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Abstract

| begin by explaining the properties of spectral windows of time-series data. Emphasis is
on data obtained at a single geographic longitude, but ground-based multi-longitude cam-
paigns and space missions such as MOST and Hipparcos are not entirely neglected. In the
second section, | consider the Fourier transform of time-series data and the procedure of
pre-whitening. Sect. 3 is devoted to the pioneers of the subject. In Sect. 4, | suggest how to
avoid pitfalls in the practice of periodogram-analysing variable-stars observations. In the last
section, | venture an opinion.

Individual Objects: AR Her, § Cet, 3 CMa, § Sct, DD Lac, EN Lac, 2 And

Spectral windows

Spectral windows, also called window functions, are Fourier transforms of the observing win-
dows. For a single site, the proof is illustrated in Fig. 1. This figure is a slight modification
of figure 3-7 from the well-known monograph by Gray (1976). In the monograph, the figure
serves to explain the working of a diffraction grating. In Fig. 1, the observing window is
shown at top left, and its Fourier transform, at top right. The observing window consists of
nine successive nights, equally spaced, each of duration At. It can be looked at as a result
of a convolution of a rectangular function of width At (representing a single night) with a
Shah function with spacing equal to the sidereal day, T, multiplied by another rectangular
function of width T, equal to the total time-span of the observations. This wide rectangular
function transforms into the narrow sinc function of width 1/T (bottom right), while the
single-night rectangular function transforms into the wide sinc function of width 1/At (upper
right). The latter, multiplied by the Shah function with spacing equal to 1/ T, (the transform
of the Shah function at left) and convolved with the former gives the spectral window. Note
that (1) the frequency resolution is determined by T, the total time-span of the data, and
(2) 1/ T« is equal to one cycle per sidereal day (c/sd), i.e., 1.0027 c/d.

In Fig. 1, the diagram at lower left and all diagrams at right (i.e., in the frequency domain)
are incomplete. In fact, the sinc and Shah functions extend from —co to +o0. In particular,
the spectral window (top right) is a sum of an infinite series of the narrow sinc functions,
spaced 1 ¢/sd, with their maximum ordinates modulated by the wide sinc function. The
pattern has a maximum at zero frequency. Note that the duration of the observing night,
At, determines the height of the —1.0027 and +1.0027 c/d side-lobes relative to the central
peak: longer nights produce lower side-lobes.

The observing window in Fig. 1 (top left) is grossly simplified. | assumed that (1) on any
night, the observations are taken continuously, (2) the nights are of equal duration, (3) there
are no nights lost because of clouds or equipment failure. The first assumption was made to
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Figure 1: The spectral window (top right) is the Fourier transform of the observing window (top left).
The observing window is a result of a convolution of a rectangular function of width At (representing
a single night) with a Shah function with spacing equal to the sidereal day, T., multiplied by another
rectangular function of width T, equal to the total time-span of the observations. The spectral window is
a convolution of the narrow sinc function of width 1/ T (bottom right) with the Shah function of spacing
equal to 1/ T, (the transform of the Shah function at left) multiplied by the wide sinc function of width
1/At (upper right)

avoid discussing the Nyquist frequency, an issue which for irregularly spaced time series seems
to be debatable (see Koen 2006). Assumptions (2) and (3) make the observing window an
even function of time, so that the spectral window is a real (and even) function of frequency.
For actual data, the spectral window is a complex function. In practice, one plots the modulus
of the spectral window. The modulus of a spectral window is an even function of frequency.
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Figure 2: Synthetic amplitude spectrum of the MOST observations of § Cet. The arrows indicate aliases
at fop— 6.2059 and fo, + 6.2059 c/d, where f,, = 14.20 c/d is the orbital frequency of the satellite

An interesting example of how much a real spectral window may differ from the simplified
case discussed above can be found in Borkowski's (1980) analysis of visual observations of the
RRab-type Blazhko variable AR Her, obtained in 1944 by Tsessevich. In the spectral window
of these data (Borkowski's figure 1) one can see not only the peak at zero frequency and the 1,
2, 3 etc. ¢/sd aliases, but also a peak at the star’'s fundamental frequency of 2.128 c¢/d and its
sidereal day aliases. This latter pattern arose because Tsessevich has spaced his observations
unevenly: the sharp light-maxima he sampled with a much shorter time step than the flat
minima.

The sidereal day aliases can be reduced or even eliminated altogether by observing from
several sites at different longitude or from space. An example of a multi-longitude ground-
based spectral window can be seen in the top panel of figure 2 of Handler et al. (2004),
while an example of a space-based spectral window is shown in Fig. 2. Strictly speaking,
both figures show moduli of the Fourier transforms of synthetic data, produced by sampling
a sine-curve that represents the highest-amplitude variation of the star in question at the
epochs of actual observations. In order to avoid confusion with the spectral windows proper,
| shall refer to the former as “the synthetic spectra”. The synthetic spectrum in Fig. 2
was computed for the 6.2059 c/d variation of the 3 Cephei-type star § Cet; the synthetic
data were produced by sampling a 13.8 mmag sine-curve of this frequency at the epochs of
the MOST! photometric observations of the star. The figure shows the 13.8 mmag peak
at 6.2059 c/d and, in addition, much lower peaks at f,,— 6.2059 and f,;,+ 6.2059 c/d,
where fo,, = 14.20 c¢/d is the orbital frequency of the satellite. For a detailed discussion of
ground-based and MOST observations of § Cet, see Jerzykiewicz (2007).

In the Hipparcos’ (ESA 1997) epoch photometry, the satellite’s rotation-frequency aliases
are more pronounced than the orbital-frequency aliases in the MOST observations of §
Cet. In addition, the amplitude of the aliases is modulated with a frequency resulting
from beating between the two sampling frequencies of the satellite. A thorough discus-
sion of the spectral window of the Hipparcos’ epoch photometry has been provided by
Jerzykiewicz & Pamyatnykh (2000).

LThe MOST satellite is a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto
Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.
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Fourier transform of the observations and pre-whitening

Time-series observations of a variable star can be represented as a sum of (1) the product of
the star’s intrinsic variation and the observing window, and (2) the observational noise. From
the convolution theorem and the fact that the Fourier transform of a sine-curve of frequency
f is a pair of the ¢ functions, one placed at —f, and the other, at +f, it follows that:

T1 If the intrinsic variation is a sine-wave of frequency f and amplitude A, the Fourier
transform of the observations is equal to the sum of (1) the spectral window shifted
to —f, (2) the spectral window shifted to +f, and (3) the Fourier transform of the
observational noise; (1) and (2) are scaled to A.

T2 If the intrinsic variation is a sum of N sine-waves, the Fourier transform of the obser-
vations is equal to the sum of N of (1), N of (2) and (3).

In practice, one plots the moduli of the Fourier transforms. T1 explains the orbital-
frequency aliases in Fig. 2, in particular, the alias at f,,— 6.2059 c/d. T2 makes it clear
why pre-whitening is necessary if more than one frequency is present in the variation. If done
in the time domain, as is usually the case, pre-whitening is an operation on real numbers.
In the frequency domain, the real and the imaginary part of the transform must be treated.
An example of pre-whitening in the time domain can be found in Handler et al. (2004).
Pre-whitening in the frequency domain has been advocated by Gray & Desikachary (1973).

The pioneers

Meyer (1934) discovered that the radial velocity amplitude of the 8 Cephei-type star 3 CMa
varied with a period equal to 49.1 d. He explained this in terms of an interference between
two sine-curves of slightly different short periods, one equal to 67 0™, the other, to 6/ 2™.
The reality of the components was supported by the fact that the longer of the two short
periods was identical with the period of the variation of the width of spectral lines, discovered
earlier by Henroteau (1918).

Sterne (1938) applied the correct procedure of pre-whitening (without using the term) in
order to derive a secondary period of § Sct from photoelectric observations of Fath (1935, 1937).

Fath (1947) made an (unsuccessful) attempt to organize a multi-longitude campaign; the
intended object was the 3 Cephei-type star 12 (DD) Lac. His secondary period of 12 Lac,
derived from a single-longitude data, was later shown to be a ~1 c¢/sd alias of the correct
value. In 1956, de Jager (1963) organized the first successful multi-longitude campaign; the
object was again 12 Lac.

Wehlau & Leung (1964) explained periodogram analysis in terms of Fourier transform and
the convolution theorem.

Fellgett (1972) discussed limitations of periodogram analyses of time-series observations.
He pointed out that (1) the existence of a Fourier component does not of itself provide any
evidence of significant periodicity, (2) there is no unique Fourier representation of a function
known over a finite interval of its argument. According to the NASA’s ADS, Fellgett's (1972)
important paper has been quoted only once. Apparently, Cassandras are unpopular.

Recommendations

This section should be skipped by those who do not make mistakes. The less fortunate among
us may wish —before sending the results of their analysis to the editor— to go through the
following list:
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Figure 3: The radial-velocity observations (circles) and synthetic velocity-curve (solid line) of 16 (EN) Lac
on JD2451453. The observations and parameters of the synthetic curve are from Lehmann (2001). The
synthetic curve was computed by MJ.

Get the epochs of observations right. However, if you are lucky, your mistake may
surface during the analysis. For an example, see figure 5 in Jerzykiewicz & Wenzel
(1977).

If you do differential photometry, use two (or more) comparison stars. A single com-
parison star may spoil the analysis. Example: | ascribed the frequency of 7.194 c/d to
16 (EN) Lac (Jerzykiewicz 1993). As it turned out, it was 2 And, the only comparison
star | used, which is responsible (Sareyan et al. 1997, Handler et al. 2006).

Understand the spectral window of your data. See Sect. 1.
Pre-whiten. See Sect. 2.
Quit before you get too close to the level of noise. See Breger et al. (1999).

Compare the synthetic light (or velocity) curve with the data. If you don't, you risk an
unpleasant surprise. An example is shown in Fig. 3.

When you compare the frequencies you derived with earlier work, look for differences
close to 1.003 and 0.003 c/d. The first number is approximately equal to 1 c/sd (see
Sect. 1), the second is close to 1 cycle per year (c/y). An alias of 1 ¢/y (or a fraction
thereof, such as 1/2, 1/3, etc.) is much more difficult to get rid of than a 1 ¢/sd alias.

An opinion

If the data are OK, any method of analysis will do, provided that the method is used properly.

Acknowledgments. The use of NASA’s Astrophysics Data System Abstract Service is ac-
knowledged. This work was supported by MNiSW grant N203 014 31/2650.
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DISCUSSION

Kovacs: What is your opinion about using pure (truncated) Gaussian noise on the observed time base in
a Monte Carlo simulations to get an estimate of the noise level?

Jerzykiewicz: It is a useful exercise which may serve as a guide. However, statistical properties of real
noise are seldom, if ever, known.
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Abstract

During the past few years, the Trend Filtering Algorithm (TFA) has become an important
utility in filtering out time-dependent systematic effects in photometric databases for extra-
solar planetary transit search. Here, we present the extension of the method to multiperiodic
signals and show the high efficiency of the signal detection over the direct frequency analysis
on the original database derived by today's standard methods (e.g., aperture photometry).
We also consider the (iterative) signal reconstruction that involves the proper extraction of
the systematics. The method is demonstrated on the database of fields observed by the
HATNet project. A preliminary variability statistics suggests incidence rates between 4 and
10% with many (sub)mmag amplitude variables.

Introduction

The Trend Filtering Algorithm (TFA) has been routinely used during the past several years
in the search for transiting extrasolar planets within the HATNet! project (Bakos et al.
2004). The goal of this post-processing method is to filter out systematics/trends from
the photometric time series. The presence of these effects is due to sub-optimal observing
conditions, data acquisition and reduction; e.g., remaining differential extinction, distorted,
position- and time-dependent point spread function, astrometric errors, etc. Although wide
field observations are the ones most affected by systematics, the fingerprints of these pertur-
bations are always present in nearly all photometric observations (in surveys, such as MACHO
— Alcock et al. (2000), or in individual object follow-up observations by small field-of-view
telescopes — Kovdcs & Bakos 2007).

Effects of systematics have not been considered in the past too closely, since, relatively
speaking, they play a less important role in large amplitude variables, and most of the earlier
investigations focused on specific classes of stars without paying attention to the ‘“constant”
stars, displaying the systematics in the most obvious way (due to the lack of more prominent
physical variations). This situation has changed with the advent of the microlensing surveys,
when it has become clear that more sophisticated image processing tools, such as the image
subtraction method (ISIS, see Alard & Lupton 1998) are needed to disentangle weak signals
and systematics when searching for variables in crowded fields. While the above differential
image analysis works on the images (snapshots of the full photometric time series), TFA
(Kovdcs et al. 2005; hereafter KBN) and SysRem (Tamuz et al. 2005) attempt to utilize the
information available in the full time history of the light curves.

1Hungarian-made Automated Telescope Network
http://cfa-www.harvard.edu/ gbakos/HAT/
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In the following, we briefly summarize the main steps of the algorithm, extend the method
to multiperiodic time series, demonstrate the effectiveness of the method by various tests and
perform a brief variability survey on 10 HATNet fields.

TFA with multiperiodic signal reconstruction

Here we briefly summarize the main assumptions and formulae of TFA. The interested reader
is referred to KBN and Kovdcs & Bakos (2007) for additional details.

The basic assumptions are the following: (i) systematics are present in several/many
objects in the field (i.e., TFA template selection is possible); (ii) trends in any target are
linearly decomposable by using some subset (template) of time series available in the field; (iii)
the observed time series is trend- and noise-dominated?; (iv) there is a common time base for
the large majority of objects. After selecting a set of templates ({Xy(i),k =1,2,...M;i =
1,2,...,N} — with k being the template and i being the time index), for each target we
compute a filter F(i)

M
F(i) =" aX(i), (1)
k=1

where the coefficients {¢; k = 1,2, ..., M} are derived from the following condition for each
observed time series {Y(i);i =1,2,..., N}

N
DIV (i) = AGG) = F(i)]* = min. 2)
i=1

Here the function {A(i);i = 1,2,..., N} is either constant, or is the trend- and noise-free
signal, to be found iteratively in the signal reconstruction phase. For single- and multiperiodic
signals, when the Fourier representation of the signal is adequate, we can perform signal
reconstruction without iteration. In this case, the Fourier part is included in F(i)

M 2L
F() = D aXdd)+> a50), 3)
k=1 j=1

where {§;(i);j = 1,2,...,2L;i = 1,2,..., N} are the Fourier components (sine and cosine
functions) with L different frequencies and {a;} phase-dependent amplitudes. The frequencies
are determined from the analysis of a time series derived by Egs. (1) and (2) with “no signal”
assumption (i.e., with {A(i) = const}). Assuming that these frequencies approximate well
the ones representing the noise- and trend-free time series, the advantage of Eq. (3) is that it
yields an exact solution in one step for signals of the form of trend + Four. comp. + noise. If
the signal has additional components (e.g., transients, transits) that are not well-represented
by a finite Fourier sum, we should use a more complicated model and, as a consequence,
an iterative scheme to obtain approximations for the signal components. We note that, in
principle, iteration should be employed also if the non-sinusoidal components are absent,
because the starting model from which we determine the frequencies is different from the
one used in the reconstruction. However, based on our experience from the application of
the “no signal” assumption in periodic transit search, the frequencies derived in this way are
accurate enough, and there is no need for the very time-consuming iterative procedure in the
frequency search.

2This property is only used in the frequency search. For signal reconstruction, the full time series model is used, including
the hidden signal component.
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Figure 1: Panels on the left show the successive prewhitening of the raw test time series obtained by the
injection of two sinusoidal components at 6.25 and 8.33 d—!. Amplitudes are normalized, labels show
the prewhitening cycle number, peak frequency, amplitude [mag] and signal-to-noise ratio. Simple Fourier
prewhitening cannot recover the signal. Panels on the right show the result obtained by TFA filtering with
900 templates. Both injected signal components are recovered with high significance.

Tests, examples

KBN we presented several tests showing the signal detection capability of TFA on the early
set of HATNet light curves, focusing mostly on the detection of periodic transits. Here we
show some selected examples on the detection of sinusoidal (i.e., Fourier) signals on the
latest, more extensive datasets.

One of the questions that can be asked is why direct Fourier filtering is not used to
clean up the data from systematics. The reason is threefold: (i) there are systematics (e.g.,
transients) for which Fourier representation is a rather bad one; (ii) we do not know a priori
which component can be treated as a trend and which one as a signal; (iii) for the most
common periodic (daily) systematics Fourier filtering is less stable, because of the gaps in the
data with the same periodicity. Figure 1 demonstrates the inadequacy of the simple Fourier
filtering. The injected low-amplitude signal remains completely hidden if we employ direct
Fourier filtering. Although TFA filtering also leaves some trend in the data (see the peak in
the bottom right panel at 3.0 d—1), its amplitude is 26-times smaller than that of the highest
peak in the direct Fourier filtering at the same stage of prewhitening.

Next, in Fig. 2 we show the frequency spectra of a real variable that has escaped detection
in the original time series. The star is rather bright and therefore it is strongly affected by
various saturation-related effects. These effects are also common in other bright stars in the
field, so it is possible to filter them out by employing TFA. In Fig. 3 we also show the folded
light curves to give another look at the difference between the raw and the TFA-reconstructed
results. Finally, as an example of the detection capability on the HATNet database, in Fig. 4
we show the frequency spectra of a sub-millimag variable.
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in the raw time series (panels on the left) but becomes
the right). Notation is as in Fig. 1.
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Figure 3: Folded/binned light curves with twice of the period of the variable shown in Fig. 2. Left: raw

data, right: TFAd data. Headers from left to right: number of data points, average
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Figure 4: Example on a sub-millimag variable. The signal is detectable also in the raw time series (left)
but is cleaner in the TFA filtered one (right). Notation is as in Fig. 2.
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Brief HAT Net variability statistics

By using TFA post-processing, we have Fourier analyzed 10 HATNet fields in the
[0.0,20.0] d~! range and searched for variables with high significance (SNR> 10) in the
frequency spectra. The number of stars analyzed per field varies between 10000 and 25000,
with 5000 to 11000 data points per object. The time spans covered by the observations are
between 100 and 1000 days. The incidence rates of the variables are between 4 and 10%.
The number of sub-mmag variables changes from field-to-field, but it is typically in the order
of 100. All these statistics are, of course, strong functions of the data quality, time span of
the observations and sample of objects. The total number of objects analyzed is 169000,
covering a magnitude range of 7 < V < 13. The number of variables is 9900. Some 12%
of these are sub-mmag variables. For comparison, in an effort to produce a variable input
catalog for the Kepler field, Pigulski et al. (2008) analyzed 250000 objects from the ASAS
database. They found a variability rate of 0.4%. This low incidence rate is not surprising if
we consider that the average number of data points in these ASAS variables is only 100.

Acknowledgments. We thank for the support of the Hungarian Scientific Research Fund
(OTKA, grant No. K-60750). Work of G. A. B was supported by NSF fellowship AST-
0702843. Operations of HATNet have been funded by NASA grants NNG04GN74G and
NNXO08AF23G.
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DISCUSSION

Breger: In one of your diagrams, you showed a remarkable improvement in a power spectrum after
applying filtering. Could you comment a bit more on the reasons?

Kovacs: With a preselected large template set (typically from few hundred to thousand in a field
containing  10® — 10* objects and similarly large number of data points per photometric time series),
we have a good chance to find objects whose light variation contain various parts of systematics present
in the target. Systematics have various sources, starting from improper flat-fielding to differential color
extinction (see our 2005 paper listed in references for further details).
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Abstract

In this work we discuss a new method of time series analysis. This new method -Variable Sine
Algorithmic Analysis, (VSAA)- is based on a single sine function with variable coefficients
and is powered by the simplex algorithm. It can be applied to almost every type of time
series, e.g., to orbital period variations, pulsating stars, sunspot activity, etc., providing a
very accurate and simple analysis. Especially in cases of phenomena demonstrating variable
frequencies but triggered by a single mechanism, VSAA provides a straightforward solution.
Applications are given to synthetic and real data.

Individual Objects: AB And, RR Lyr, Sun

The problem

The periodic nature of certain phenomena is a very common aspect in many scientific fields.
likewise in astronomy. A few powerful techniques have been developed in order to analyze
the periodic behavior in these cases. The two most common and widely used are the Fourier
Transform and the Wavelet Analysis. Fourier Transform (FT) can trace more than one
constant frequencies in a time series, but lacks of time-sensitivity. So, if the signal presents
a non-constant but quasi-periodic behavior, the FT gives a set of constant frequencies as a
result, that should be superimposed in order to describe the original signal. The WA is a more
recent method that can produce more time-sensitive results, but the core idea is no different
than the Fourier approach. It is like having multiple FT's for consecutive windows. In order
to reproduce the original signal, one has to superimpose again all the traced frequencies for
each time window.

From the above becomes clear that there is a problem that cannot be handled adequately
from the previous techniques: what if we have a time-series presenting a modulated quasi-
periodic behavior, but which is triggered by a single mechanism? To demonstrate this problem,
we took the case of orbital period variations of the AB And binary system. AB And is a contact
binary system of the W UMa type, with masses m; = 0.93My, mp = 0.45M(, and orbital
period of P = 0.332 days. Starting from its O-C diagram and using the First Continuous
Method (Kalimeris et al. 1994) we acquired its period variation and we subtracted the
long-term variation of 0.006 s/year. This secular increase can be assigned to a number of
physical mechanisms like mass transfer. The resulting diagram (Fig.1) represents the actual
quasi-periodic variability of the real orbital period of the system.

This diagram can be divided in two parts: The first ranging approximately from 1905 to
1968, and the second from 1969 until today. The first part contains a full 63-year cycle of
almost perfect sinusoidal nature and this is the primary frequency detected by the Fourier
analysis. But, during the second part, the characteristics of this sinusoidal wave change
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Figure 1: The orbital period variation of the AB And binary

progressively and create a cycle of approximately 39 years with lower amplitude. This makes
the orbital period variation of the AB And binary a case that cannot be analyzed by the
classic FT or WA. This orbital period variation could be well-assigned to a single mechanism
triggered by magnetic activity and described by the Applegate’s mechanism (Applegate 1992).
Therefore, the need of a new method that can trace this variable frequency and assign it to a
single physical mechanism (and not to a superimpose of a huge number of frequencies with
no physical explanation) becomes a necessity.

The VSAA Method

The VSAA -Variable Sine Algorithmic Analysis- (Tsantilas & Rovithis 2007) is an algorithmic
method accompanied by a computer code, based on the idea of a single sine function with
variable coefficients and powered by the Siplex algorithm. This way, the output of the analysis
is very simple and clear, while the results can be assigned in a straightforward manner to a
single mechanism that modulates its characteristics (amplitude and frequency) through time.
The core function is:

f(t)=a-sin(b-t+c), (1)

where a = a(t), b = b(t) and ¢ = ¢(t), i.e. they are functions of time.

The user has to define some initial values for the following parameters:

a: the amplitude of the signal,

b: the frequency of the signal (multiplied by 27),

c: the (possible) phase shift,

w: the sliding window width,

it: the number of iterations for every step of the simplex,

acc: the accuracy threshold of the simplex

The user has the option to choose which of the above parameters will be adjustable or fixed.
Then, the VSAA starts a partial fit for every window j. The fit is made using the Simplex
algorithm (Nelder & Mead 1965). This procedure continues automatically until the end of
the time series data set under inspection. The output of the analysis is a set of N — £ vectors
vj, where N is the number of the input data points and £ is an internal parameter that
secures that there are enough points in order to have a decent fit. The vectors have the form:
vj = (tj, aj, bj, ¢, 0}, FJ),] =1...N — ¢, where

t: denotes the time,

aj(t) = Af(t) : is the amplitude of the variable frequency f(t),
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% = f(t) : denotes the variable frequency,

¢j(t) : stands for the phase-shift of the function (1),

Y(si—F:)2 . . .. . .
oj = H—F)? is the mean error, where s; is the original signal data and F; is the VSAA

w
fit to the signal.

Applications

Application to synthetic data

In order to be able to evaluate the method and before testing it using real data, we firstly
applied it to a synthetic data set (Tsantilas & Rovithis 2008). Obviously, if we know the true
solution behind the data set, the program'’s efficiency can be easily estimated. The data set
presents a modulation in amplitude and frequency and includes random error. The excellent
VSAA fit is presented in Fig.2a.

Application to the orbital period variation of AB And

The purpose was to analyze the quasi-periodic modulation of the orbital period variation
of the AB And and to assign it to a single magnetic Applegate’s mechanism. Taking the
actual period variation, we firstly subtracted the secular increase produced probably by mass
transfer. Therefore, the remaining signal, which is symmetric with respect to the x-axis (a
prerequisite for the VSAA, as it is for the Fourier Transform also), could be triggered by the
Applegate’s magnetic mechanism and is described by the following equation:

R

B2 109 (20 8F @)

P, mod

where all symbols have their usual meaning; so: M and R denote the mass and the radius of
the active star respectively, a stands for the two components separation, B is the intensity of
the magnetic field, AP and P,,,q are the amplitude and the period respectively, reported by
the VSAA.

Applying the VSAA to this set of data, we acquire the time-dependent frequency and
amplitude modulation presented in Fig.2b. Also, with the VSAA and using equation (2), we
were able to describe the actual variation of the subsurface magnetic field of the primary
component of AB And.

10 80 3.0E-06

el a . + original signal | ;g

o VSAA fit 70 2.5E-06

sigma
=~

s ! 13 [y 20606
s, S g
= = = 3
£ s = =
s 0 S < 50 1.56-06 =
13 8 S &
S 2 E N

4 40 1.0E06

3

o 30 5.0E-07

E

-10 2 20 0.0E+00

7 17 27 37 47 40000 20000 0 20000 40000 60000 80000 100000
time Epoch

Figure 2: a. VSAA fit on a synthetic data set. b. Period and amplitude variation of the orbital period of
the AB And binary
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Figure 3: a. Blazhko amplitude and period variation b. Sunspot number period variation

Application to the Blazhko effect of RR Lyr

Given that the mechanism behind the Blazhko effect is not clarified yet, a single-mechanism
analysis with the VSAA would be of great interest. As input we used a time-series consisting
of the maxima of the RR Lyr light curves from the 2004 survey (Kolenberg et al. 2006)
with the addition of some new data from 2006. The resulting Blazhko period and amplitude
modulation is presented in Fig.3a. One can observe a smooth variation of the Blazhko period
around 38.97 days, while the amplitude demonstrates a second-order sinusoidal modulation.
These results are in excellent agreement with previous reports, but offer an additional time-
depended insight of the phenomenon.

Application to Wolf's sunspot number

Finally, we applied the VSAA method to the Wolf’s sunspot number (Reindel et al. 2008).
We used data from the National Geophysical Data Center!. The resulting sunspot number
period variation can be seen in Fig.3b. A remarkable result from this analysis reflects to the
well-known eleven-year solar cycle; for decades, it has been established by various researchers
that this cycle is not constant, but presents a certain variability. With the aid of the VSAA,
this variability can be traced accurately. Another very interesting aspect of the method is that
because the resulting frequency and amplitude are functions of time, we can always have the
more recent information about the future trend of the data set. So, the VSAA can be used
in order to predict the future maximum of the solar cycle, which can be of great importance.

Conclusions

The VSAA can be used very efficiently in many fields of Astrophysics, in order to find non-
constant periodicities in time series signals, with the condition that we know (or suspect) that
the data set is produced by a single mechanism. The VSAA code, manual and examples, can
be downloaded via http at: http://users.uoa.gr/~stsant/VSAA.htm
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DISCUSSION

Guzik: Are you able to apply this method to predict sunspots? What would you learn about the
mechanism of sunspot formation if this method works?

Tsantilas: Yes! Because of the time sensitivity of the method, it is possible to predict the sunspot number
variations. |I'm not sure about the level of accuracy of the prediction. Every prediction is risky! | am
confident that we can acquire a good picture of what will happen. The output of the code is frequency,
f, and amplitude, A, of variations. So, we can compute the A/f ratio.

Michel: What is your justification for fixing the phase shift?

Tsantilas: | have a version in which the phase shift can be variable. Since the solutions in this version are
less robust, | consider it better to have the phase shift locked. Also because of the correlation between
phase shift and frequency, | believe that the phase shift should be kept fixed.

Baudin: If the phase parameter is kept free, there certainly are some concerns about the uniqueness of
the solution.

Tsantilas: Yes, and that is one of the reasons that led us to keep phase shift fixed!

Guenther: Poincaré has shown that in nonlinear systems, to 1% order, only amplitudes and frequencies
change. The phase change is a higher order effect, exactly as you have found.

b o i

Sotirios Tsantilas and Chloe Vamvatira-Nakou discussing the roofs of Wroctaw
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Abstract

Sun-like oscillations, that is p-modes excited stochastically by convective noise, have now
been observed in a number of Red Giant stars. Compared to those seen in the Sun, these
modes are of large amplitude and long period, making the oscillations attractive prospects
for observation. However, the low Q-factor of these modes, and issues relating to the rising
background at low frequencies, present some interesting challenges for identifying modes and
determining the related asteroseismic parameters.

We report on the analysis procedure adopted for peak-bagging by our group at Birming-
ham, and the techniques used to robustly ensure these are not a product of noise. | also
show results from a number of giants extracted from multi-year observations with the SMEI
instrument.

Individual Objects:  Arcturus, 8 UMi

Context

Sun-like oscillations - that is to say p modes stochastically excited by convective noise - have
now been observed in a number of K-class Red Giant stars (Tarrant et al., 2007, 2008a,
Stello et al. 2008). Being of comparably large amplitude relative to other Sun-like oscillators,
these oscillations are readily observable. However, the long time series required for the reso-
lution of individual modes is prohibitive for many instruments. Table 1 presents a comparison
between the properties of oscillations in the Sun and the range of values expected for a typical
K-class giant, based upon the scaling laws of Kjeldsen and Bedding (1995).

In the following sections we discuss the observation of oscillations in K-class giant stars
in the context of the study using the SMEI instrument.

Table 1: Comparison of the fundamental parameters of the sun and a K-class giant star.

Sun K-class giant
Terr (K) 5777 4000-5000
Luminosity, Lo 1 20-400
Radius, Rg 1 5-50
Mass, Mg 1 0.7-6.0
Vmax, (1Hz) 3050 0-40
Av, (uHz) 134.9 0-6

(6L/L)7000m. (ppm)  3.740.2  100-2000
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The SMEI instrument

The Solar Mass Ejection Imager (SMEI) instrument (Jackson et al., 2004) is aboard the Cori-
olis satellite. This satellite occupies a Sun-synchronous polar orbit of period ~ 101 minutes,
lying along the day-night terminator. Coriolis was launched on 2003 January 6, entering sci-
ence mode in the spring of that year. The SMEI instrument was designed to detect transient
disturbances in the solar wind by means of imaging Compton scattered light from the free
electrons in the solar wind plasma. By this means it is possible to map the heliosphere from
0.4 AU to the Earth, and evaluate the usefulness of sensing the heliosphere as a tool for space
weather forecasting.

SMEI comprises 3 cameras, each with a field of view of 60 x 3 degrees. The cameras are
aligned such that the instantaneous total field of view is a strip of sky of size 170 x 3 degrees;
a near-complete image of the sky is obtained from data on all three cameras after every orbit.
Individual images — which are made from 10 stacked exposures, with a total integration time
of about 40s — occupy an arc-shaped 1242 x 256-pixel section of each 1272 x 576-pixel CCD.
Observations are made in white light, and the spectral response of the cameras is very broad,
extending from ~ 500 to ~ 900 nm, with a peak at about 700 nm. Here, we give a brief
summary of the main steps of the data analysis pipeline used to generate the light curves.

Poor-quality frames having high background are first excluded from any further processing.
Processing of the good frames begins with subtraction of bias, calculated from overscan
regions at the edges of each frame, and a temperature-scaled dark-current signal. The frames
are then flat fielded and spurious signals from cosmic ray hits are removed from the images.
The Camera #2 data suffer from some stray light, and further cleaning of these data is
performed to minimize the stray-light contribution (Buffington, private communication). The
stray-light problem is concentrated in a small number of pixels on the CCD.

Once the images have been cleaned aperture photometry is performed with a modified
version of the DAOPHOT routines (Stetsen 1987). The target star is tracked, and its light
curve is corrected for the degradation of the CCD over the course of the mission, and a
position-dependent correction is applied to compensate for variation of the Point Spread
Function (PSF) across the frames. When the star lies within the field of view of one of the
cameras, a single photometric measurement of its intensity is therefore obtained once every
orbit.

In addition to the work on giant stars reported on later in this report, data from these
images has been used in studying the period and amplitude evolution of Polaris (Spreck-
ley & Stevens, 2008), and in the discovery of new modes of pulsation in gamma Doradus
(Tarrant et al. 2008b).

Issues in analysis

Analysis of time-series data from SMEI is subject to a number of complications and issues,
some of which are universally applicable, and some particular to the instrument itself.
Datasets collected from SMEI show significant artifacts at 1 d—! and higher harmonics
(as seen in Figure 1). These arise in part as a result of the increased flux of cosmic rays
when the satellite passes above the South Atlantic anomaly. An observation will be made
once a day while the satellite passes through this region, leading to a higher flux of cosmic
rays. As frames with a substantial number of cosmic rays are excluded from the analysis in
the pipeline, this introduces a 1 d—! periodicity into the window function. In addition, as the
cosmic ray removal process is not perfect, some additional flux from these rays will be present
in the photometry, and will contribute a non-sinusoidal flux variation with period one day. A
final contribution to the daily artifacts may arise from the stray light issue mention above.
The strength of the daily harmonics in the periodogram is dependent upon the location of
a star - for instance the harmonics are of low amplitude in Polaris - and the brightness, with
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Figure 1: The SMEI periodogram of n Col (HIP 28328, Vim,g=3.9). Daily harmonics are prominent at
11.57 pHz and multiples. Here the raw transform is shown in black, and a smoothed spectrum is over
plotted in grey.

the features becoming more observable at higher magnitudes. These artifacts at the daily
cycles restrict the ability to identify oscillatory modes in the regions surrounding 1 d—1 and
multiples thereof. Fortunately substantial numbers of K-class giants are expected to have
oscillations at frequencies lower than 1 d—1, so can be easily differentiated from the the daily
harmonics.

In the SMEI data there exists a background which rises steeply at low frequencies, as can
be seen in Figure 1. This background consists of the intrinsic variability of the star associated
with granulation-noise and active regions of the stellar surface, as well as local processes such
as instrumental and photon-shot noise. It is natural to expect that other instruments will
have similar backgrounds, although the contribution of instrument noise will vary between
observatories, and stellar noise manifests differently between observations made in Doppler
velocity and photometry.

A large number of the K-class giant stars are predicted to show oscillations below a few
wuHz, that is to say in the region where the background begins to rise rapidly. As the statistical
tests (see below) for the significance of a feature depend strongly upon the fitted background
within the region of a mode, it is essential to accurately model the background noise. As the
excess power associated with the modes will itself raise the apparent background level, the
region in which excess power is observed may need to be excluded in determining an accurate
model of the background.

Considering cases where the modes may be resolved, for many stars the large frequency
spacings are predicted to be small, of the order of 1 microhertz. This indicated that a
lengthy period of observations is required to resolve the individual peaks of a spectrum. A
final issue arises from the lifetimes of modes in giant stars, as manifested in the width of a
peak in frequency space. There appears to be an approximate empirical relationship between
the Quality-factor (defined here as the frequency divided by the full width at half maximum
[FWHM]), and the period of the oscillations (see Figure 2). Considering periods of the giant
stars under study, we find that the quality factor for modes can be anticipated to be of
the order of 10 to 100, and the FWHM will therefore be of the order of a few tenths of a
microhertz. As this width is comparable in size to the expected large frequency separation,
we should expect the spectrum to appear very crowded if a significant number of modes are
present. In certain cases, this may lead to individual modes being unresolvable. The broad
FWHM of these oscillations mean power will be spread across multiple bins in a periodogram.
This may mean that no single bin achieves a significant signal-to-noise. In this case, other
statistical tests which consider power in multiple bins within a range, e.g., as described below,
may be appropriate.
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Figure 2: The apparent quality-period relation seen in Sun-like oscillations. The line is a linear fit in
log-log space, excluding the theoretical value for £ Hya. Unlabeled points are two determinations for the
Sun using GOLF and BiSON data, and determinations at multiple frequencies for & Cen A and B. (Using
values taken from Barban et al. (2007), Bedding et al. (2005), Carrier et al (2007), Houdek and Gough
(2002), Kjeldsen et al. (2005) and references therein, Stello et al. (2006), and Tarrant et al. (2007, 2008a))

Analysis Techniques

We first wish to identify the region of excess power (i.e., where the modes are located) in the
spectrum, in order that the region can be excluded from the fitting to the background and an
estimate of the background level, unprejudiced by the excess power, is derived. We first fit
an initial background to the periodogram, choosing one of three models for the background:

1. A power law model of the form P(rv) = a + bv~¢, reflecting for instance a Brownian
noise source.

2. A Harvey model of noise with a memory, consisting of a background and a single
component of the form 2027/(1 + (277v)?), reflecting for instance noise associated
with stellar granulation.

3. A Harvey model of noise with memory, consisting of a background and two components,
each modelled as in (2), reflecting for instance contributions of both granulation and
active regions.

The best fitting background (as determined by likelihood maximisation) is then compared
with a smoothed representation of the data, in which the data has been smoothed using a
filter consisting of a Gaussian with a FWHM of twice the expected large frequency spacing.
Any excess of power will thus be visible as a region where the smoothed profile rises above
the background power.

Having thence determined the region in which an excess power is to be found, the back-
ground is recomputed with this region excluded from the fitting, again using the three models
of the background above. This new background is used to provide the local background level
required by the statistical tests described below, and any features which these tests highlight
as being significant at a 1% criterion across a range of tests are noted as possible modes.
We fit to these features using the full resonant profile of a mode rather than the Lorentzian
approximation, as here the Quality-factor is low and this may have an appreciable effect upon
the determined mode parameters.
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As a final check, and to determine the errors upon fitted values, which may be under-
estimated by the formal errors, we run a number of simulations of the data, in which we
test whether the effects of the window function can reproduce features in the background
comparable in significance to those observed.

Statistical Tests

We analyze data by testing whether features can be explained as being a product of a
Gaussian-distributed white-noise background. Under these circumstances the normalised
power - that is the power over the mean - in a given bin will follow a negative exponen-
tial distribution (chi-squared with two degrees of freedom). Where the background is not
white, periodogram data can be 'whitened’ in the frequency domain by dividing throughout
by a model of the local background power.

A number of complementary tests can be applied to data to assess whether a given feature
shows a significant deviation of power over the background. The most intuitive of these is
to look for single spikes which exceed a threshold in normalised power. However, in the case
of K-class giants where the widths of peaks are anticipated to be broad, one can expect
for the peaks to be resolved. This opens the possibility of two further tests of significance -
considering the power in two or more adjacent bins, and consideration of whether a significant
number of bins rise above a threshold value within a small frequency range. A description
of the underlying statistics, and how these tests may be applied to periodogram data can be
found in Chaplin et al (2002).

In a number of circumstances it may be appropriate to consider the sum of power over a
number of adjacent bins. This will enable one to detect broad concentrations of power, in
which no single notable spike exists and, when considering ranges greater in size to the large-
frequency spacing, to determine the envelope in which a power excess associated with the
presence of modes exists, even where individual modes within this region may be unresolved.

Results

Using the above procedures we found a single mode in Arcturus (seen in Figure 1) at a
frequency of 3.51 uHz, with an RMS amplitude of 1.23 parts-per-thousand (ppt). These
values are in reasonable agreement with predictions based upon the scaling laws of Kjeldsen
and Bedding (1995), which predict a frequency of vmax = 4.7 £ 1.7 pHz, and an RMS
amplitude of 1.3 + 0.6 ppt.
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Figure 3: A single significant mode, consistent with scaling laws is seen in Arcturus, while 3 UMi seems
to show a structure of modes.
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Table 2: Best-fitting estimates of the identified modes in 3 UMi.

Frequency ~ Width (FWHM, A) Height RMS amplitude
(uHz) (1Hz) [(ppt)?/uHz] (ppt)

2.44 % 0.04 02+01 54+20 13104

2.92+0.05 0.2+0.1 28+1.1 0.9+0.3

In B UMi two features at 2.44 and 2.92 pHz (seen in Figure 1, and described in Table2)
are identified as being statistically significant. Based upon the assumption that these are
modes of adjacent radial order, we have determined that these imply a mass for 3 UMi of
1.3 £ 0.3 M which differs significantly from evolutionary track and log g mass estimates of
2.24+0.3 Mg and 2.5 £ 0.9 Mg respectively.

We are in the process of analyzing further giant stars for the presence of individual modes,
having noted excesses of power in a number of stars.

Conclusions

The SMEI satellite is a useful tool for observing oscillations in giant stars, although there are
certain issues of which the investigator needs to be aware when approaching the data. The
use of rigorous statistical tests is an important tool in confirming the presence of the broad
features associated with Sun-like oscillations in K-class giant stars.

Given the coverage of the whole sky and long time-series available, SMEI has a valuable
réle to play in the observation of asteroseismic oscillations, not only amongst the K-class
giants highlighted here, but also other variables with periods of the order of a few hours to a
few days, for instance gamma Doradus and beta Cephei pulsators.
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Abstract

As the amount of data collected by space-borne asteroseismic instruments (such as CoRoT
and Kepler) increases drastically, it will be useful to have automated processes to extract a
maximum of information from these data. The use of a Bayesian approach could be very help-
ful for this goal. Only a few attempts have been made in this way (e.g. Brewer et al. 2007).
We propose to use Markov Chain Monte Carlo simulations (MCMC) with Metropolis-Hasting
(MH) based algorithms to infer the main stellar oscillation parameters from the power spec-
trum, in the case of solar-like pulsators. Given a number of modes to be fitted, the algorithm
is able to give the best set of parameters (frequency, linewidth, amplitude, rotational split-
ting) corresponding to a chosen input model. We illustrate this algorithm with one of the
first CoRoT targets: HD 49933.

Individual Objects: HD 49933

Introduction

Asteroseismology will greatly benefit from the use of data from space-borne instruments.
Indeed, MOST and now CoRoT observe stars as no other instruments have done before with
high quality and duration. One consequence of this abundance of data is the growing cost
of their analysis and higher expectations in terms of inferences on stellar physics. Hence, we
need to develop automatic and robust methods to extract information from the data. The
Bayesian approach seems to be a promising path to reach this aim because of the possibility
to quantitatively take into account a priori information.

A star behaves as a resonance cavity and different modes are excited. These resonances
appear as peaks in the Fourier spectrum of, for example, the stellar photometric variations.
Dealing with solar-like pulsators, we will restrict our analysis to acoustic modes (p modes).
These stochastically excited modes are essentially characterised by a frequency, a lifetime
and an amplitude. For a power spectrum with a x2 distribution with 2 degrees of freedom,
Duvall & Harvey (1986) derived the likelihood function for a set of fitted parameters 6, given
a model S(v, 0) and a power spectrum y,

Yi

m(y16, ) = HS(M) s (1)

where N is the number of frequency samples v;. With the Maximum Likelihood Estimator
(MLE) approach, the best set of parameters is derived by maximizing the likelihood function
(Anderson et al. 1990).
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As we want to extract reliably as much information as possible from the data by considering
a priori information, the Bayesian approach is perfectly suited. Recently, more and more
astronomers have begun to use this approach (e.g. Gregory 2005, Parkinson et al. 2006,
Brewer et al. 2007, Carrier et al. 2007) in different domains. Applying Bayes rule, we can
define a posterior probability density function (pdf). As shown by Appourchaux (2007), in
the case of asteroseismic data, the posterior pdf w(8|y, S) directly depends on the likelihood
function 7(y|0, S),

_ 2(y16, S)(0]5)
R ) @)

where 7(60|S) is a pdf describing our a priori knowledge on the parameter set 8. This will
be called hereafter the “prior”. The denominator is a normalization constant. If we want to
apply a prior to a particular parameter (or to a subset of parameters) 6, we use the product
rule. Let us define 8 = (6, O ), where, for example 6y, are the amplitudes and 6 all the
other parameters. The prior w(0|S) can be rewritten as

7(8]S) = (6, O |S) = 7(6k|S)m(Bkr |6, S) 3)

m(0y

Assuming that the prior of @ is independent of the prior of any other parameter, we can omit
the G dependence on eq.(3) and rewrite eq.(2)

7(y16, S)m (O [S)7(6k|S)
m(y[S)

This recipe can be applied as many times as necessary.
In practice, two computation strategies to evaluate the posterior pdf exist:

(0

v.S) =

(4)

- Maximum A Posteriori approach (MAP) where we are interested only in the maximum
of eq.(4)

- Sampling methods (essentially MCMC algorithms) that provide all of the information
on the posterior pdf

We choose the second computational approach for its effectiveness. All the MCMC algorithms
consist of a chain of random walks in the parameter space of a function. This allows, MCMC
to sample, for example, a pdf whatever the complexity of the analytical form of the function.
Moreover, compared to gradient methods widely used to find the maximum of a function,
MCMC are insensitive to the departure point in the space of parameters. This means that
the initial O vector can be set arbitrarily yielding nevertheless a proper sampling around
the maximum. In consequence, if multiple maxima exist, the algorithm will not miss the
true maximum of the function (under some conditions detailed in Section 2). MCMC also
enables numerical integration widely used in the Bayesian approach. Let us introduce some
basic aspects of the MH algorithm (Metropolis et al. 1953, Hastings 1970). Considering an
equilibrium distribution (the function that we want to sample) 7(6@), we define a probability
transition function a(6;+1, 6;) from an initial parameter set 6; to a new proposed set 6,1, in
order to sample the space of parameters

7(6i+1)q(6i+16i)
m(6i)q(6i|0it1)

where q(6;|6;+1) is the proposal pdf of transition. Hence, it is related to the step size of the
a(6i+116)
a(616i11)
to be a Gaussian distribution. This choice is not necessarily the best but the simplest one
(Roberts & Rosenthal 2001). The quantity « is compared to a uniform random variable
. m(6i41)a(Bi41160)

11. If th t m(0i+1)a(0i+110i)

u € [0.1]). If the ratio =g c(6: 6i)
always accepted. Otherwise, the move is accepted with a probability equal to the ratio.

a(Biy1, 6;) = min{1, (5)

transition. If g is symmetrical, then the ratio reduces to 1. Usually q is chosen

is greater than 1, the transition from 6; to 6y is



100 An application of Bayesian inference for solar-like pulsators

Algorithm details

Choice of the covariance matrix of the proposal distribution

Assuming that the proposal distribution q(6i+1]6;) = N(6;,X) is a Gaussian centered on 6;
and of variance X, the only parameter that we have to scale is the covariance matrix X1
of this distribution. The choice of £~ affects the acceptance rate and hence the sampling
efficiency. If the acceptance rate is too high, too many transitions are accepted which results
in unnecessarily small steps in the parameter space. The risk of sampling a local maximum
rather than the global pdf is high. A low acceptance rate corresponds to large proposed
step transitions and to an excessively low sampling rate. Following Atchadé (2006), the best
sampling is obtained for an acceptance rate between 0.2 and 0.5. To have a flexible algorithm,
we choose to use a self-learning process that adapts the covariance matrix according to the
data. Even the correlation between parameters is taken into account (nondiagonal matrix).
It can be argued that this kind of algorithm violates the Markovian nature of the sampling
process. This is true, but, in fact, one can stop the learning process when the acceptance
rate is satisfactory.

Parallel tempering

When the posterior pdf has multiple local maxima (e.g. when sampling the sum of 2 Gaussian
distributions), MCMC can be trapped in one of these maxima, especially if they are far from
one another in the parameter space. Indeed, the probability transition (641, 6;) is close to
0 between two distant maxima. A solution to avoid this problem and to efficiently sample
all of the parameter space was first suggested by Jennison (1993). It consists in launching k
different MCMC in parallel. Each MCMC has a different equilibrium distribution

Vi € [1, k], 7;(8) o w(0)/Ti (6)

where T; is called the temperature of the chain. The higher the temperature is, the lower is the
potential barrier between two local maxima. Applying a temperature is like “stretching” the
distribution of interest (compared to the colder chain 71(0)). The displacement in the space
parameter are easier at high temperature than at low temperature. We choose a geometrical
law for the temperature profile

T, =N"1 ©)

where A is a scaling factor. At each iteration, j, we mix two adjacent and randomly chosen
chains, i and i 4+ 1 with a probability
7ri(9;0+)1)7fi+1(9i0))

7ri(9;(j))7fi+1(9;021)

a(Bi(j), Bg?l) = min{1, (8)

Then all of the values can be discarded except those related to the distribution of interest
(i.e. for m1(0)). X is adjusted to ensure an acceptance rate around 50%.

Condition to stop the sampling

In the MH algorithm, the number of samples to compute is difficult to set . When can we
assume that all of the region of interest (i.e. where 7 is not close to zero) of the parameter
space has been visited? This question is still discussed in the literature. Different authors
proposed indicators to stop the sampling (see the review of Brooks & Roberts 1998). The
simplest one consists in monitoring the posterior probability parameters and assuming the
steady state to be reached when the parameter mean value and rms error are stable.
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Physical assertion and Bayesian considerations in the case of solar-like pulsators

For a single mode, the mean power spectrum can be described by a sum of Lorentzian profiles
plus background noise. As we wish to make a global fit including several modes expected in
a wide frequency range, we should use the general relation

Nimax Lmax Bo

s => > Z V"’V;';ms + 1 T B )

nmno =0 ey (1+ Toim/2 »

where Ap, | m. Vn,1.m, S, [ n,1,m are the height, the central frequency, the rotational splitting and
the linewidth at half maximum, respectively. By, B1, Bz, p are parameters associated with the
noise profile, chosen to be the sum of Harvey-like profiles plus white noise (Harvey 1985). In
the solar-like pulsator case and in the asymptotic approximation, the central frequency of a
set of modes (n, /) is approximately given by the relation

v(nl) = Av(n+1/2+¢€)—I(I +1)Dg (10)

with Av = vp41) — vpy and Dy are related to the sound speed at differents depths. The
large separation Av is related to the mean stellar density and Dy to more local properties.
Eq.(10) can be used as a strong prior on the frequency dispersion. Indeed, the large separation
estimation is easy (e.g. from the spectrum autocorrelation) and Dy can be constrained by a
previous modelisation of the star.

Application to HD 49933

Prior definition

We applied our algorithm to a CoRoT target, HD 49933, continuously observed for 60 days.
This star was previously analyzed by Mosser et al. (2005) and more recently by Appour-
chaux et al. (2008). The autocorrelation of the power spectrum gives us a precise estimate
of the large separation: 85.6 + 0.8 uHz. We choose a Gaussian prior for the large separation
according to these values. The low S/N ratio prevents a clear detection of the /=2 modes,
even in an echelle diagram. Dy is around 1 pHz (Appourchaux et al. 2006) according to
stellar models. This leads to a frequency difference between /=0 and the neighboring /=2
modes of dpp =~ 6uHz. The tolerance should be large as we do not have a lot of confidence.
So we define a Gaussian prior with dp2 = 6 £ 2.5 pHz.

The a priori information on the rotational splitting is extracted from the very low fre-
quency part of the power spectrum. A peak which is supposed to be due to transiting
structures on the stellar surface appears at 3.4 uHz. We choose a one-o tolerance of 10% of
this value.

The angle between the line of sight of CoRoT and the star's rotation axis is an important
parameter for p-mode analysis in the power spectrum, as it affects the relative amplitude of
the split components of nonradial modes (Gizon & Solanki 2003). Estimates (from v.sini
measurement, radius and rotation estimation) give a probable angle of 26 + 4 °, but there
is a substantial discrepancy with the asteroseismological interpretation leading to an angle
between 50 and 62 degrees (Appourchaux et al. 2008). In order to avoid any prejudice, we
decided to use a weak prior: a uniform prior probability, from 15 to 70 degrees.

For all others parameters, the only prior consists in allowing only real positive values. The
defined priors are improper and uniform. Moreover, to increase the fit stability, we fit a single
linewidth by large separation and consider 15 radial orders in the frequency range 1200 -
2600 pHz. Finally, we deal with 81 parameters.
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Figure 1: Example of pdf vs. frequency for the CoRoT photometry of HD 49933. Left : monomodal
distribution (/ = 1). Right : bimodal distribution (/ = 2)
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Figure 2: Echelle diagram. Error bars represent 3-o errors. On the left / = 1, on the right /| =2 and / =0

Results from the global fit

200000 samples had to be computed before reaching the steady state. The estimated value
for the splitting is 3.0 + 0.2 uHz. This suggests a lower rotational velocity for the inner parts
of the star compared to the surface. The inclination is evaluate to be 46 £ 6 °. The large
separation is 86.2 + 0.2 uHz. The values for these three parameters confirm those found by
Appourchaux et al. (2008) using MLE. One of the main differences comes from the frequency
estimation for | = 2 modes. Our values are constrained by the a priori information and avoid
negative dp2 values (see Fig.2). Some parameter pdfs are clearly multimodal (see Fig.1),
especially for the | = 2 mode central frequencies which have amplitudes close to the noise
level (S/N around 1).

Conclusion

We presented an analysis method based on MCMC and Bayesian inference. These methods
show many advantages compared to the more classical one used in asteroseismologic data
analysis: The sampling capabilities of Markov Chains Monte Carlo (MCMC) provide full infor-
mation on the probability density function (pdf) of the parameters and not only a maximum of
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the probability. Hence, a multimodal pdf is not a problem. Moreover, the adaptive capacities
of MCMC permit us to envisage the development of automatic fitting procedures. As shown,
thanks to a priori information, the Bayesian inference has the capacity to extract more real-
istic parameters from data than Maximum Likelihood Estimator approach (MLE). Compared
to a simple likelihood estimator, the reliability is increased. Of course, the data quality is a
limit and we have to be careful not to introduce too strong priors. The results presented for
CoRoT photometry of HD 49933 confirm the angle inclination value and rotational splitting
found by the MLE approach. They also show that the pdfs are multimodal in some cases, as
for the | = 2 frequencies and explain the failure of MLE methods to find the true maximum of
probability. The main reason is that the S/N is low, increasing the occurence of multimodal
pdfs.
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