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Abstract

Our aim is to present some generalized stability results of Ulam-Hyers type for
A-quadratic functional equations of the form Q) (F) = 0, where A € {1,2}, O\(F) is
given by

O\(F)(u,v) :=Flu+v)+Fu+S0)+A—=1)(F(u—0v)+F(u—_S(©)))

—2A(F(u) + F(0) +F(M+S(M);U_S(U))
+F(u—S(u)—2|—v+S(v)>)’

and the unknown function F is defined on linear spaces Z = X; X X, and § = Sy, :=
Px, — Py,.

Mathematics Subject Classification (2000): 39B62, 39B72, 39B82, 47H10.
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1. Introduction

Different methods to obtain stability properties for functional
equations are known. The direct method revealed by HYERS in [17],
where the Ulam’s problem concerning the stability of homomor-
phisms was affirmatively answered for Banach spaces, arrived at a very
large extent and successful use (see, e.g., [1], [3], [32], [16], [22]).
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The interested reader may consult [13], [18], [10], [11] and [19] for
details.

On the other hand, in [27], [5] and [6] a fixed point method was
proposed, by showing that many theorems concerning the stability of
Cauchy and Jensen equations are consequences of the fixed point
alternative. Subsequently, the method has been successfully used, e.g.,
in [7], [8], [31], [21], [20] or [24]. It is worth noting that the fixed point
method introduces a metrical context and better clarifies the ideas of
stability, which is seen to be unambiguously related to fixed points of
concrete contractive-type operators on suitable (function) spaces.

We present some generalized Ulam-Hyers stability results for
functional equations of A-quadratic type. By using both the direct
method and the fixed point method, we slightly extend the results in
[25], [26], [9], [16], [22], [28], [29] and [30].

2. Functional Equations of A-Quadratic Type

Let X;,X, and Y be real linear spaces and consider the Cartesian
product Z := X; x X, together with the linear selfmappings Py,, Px,
and S, where Px, () = (u1,0), Px,(u) = (0,u2), Yu = (u,uz) €Z,
and S = Sx, := Px, — Px,. A function F:Z — Y is called a A-qua-
dratic mapping (A € {1,2}) iff it satisfies, for all u, v € Z, the following
equation:

O\(F)(u,0) :=F(u+0v)+F(u+S))+ (A= 1)(F(u—v)+F(u—S(v)))
u+S(u)+v—_S(v)
—2A <F(u)+F(v)+F< 5 )

+F<u—SOO+v+S@O>>:O. 2.1)

2

Notice that, whenever Z is an inner product space, F(u)=
a- ||Pxul|* - ||Px,ul®, A€ {1,2}, defines a solution of (2.1) for each
acR.

For A =1 a solution F:Z — Y is called an Add Q-type mapping.
If F is a solution of (2.1) for X; =X, =X, then XxX > u=
(x,2) = f(x,z) :== F(u) €Y is an additive-quadratic mapping on X,
i.e., it verifies the following equation [26]:

fx+y,z+w) +f(x+y,z—w)

=2(f(x,2) +f (v, w) +f(x,w) +f(¥,2)),  Vx,y,z,weX.
(2.2)
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For A = 2, a solution F:Z — Y is called a Bi Q-type mapping. If F
verifies (2.1) for X; = Xo = X, then u = (x,z) — f(x,2) := F(u) is a
bi-quadratic mapping, verifying the following equation [25]:

f(x+y,z—|—w) —i—f(x—l—y,z—w) —i—f(x—y,z—l—w) —I—f(x—y,z—w)

=4(f(x,2) +f(y,w) +f(x,w) +f(v,2),  Vxy,z,weX.
(2.3)

Remark 2.1. Any solution F of (2.1) has the following properties:
(i) F(0) =0; F is an odd mapping for A = 1 and an even map-
ping for A = 2;
(i) F(2"-u) =2W2" . F(u), YueZ, VYneN;
(ili) FoS=F and Fo Py, = F o Py, = 0;
(iv) moreover, if f(x,z) = F(u), where u = (x, z), then
(iv.1) for A = 1, f is additive in the first variable and quadratic
in the second variable;
(iv.2) for A =2, f is quadratic in each variable.

We also have the following

Lemma 2.1. Suppose F:Z — Y is of the form
F(u) = f2(2)f1 (%), Vu=(x,2)€Z = X; xXa,

with arbitrary nonzero mappings f1: X, — Y and f>: X, — R. Then:
(1) F is 1-quadratic if fi is additive and f, is quadratic;
(i) fi is additive if F is 1-quadratic and f, is quadratic;
(iii) f> is quadratic if F is 1-quadratic and f| is additive;
(iv) F is 2-quadratic if and only if fi and f, are quadratic.

2.1. The Generalized Ulam-Hyers Stability
for A-Quadratic Equations

Let us consider a control mapping ®: ZxZ — [0, 00) such that, for
all u,veZz,

> P (2u, 2v)
Z (A+2)(i+1) o,
i=0
i 2 )\-‘1—2 (l (I) M v < .
51 | <90 respectively | (2.4)

i=1

and suppose Y is a Banach space.
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Theorem 2.2. Let F:Z — Y be such a mapping that F o Px +
(A=1)FoPx, =0 and

|OA(F) (1, 0)|ly < ®(u,v), Vu,veZ. (2.5)
Then there exists a unique A\-quadratic mapping B:Z — Y, given by

. F(2"u) ) ) u
B = Jim e (500 = Jim20 (). ez

for which
|F(u) — B(u)|ly < ¥(u,u), VueZ. (2.6)

Proof. We shall use the Hyers’ direct method. Letting # = v in (2.5),
we obtain

In the next step, as usual, one shows that

F(2°u) F(2"u) 2= (20, 2'u)
H oy~ gy |, < 2 gwmen ez (@7)
i=p

F(2u)
A2

_ 0w
, o 22

— F(u)

, YueZz.

Y

for given integers p,m, with 0 < p<m. Using (2.4) and (2.7),
{F(2"u)/2P+21} _, is a Cauchy sequence for any u € Z. Since Y is
complete, we can define the mapping B:Z — Y,

Bu) = tim L2

By using (2.7) for p = 0 and m — oo we obtain the estimation (2.6).
By (2.5), we have

H F(2"(u+v)) F(2"(u+S(v)))
2(3+2)n 2(A+2)n

F2"(u—v)) FQ2"(u—-S(
O LCACER AT Ry

o (FED PR L o (S0 S0

2(A+2)n 2(A2)n 2(A+2 2
1 L u—Su)+v+S(v) ®(2"u,2"v)
+2(/\+2)HF<2 < 2 y = 2(/\+2>n )

for all u,ve Z. Using (2.4), (2.8) and letting n — oo, we immediately
see that B is a A-quadratic mapping.
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Let By be a A-quadratic mapping which satisfies (2.6). Then

B(2"u) F(2"u) F(2'u) B1(2"u)
|B(u) — Bi(u)]ly < 2(+2)n — 2(A+2)n 2(A+2)n  Y(M2)n

u2u
S

Hence the uniqueness claim for B holds true. O

Let us consider a mapping ¢: X x X XX xX — [0,00) such that
Vx,y,z,w€EX,

0.9]
©(2'x,2i7, 2y, 2'w)
X LY, W)= Z 2 (A+2)(i+1) < 00,
( X,2,Y,W 22(A+2)z 1) <;l ;l zzl ;)<oo respectively).

As a direct consequence of Theorem 2.2, for A = 1/\ = 2, we obtain:

Corollary 2.3. Suppose that X is a real linear space, Y is a real
Banach space and let f:X XX — Y be a mapping such that

[fGx+yz+w) +fx+y,z2=w)+ A =D({f(x—y,z+w)
+fx—y,z—w) = 2MF(x,2) + £y, w) +f(x,w) + £, 2)lly
< o(x,z,y,w),

and let f(x,0)+ (A—1)-f(0,z) =0, for all x,y,z,weX. Then
there exists a unique additive-quadratic/bi-quadratic mapping
b:XxX —Y, given by

Vx,z€X,
such that
1f(x,2) = b2y < P(xz,x2),  VxzeX.  (29)

Proof. Let us consider X; =X, =X, u,veXxX, u=(x,z), v
(v,w), F(u) =f(x,z), and ®(u,v) = p(x,z,y,w). Since ¥(u,v)
¥(x,z,y,w)<oo, then we can apply Theorem 2.2. Clearly, the
mapping b, defined by b(x,z) = B(u) is additive-quadratic/bi-
quadratic and verifies (2.6). O
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For A =1 in the above Corollary, we obtain the stability result in
([26], Theorem 7) and, for A = 2, that in ([25], Theorem 7).

2.2. Stability Results of Aoki-Rassias Type

For particular forms of the mapping ¢ in (2.4), we can obtain in-
teresting consequences. We identify stability properties with un-
bounded control conditions invoking sums (AOKI [1]) and products
(RASSIAS [28-30]) of powers of norms.

Let X, X, and Y be real linear spaces. Suppose that Z := X; x X; is
endowed with a norm ||u||, and that Y is a real Banach space.

Corollary 2.4. Let F:Z — Y be a mapping such that
1OA(F)(w, )|y < e(llullz +[lvlZ),  Vu,veZ,

where p,q€[0,\+2) or p,ge(A+2,00) and € > 0 are fixed. If
FoPx, =0 and (A—1)FoPyx, =0, then there exists a unique
A-quadratic mapping B:Z — Y, such that

£ €
HF(u)—B(”)Hyﬁm'H”le”rm'”””%a VueZ.
Proof. Consider the mapping ®:ZxZ — [0,00), P(u,v) =

e(|lull + llv]|Z), where p,g€[0,A+2) or p,g€(A+2,00) and
€ > 0. Then (see (2.4)),

SO PO SN VR
u,v) =¢ 2 ) € T 3] o, u,veZ,
and the conclusion follows directly from Theorem 2.2. O

Now, suppose that X; = X, = X, where X is a real normed space,
and consider the function X xX > u = (x,z) — F(u) = f(x,z), where
f is mapping X xX into the real Banach space Y. Although the
functions of the form u — ||u|| := (||x[|" + ||z||')"/* may not be norms,
the above proofs work as well, and we obtain the following stability
properties for A\-quadratic equations:

Corollary 2.5. Let f: X XX — Y be a mapping such that
[fx+y,z+w)+fx+y,z=w)+ A= x—y,z+w)
+fx =y 2= w) = 2X(F(x,2) + £, w) +F (e, w) +£ (3, 2)lly
< e(llxlik + Iyl + llzlI% + [wll%),

forall x,y,z,w € X and for some fixed €,p,q, with p,q€[0,2 + \) or
P,gE(AN+2,00) and € > 0. If f(x,0) =0 and (A —1)f(0,y) =0,
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for all x,y€X, then there exists a unique additive-quadratic/bi-
quadratic mapping b: X XX — Y, such that

2e 2¢e

1/ (x,2) = b(x,2) |y Sm' HXH%PM' lzl|%, Vx,zeX

forall x,z€X.

Furthermore, by using the means inequality or directly, two in-
teresting results of RASSIAS type can be obtained for products:

Corollary 2.6. Let F:Z — Y be a mapping such that
1OA(F)(u,0)lly < - [lully - [z, Vu,veZ,

where €,p,q > 0 are fixed and p+q # XN+ 2. If FoPx, =0 and
(A= 1)F o Px, = 0, then there exists a unique \-quadratic mapping
B:Z — Y, such that

e

[[F(u) = B(u)lly < 22 o |

ull5™, VueZ.

Proof. Consider the mapping ®:ZxZ — [0,00), P(u,v)=
e |lullf - loll%, where €,p,q > 0 are fixed and p + g # A + 2. Then

(see (2.4))
uall - [l0llZ
\I/(M,U):€'m<00, VM,UGZ,
so that we can apply Theorem 2.2. O

Corollary 2.7. Let f: X xX — Y be a mapping such that

[fGx+yz+w) +fx+y,z2=w)+A=D({f(x—y,z+w)

+f(x -2 W)) - 2)\(f(X,Z) +f())7w) +f(x7 W) +f(yaz))||Y

< e (Il + Nzl - Ayl + i),
forall x,y,z,w € X and for some fixed ,p,q > 0, withp + g # X + 2.
If f(x,0) =0 and (A — 1)f(0,y) =0, for all x€X, then there exists

a unique additive-quadratic/bi-quadratic mapping b: X xX — Y,
such that

9
1/ (x:2) = b(x, 2)|ly < m'(ll)ﬁl!ﬁ + llzlx) - (% + 11zl1%),

Vx,zeX.
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2.3. Applications to Additive Equations
and to Quadratic Equations

A function h: X — Y, between linear spaces, is called a mapping of
A-order, A€ {1,2}, if it satisfies the following equation:

h(x+y)+ A= Dh(x—y) =2""1(h(x) +h(y)), Vx,yeX. (2.10),

Obviously, a mapping of 1-order is an additive mapping and a map-
ping of 2-order is a quadratic mapping.

For the sake of convenience, we recall the following generalized
Ulam-Hyers stability properties of the additive and quadratic func-
tional equations. Let X be a real normed vector space, Y a real
Banach space and ¢: X x X — [0, 00) a given mapping.

A ([16], Theorem; see also [12]): If {p verifies the condition

2l 2[
Z(p 2f+1 <o, forall x,yeX (2.11)1

and the mapping f:X — Y satisfies the relation
1FGe4+9) = F0) — FO)lly <@(xy),  forall xyeX, (2.12),

then there exists a unique additive mapping a,: X — Y which satisfies
the inequality

1f(x) —ar1(@)[ly < é1(x,x),  forall xe€X. (2.13),
A, ([22], Theorem 2.2): If {p verifies the condition

2[ 21
29022);1 <00, forall x,yeX (2.11),

and the mapping f: X — Y, with f(0) = 0, satisfies the relation

1fGe+y) + F e —y) = 2f(x) = 2f()lly < @(x,),
forall x,yeX, (2.12),

then there exists a unique quadratic mapping a,: X — Y which sat-
isfies the inequality

Il f(x) —ax(x)|ly < éa(x,x), forall xeX. (2.13),

As a matter of fact, we can show that the above results are con-
sequences of our Theorem 2.2. Namely, we have
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Application 1. The stability of Eq. (2.1) implies the generalized
Ulam-Hyers stability of the A-order equation (2.10),.

Indeed, let X,Y,p:XxX — [0,00) and f:X — Y be as in A),
Are{l,2}. We take X, = X and consider a linear space X, such that
there exist a quadratic function h:X, — R, with A(0) =0 and an
element zp € X,, such that h(z()) # 0. (In inner product spaces such a
function is, e.g., z — ||z]|>.) If we set, for u = (x,2),0 = (y,w)€
X x X5,

D(u,v) = (x,z,y,w) = 2[h(z) + h(w)| - p(x,y)
and
F(u) = F(x,2) = h(z) - f(x),

then, by using the properties of the quadratic mapping and the re-
lations (2.11),, for Ae {1 2}, we easily get

?(2x, 2iy)
W) = i) + o) Y- <o

for all u,v€X xX,. At the same time, by (2.12),,
1OA(F) (u, 0) [y = 2[A(z) + h(w)| - | fx +y) + (A= 1)

= 227N (f () + fO))lly < 2lh(z) +h
= ®(u,v), Vu,veX xX;.

g Al
él
=
=

Therefore, by Theorem 2.2, there exists a unique mapping of
A-quadratic type, B: X x X, — Y, such that |F(u) — B(u)||, < ¥(u,u)
and

F(2'w) . h(2'z) f(2"x) . o . f(2")
nLHQIO 2”(/\+2) - ,,lggc 22n ’ 2An - nlLHoth(Z) : A
Vu = (x,z) X xX,.

We know that h(zy) # 0. Therefore the limit

B(u) =

exists for every x€X and, moreover, B(u) = h(z)-ay(x),Vu =
(x,z) €Z. Since ||h(z)f(x) — Bu)|ly < h(z) - dr(x,x), Yu = (x,2) €
X xX,, then the estimation (2.13), is easily seen to hold.

By Lemma 2.1, a, is additive and a, is quadratic. If a mapping of
A-order ¢, satisfies (2.13),, then (x,z) — h(z)cy(x) is of A-quadratic
type (again by Lemma 2.1) and has to coincide with B, that is
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h(z)a(x) = h(z)c(x), for all u = (x,z) € X x X,. Since h is nonzero,
then a,(x) = ¢x(x), for all x€X. Hence a, is unique.

Remark 2.2. As in the proof of Application 1 for an additive function
h: X, — R, we can also show, by using Theorem 2.2, that the stability
of Eq. (2.1) for A = 1 implies the generalized Ulam-Hyers stability of
the quadratic equation (2.10),.

As very particular cases, we obtain the results in AOKI [1] and
RASSIAS [28] for additive equations:

Application 2. Let f:X — Y be a mapping such that

1F(x+y) = F@x) = FO)lly < elllxllx + IvlI%),  forall x,yeX,

and for any fixed ¢,p > 0, with p # 1. If £(0) = 0, then there exists a
unique additive mapping a@;: X — Y which satisfies the estimation

_ B 2e
| f(x) —ai(x)|y < P | x[|%, for all xeX.

Indeed, let i: R — R, h(z) = 7> and f:X — Y, where X is a normed
space and Y a Banach space. We apply Theorem 2.2 for A =1,
X=X, Xo =R, u,veX xR, with u= (x,z), v= (y,w) and the
mappings

F(u) = F(x,z) =2 - f(x),
(I)(M7U) = (I)(x7 z,y,w) = Z(Zz +W2) E(HXHI;( + Hy”[;(),

to obtain the existence of a unique additive mapping a; and the re-
quired estimation.

Application 3. Let f:X — Y be a mapping such that

LFGe+y) = Fx) = FO)ly < O - IvIK?),  forall xyeX,

and for any fixed 0, p > 0, with p< 1. If £(0) = 0, then there exists a
unique additive mapping a;: X — Y which satisfies the estimation

- _ 0
[f(x) —ai(x)]ly < PR [x[f%,  forall xeX.

Indeed, one can use either the mappings
F(u) = F(x,2) = 2 f(x),

and
®(u,v) = B(x,2,y,w) = 2(2 +w?) -0 - [[x|[& - IylI%,
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or the means inequality:

2 2
O(IelR - IyI%2) < 5 (el + [Iv11%)

D

in the preceding corollary.

In particular, we obtain also a stability property of AOKI type for
quadratic equations ([9]):

Application 4. Let f be a mapping from a real linear space X into a
real Banach space Y, such that

1f(z+w) + flz—w) = 2f(2) = 2fw)lly < e(llzlk + Iwl),
for all z,weX,

and for some fixed €, p > 0, with p # 2. If £(0) = 0, then there exists
a unique quadratic mapping a,: X — Y which satisfies the estimation

= _ 2¢e
1f(z) —ax(2)|ly < | l|z|I%, forall zeX.

For the proof, let h: R — R,h(x) = x. We apply Theorem 2.2 for
A=1LX =R, X, =X, u,ve RxX, with u = (x,z), v= (y,w) and
the mappings F(u) = F(x,2) = x- F(2), ®(,0) = Dlx,2,y,w) =
Ix + | - e(||zll% + [|[w]/%), to obtain the existence of a unique quadrat-
ic mapping a, and the required estimation.

Similarly, by choosing F(u) = F(x,z) = x- f(z) and ®(u,v) =
O(x,z,y,w) = |x+y-e-|lzl|% - lwl|%, we obtain a stability of
RASSIAS type [30]:

Application 5. Let f be a mapping from a real linear space X into a
real Banach space Y such that f(0) = 0 and

If(zw) +Fz—w) =2f(x) =2f W)lly <e-[lzllz - Iwl},  VzweX,
for some fixed ¢,p,q > 0, with p + g # 2. Then there exists a unique
quadratic mapping a,: X — Y which satisfies the estimation

1£(z) = a(@)lly < zlF, VzeX.

N
=2

3. A Second Stability Result by the Fixed Point Method

We will show that Corollary 2.4 and Corollary 2.6 can be essentially
extended by using a fixed point method. The method is seen plainly
related to some fixed point of a concrete operator. Specifically, our
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control conditions are perceived to be responsible for three fun-
damental facts: Actually, they ensure

1) the contraction property of a Schroder type operator J and
2) the first two successive approximations, f and Jf, to be at a
finite distance.

And, moreover, they force

3) the fixed point function of J to be a solution of the initial
equation.

Firstly, we prove an auxiliary result of stability for the following
equation in a single variable

wo g (@] ’I’] = g
Let us consider a Lipschitzian function w: Y — Y, with the Lipschitz

constant L,,, and the mappings f:G — Y, n:G — G, where G is a
nonempty set and Y is a Banach space.

Lemma 3.1. Suppose that the mapping f satisfies an inequality of the
form

[(wofon)(x) —fx)lly <v(x),  Vxeg, (Cy)
where 1): G — [0,00). If there exists L<1 such that the mapping
has the property

Ly - (Yon)(x) <Ly(x),  VxeG, (Hy)
then there exists a unique mapping c:G — Y,
c(x) := lim (W" o con")(x), VxeG,
n—oo

which satisfies the equation
(wocon)(x) =c(x), VxeG
and the inequality
P(x)

1f(x) = c@lly <7

Proof. Let us consider the set £:= {g:G — Y} and introduce a
complete generalized metric on £ (as usual, inf () = oco):

d(g,h) = dy(g,h) = inf{K € R, [|g(x) — h(x)|ly < K¢(x),VxeG}.
(GMy)

VxeG. (Eslw)

Now, define the mapping
J:€— E,Jg(x) = (wogon)(x). (OP)
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Step 1. By using the hypothesis (H,), we show that J is strictly
contractive on &.
We can write, for any g,he€&:

d(g,h) <K= |g(x) — h(x)||y < K¢(x), VxeG.
On the other hand,
178 (x) = Jh(x)[ly = |Iw(g(n(x))) — w(h(n(x)))lly
< Ly - [lg(n(x)) = h(n(x))[ly < L - K - 9p(n(x))
<K-L-(x), VxeG=d(Jg,Jh) < LK.
Therefore, we see that
d(Jg,Jh) < Ld(g,h), Vg, he&, (cCyr)

that is J is a strictly contractive self-mapping of £, with the constant
L<1.

Step II. Obviously, d(f,Jf) < co.
In fact, by using the relation (Cy), it results that d(f,Jf)<1.

Step III. We can apply the fixed point alternative (see, e.g., [5]), and
we obtain the existence of a mapping ¢: G — Y such that:

— c is a fixed point of J, that is
(wocon)(x) =c(x), VxeG. (3.1)
The mapping c is the unique fixed point of J in the set
F ={g€€, d(f,g)<oo}.

This says that c is the unique mapping with both the properties
(3.1) and (3.2), where

3K € (0,00) suchthat |lc(x) —f(x)]|y <K(x), ¥xeG. (3.2)
— d(J"f,c) — 0, which implies the equality

n—oo
c(x) == lim (W" o con")(x), VxeG. (3.3)
n—oo
1
— d(f,c) < ﬁd( f,Jf), which implies the inequality
1
d < —
(F,0) < =7
that is (Esty) is seen to be true. O

Let X1, X, be linear spaces, Z := X; X X5, Y a Banach space, and
consider an arbitrary mapping ®:ZxZ — [0, c0).
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Theorem 3.2. Let F:Z — Y be such a mapping for which F o Px,+
(A= 1)F o Px, = 0 and suppose that

|OA(F) (1, 0)|ly < ®(u,v), Vu,veZ. (2.5)
If there exists L<1 such that the mapping
uu
Qu) = =,=
o0 =2(3.5)
verifies the condition
Q(u)gL'2A+2-Q<g), YueZz, (Hy)
and the mapping ® has the property
(2", 2"
lim 220 oy ez (H)

nooo  2(A+2)n

then there exists a unique \-quadratic mapping B:Z — Y, such that

IF(u) = B@)|, < %Q(u), Vuez. (Est)

Proof. If we set u = v in the relation (2.5), then we see that
|F(2u) — 2A+2F(u)||y < Q(2u), YueZ.
Hence

< Q(2u)
v 2A+2 7

H F2u) Vuez. (3.4)

2~ Flu)

Now we can apply Lemma 3.1, with w,n:Z — Y, ¢: Z — [0, 0),

w(u) = %, n(u) :=2u, U(u) == %&%Z) )

Clearly, L,, = 1/2**2 and, by using (3.4) and the hypothesis (H)), we
obtain that (Cy) and (H ) hold.
Then there exists a unique mapping B:Z — Y,

o . _F(2"u)

YueZ, (3.5)

which satisfies the following equation

(wo Bon)(u) = B(u) < B(2u) = 2*?B(u), VueZ
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and the inequality
vu)  Q2u) 1 L
IF@) = By <0 = —5 —— < Q) VueZ

The statement that B is a A-quadratic mapping is easily seen: If we
replace u by 2"u and v by 2"v in (2.5), then we obtain

H F(2"(u+v))  F(2"(u+S(v)))

2(A+2)n 2(A+2)n
- ) F2'(u—v)) F2'(u—S))\ \(F2"W)
2(A+2)n 2(A+2)n 2(A+2)n
F(2"(v)) 1 o u+Su) +v—S(v)
+ 2(A2)n + 2(M2)n F (2 ( 2
I (u—S(u) + v+ S(0) (2", 2"0)
+ 2(A+2)n F <2 < 2 y 20+2)n 7

for all u,v€Z. By using (3.5) and (H}) and letting n — oo, we see
that B satisfies (2.1). ]

Example 3.1. If we apply Theorem 3.2 with the mappings ®: Z xZ —
0,00) given by (,2) — e([lulf + []2) and (u,0) — ellul - o],
then we obtain the stability results in Corollary 2.4 and Corollary 2.6,
respectively.

As it is well known (see [15, 18, 9]), GAIDA/CZERWIK showed
that the addltlve/quadratlc equatlon (2.12), is not stable for p(x,y)
of the form &(] ) € being a given positive constant
(Ae{1,2}). In fact, it has been proved that there exists a mapping
fr: R — R such that (2.12), holds with the above ¢, and there exists
no additive/quadratic mapping a to verify

1Ax) — ax(x)] < c(e)|x, for all x€R.
This suggests the following

Example 3.2. Let X; = X, =Y = R, with the Euclidean norm, and
h: R — R a quadratic function with #(0) = 0, (1) = 1. Then Eq. (2.1)
is not stable for

®(u,v) = (x, 2,3, w) = 2¢ - (4" + [y (A(2) + h(w)).  (3.6)

In fact, we can show that there exists an F for which the relation (2.5)
holds and there exists no Add Q/Bi Q-type mapping B:X; xX; — Y
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to verify
IF(u) — B(u)| < c(e)h(2)|x]*,  Vu=(x,2)eXixX,. (3.7)

Indeed, for F(u) = F(x,z) = h(z) - fo(x), and ® as in (3.6), (2.5)
holds. Therefore

O+ 3) + (A= 1Df (= y) =227 (F@) + h())| < (i + 1Y),
for all x,yeX;.

Let us suppose, for a contradiction, that there exists an Add Q/Bi Q-
type mapping B which verifies (3.7). By Remark 2.1, the mapping
ay:X, — Y, ax(x) := B(x, 1) is a solution for (2.10),. The estimation
(3.7) gives us

1A®) = ax@)] < ce)r], VxeXi,

in contradiction with the above result of GAJDA/CZERWIK.
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