 0; m ¼ 0, r ¼ 0, �=2� ¼ 0, the three ratios�
2

1

�
;

�
3

2

�
and

�
5

3

�
ð5:7Þ

are obtained.
The composite musical octave system (5.1) is given by the product

of the three ð�=2�Þ-dependent scaling factors (5.5). The scaling factor
�=2� can be changed for only one of the three scalings (5.5) at a time
resulting in the condition ‘; s; t ¼ 0; 1, with ‘þ sþ t ¼ 1.

The ratios

�ðn;m; r; �=2� ¼ 0Þ
�0

¼
�

2

1

�n�
3

2

�m�
5

3

�r

� ðn;m; rÞ ð5:8Þ

correspond to the musical tones ð�=2� ¼ �=2� ¼ 0Þ of the musical
lattice system with respect to the reference tone �0. These frequency
ratios can be represented as lattice points of a 3-dimensional lattice
with the distances between the lattice points along the three axes scaled
by the factors

�
2
1

�n
,
�

3
2

�m
,
�

5
3

�r
, respectively, Fig. 12 and Fig. 15.

In turn, for fixed values n;m; r, the frequency �00,

�00 ¼ �

�
n;m; r;

�

2�
¼ 0

�
�0 ¼

�
2

1

�n�
3

2

�m�
5

3

�r

�0; ð5:9Þ

can be chosen as reference frequency for a musical lattice system
with respect to the tone �00. Then

�

�
n0;m0;r0;

�

2�

�
¼
�

2

1

�n0�
3

2

�m0�
5

3

�r0

�
�

1þð�=2�Þ
1

�‘�
1þ2ð�=2�Þ
1þð�=2�Þ

�s�
1þ22ð�=2�Þ
1þ2ð�=2�Þ

�t

��00

ð5:10Þ
is an equivalent musical system with respect to the reference tone �00.
Its musical tones, with respect to �00 and with respect to �0, are given
by the lattice points

�ðn0;m0; r0; �=2� ¼ 0Þ
�00

¼ ðn0;m0; r0Þ;with respect to �00;

¼ �ðn0 � n;m0 � m; r0 � r; �=2� ¼ 0Þ
�0

¼ ðn0 � n;m0 � m; r0 � rÞ;with respect to �0:

ð5:11Þ
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Thus the ratio of the tones of the �00-based octave system with
respect to the tones of the �0-based octave system

�00
�0

¼ �ðn0;m0; r0; 0Þ
�ðn0 � n;m0 � m; r0 � r; 0Þ ¼

�
2

1

�n�
3

2

�m�
5

3

�r

ð5:12Þ

can be looked upon as the defining ratio of the musical tones which
correspond to the two frequencies �00 and �0. That is, each musical
tone has associated with it its own lattice octave system with all its
tones defined by ð�=2� ¼ �=2� ¼ 0; 1Þ, and the musical ratio �00=�0

for tones is a ratio between their associated lattice octave systems.
The interval factors between two distinct tones ðn;m; rÞ and

ðn0;m0; r0Þ of a given musical system with respect to a fixed reference
tone �0 is given by

ðn;m; rÞ � ðn0;m0; r0Þ ¼ ðn� n0;m� m0; r � r0Þ ð5:13Þ
and it holds for the tones of a musical scale thatX

ðn;m; rÞ ¼ ðN; 0; 0Þ; ð5:14Þ
where the sum is over all tones ðn;m; rÞ of the scale and N is the
number of 2-octaves of the scale.

Most of the musical tones encountered in this article can be found
in the list of tones given in [4]. The basis used in [4] is

c1=c ¼ 2=1 ¼ ð1; 0; 0Þ ¼ O ðOctaveÞ
e=c ¼ 5=4 ¼ ð�1; 1; 1Þ ¼ T ðTerzÞ
g=c ¼ 3=2 ¼ ð0; 1; 0Þ ¼ Q ðQuintÞ:

The basis used in this article is

c1=c ¼ 2=1 ¼ ð1; 0; 0Þ ¼ O ðOctaveÞ
g=c ¼ 3=2 ¼ ð0; 1; 0Þ ¼ Q ðQuintÞ
a=c ¼ 5=3 ¼ ð0; 0; 1Þ ¼ S ðSixthÞ:

The two bases are mathematically equivalent. They are related to
each other by

T ¼ e=c ¼ 5=4 ¼ QS=O ¼ ð�1; 1; 1Þ;
S ¼ a=c ¼ 5=3 ¼ OT=Q ¼ ð0; 0; 1Þ:

6. Examples and Applications

In the following, various musical scales are listed in order to illustrate
the results obtained. For ease of comparison, both the standard frac-
tions for the tones and intervals (factors) and their internal structure
ðn;m; rÞ is given. Note that English b[ and b correspond to German b
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and h, respectively, and that ðnmrÞ=ðn0m0r0Þ ¼ ðn� n0;m� m0; r � r0Þ
are the interval factors.

6.1. The 2-Based (Standard) Octave System

The 2-based (standard) octave system is fully characterized by the
subset fðn; 0; 0Þ ¼

�
2
1

�n
; n ¼ 0;�1;�2; . . .g

The ancient Greek Lyre and the Pythagorean musical scale are based
upon the subset fðn;m; 0Þ; n;m ¼ 0;�1;�2; . . .g.

6.2. The Ancient Greek Lyre

fðn;m; 0Þ ¼
�

2
1

�n� 3
2

�m
; n;m ¼ 0;�1;�2; . . .g

6.3. Pythagorean Diatonic Musical Scale�
ðn;m; 0Þ ¼

�
2
1

�n� 3
2

�m
; n;m ¼ 0;�1;�2; . . .

�

Syntonic comma: 80
81
¼

�
2
1

�1� 3
2

��3� 5
3

�1
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6.4. The Natural Diatonic Scale�
ðn;m; rÞ ¼

�
2
1

�n� 3
2

�m� 5
3

�r
; n;m; r ¼ 0;�1;�2; . . .

�

6.5. The Chromatic Scale, Major�
ðn;m; rÞ ¼

�
2
1

�n� 3
2

�m� 5
3

�r
; n;m; r ¼ 0;�1;�2; . . .

�

6.6. The Chromatic Scale, Minor�
ðn;m; rÞ ¼

�
2
1

�n� 3
2

�m� 5
3

�r
; n;m; r ¼ 0;�1;�2; . . .

�
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6.7. NOH (Theatre, Dance) [2]

NOH, tone system for singing with respect to tone c.�
ðn;m; rÞ ¼

�
2
1

�n� 3
2

�m� 5
3

�r
; n;m; r ¼ 0;�1;�2; . . .

�

6.8. NOH [2]

Transverse bamboo flute, Noh-kan�
ðn;m; rÞ ¼

�
2
1

�n� 3
2

�m� 5
3

�r
; n;m; r ¼ 0;�1;�2; . . .

�

7. The Scaled Lattices

In this section the scaled lattices and their musical contents are listed
for those musical scales which were discussed in this article. These
lattices represent the internal structure of the musical tones and of the
interval factors associated with them.
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Fig. 7. It shows part of the ðn;m; 0Þ lattice with the four tones of the ancient
Greek Lyre

Fig. 8. It shows a larger portion of the ðn;m; 0Þ lattice with the tones of the diatonic
Pythagorean scale indicated in it
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Fig. 9. It shows an extended Pythagorean scale consisting of 12 tones
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Fig. 14. It shows how triads can be easily identified graphically in the lattice given in
Fig. 12 or Fig. 15
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