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Abstract

The mathematical model of periodically amplitude and phase modulated si-
nusoidal oscillation is studied, and its Fourier spectrum is given analytically.
The Fourier spectrum of the model explains the main features of the frequency
spectrum of RR Lyrae stars showing light curve modulation called the Blazhko
effect: among others the appearance of multiplets, the rapid decrease of their
amplitudes in increasing orders, the asymmetry of the amplitudes of the side
frequency pairs, and the possibility of the occurrence of frequency doublets in-
stead of triplets in the spectrum. The good agreement of the results of this
mathematical model with observational facts favours those physical models of
the Blazhko effect which explain the phenomenon as a modulation of the oscil-
lation with the modulation frequency, fm.

Accepted: 2009, August 19

1. Introduction

In the past years contradictory descriptions have been published about the fre-
quency spectrum of the RR Lyrae stars with modulated light curves. Analyzing
the light curves of RRab stars in the large data bases of MACHO and OGLE
(Alcock et al. 2003; Moskalik & Poretti 2003; Collinge et al. 2006) different
classifications of the modulation were introduced depending on the number and
the separation of the modulation side-frequencies detected in the spectrum. In
variables with an equidistant triplet structure around the fundamental mode fre-
quency, no further multiplet structure could be identified in these studies. The
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observations focused on individual Blazhko stars, however, inevitably proved the
presence of higher multiplets (quintuplet, septuplet structures) in the spectrum
(Hurta et al. 2008; Jurcsik et al. 2008; Kolenberg et al. 2009, Jurcsik et al.
2009a). Up to now the only mathematical model that aimed to describe the
full spectrum with multiplets of Blazhko variables was published by Breger &
Kolenberg (2006). However, no detailed confrontation with the observations of
the possible predictions of this model e.g., on the amplitudes of the components
of the multiplets has been performed.

As the frequency spectrum implies the basic information (amplitudes and
phase angles) on the light curve modulation, its correct knowledge and inter-
pretation is very important for proper understanding of the Blazhko effect. If
we find the adequate mathematical model that describes all the features of
the frequency spectrum of the well-observed Blazhko stars (frequencies, ampli-
tudes and phase relations), it may provide a starting-point and steady base for
theoretical investigations.

2. The frequency spectrum of periodically modulated sinusoidal

oscillation

The amplitude and phase modulated sinusoidal oscillation is given by the for-
mula

m(t) = a [1 + b sin (Ωt + ϕ1)] sin [ωt + ϕ0 + c sin (Ωt + ϕ2)] , (1)

where ω = 2πf0, f0 is the fundamental frequency, Ω = 2πfm, fm is the frequency
of the modulation, a, b and c = 2πf0q are the amplitudes of the oscillation, the
amplitude and the phase modulations, respectively. q expresses the amplitude of
the phase modulation relative to the fundamental period, ϕ0, ϕ1 and ϕ2 denote
the phases of the oscillation, amplitude and phase modulations, respectively.
Analytically, there is no limit for the parameters a, b and c(q), but because
of observational constraints we confine our discussion to the parameter values
0 ≤ b ≤ 1 and |c | ≤ π/2. Solutions for parameters out of these ranges are
irrelevant in asteroseismology.

We do not consider modulation of the oscillation frequency here as the
modulated oscillation of the form of

m(t) = a sin[ω(1 + d sin(Ω + ϕ3))t + ϕ0] =

a sin[ωt + ϕ0 + dωt sin(Ωt + ϕ3)]

corresponds to a phase modulation with variable modulation amplitude (c =
dωt) and time dependent, unstable frequency spectrum.
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By suitable choice of the starting epoch, without any restriction on the
general validity, ϕ0 = 0 and ϕ2 = 0 can be attained. If the initial epoch
corresponds to the timing of both the mid rising branch of the phase modulation
and the mid descending branch of the oscillation (taking into account the reverse
direction of the magnitude scale) both ϕ0 = 0 and ϕ2 = 0 fulfill. Since f0 and
fm can be regarded as rational numbers as the accuracy of their numerical value
is limited by the observations, such an epoch should exist. We note here that
with cosine representation the choice of the appropriate initial epoch would be
more natural, it would correspond to the maxima of the oscillation and the
phase modulation.

Denote now Φ = ϕ1 − ϕ2 the epoch independent phase difference between
the amplitude and phase modulations. Then the time history of the modulated
oscillation is described as follows

m(t) = a [1 + b sin (Ωt +Φ)] sin (ωt + c sinΩt) . (2)

Taking the simple trigonometric addition formula of sin(α + β) and the
Taylor-series of sin x and cos x into account, Eq. 2 has the form

m(t) = a (1 + b sinΦ cosΩt + b cosΦ sinΩt) ·
[

sinωt

∞
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Substituting the well-known power-reduction formulae Eqs. 4 and 5 into Eq. 3
with α = Ωt
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and then applying the simple trigonometric formulae
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where α = ωt, β = iΩt, i = 1, 2, 3, ... , Eq. 3 will have the form

m(t) = x0 sinωt + z0 cosωt +
∞
∑

i=1

xi sin(ω + iΩ)t +
∞
∑

i=1

yi sin(ω − iΩ)t

+
∞
∑

i=1

zi cos(ω + iΩ)t +
∞
∑

i=1

wi cos(ω − iΩ)t

(7)

where xi , yi , zi and wi (i = 1, 2, 3, ... ) coefficients depend only on a, b, c and Φ.
Applying the known relations Eqs. 8 and 9 to Eq. 7:

cosα = sin
(
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π

2

)

, α = (ω ± iΩ) t i = 0, 1, 2, ... (8)

and

X1 sin νt + X2 sin
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4

)

= X sin (νt + ϕ) , ν = ω ± iΩ (i = 0, 1, 2, ... )

(9)
where X 2 = X 2

1 + X 2
2 and tanϕ = X1/X2 we arrive at the Fourier spectrum of

the modulated sinusoidal oscillation:

m(t) = A0 sin(ωt + χ0) +
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By using the outlined procedure we can derive the A0, A
+
i and A−

i coeffi-
cients (amplitudes) as well as their phase angles, χ0, χ

+
i and χ−

i .
As an example we derive the amplitudes and phases of the triplet. In this

case only the k = 0, 1 terms in Eq. 4 and the k = 0 term in Eq. 5 should be
considered and substituted into Eq. 3 for each n (n = 0, 1, 2, ... ). All the other
terms contribute to the higher members of the multiplets. In this case taking
Eqs. 6 into account, Eq. 3 takes the form:

m(t) = a (1 + b sinΦ cosΩt + b cosΦ sinΩt) ·
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where g is a function of ω ± kΩ, k ≥ 2.
Let the convergent series
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Eq. 11 takes the form:

m(t) = a (1 + b sin Φ cosΩt + b cosΦ sinΩt) ·

· [S sinωt − 2S1 sinωt cos 2Ωt + (S − S1)c cosωt sinΩt] + g (14)

If we execute the multiplications in Eq. 14 taking into account Eqs. 6, and
disregard all the terms with ω ± kΩ, k ≥ 2, we obtain the following equation
that describes the triplet structure:

m(t)triplet = a
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Application of Eqs. 8 and 9 to Eq. 15 yields the squares of the amplitudes
as well as the phases of the triplet:

A2
0 = a2[S2 +

1

4
(S − S1)

2b2c2 cos2 Φ] (16)
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Note that an interesting relation exists for the power difference of the side
frequencies:
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Eq. 20 shows that the asymmetry of the side frequency amplitudes depends
basically on the phase difference between the amplitude and phase modulation
components.

The amplitudes and phases of the subsequent frequencies of the multiplets
can be derived in the same way. E.g., the final result for the side frequencies
of the quintuplet (k = 2) is as follows. Let the convergent series
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tanχ−
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Note again that the power difference of the frequency pair simply depends
on sinΦ:
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2 )
2 = −(S − S1 − S2)a

2bc sin Φ.

3. Discussion

In realistic cases, in Blazhko stars the harmonics of the fundamental frequency
are also present in the oscillation and appear in the frequency spectrum. So
the time history of the periodically modulated oscillation is described by the
equation

m(t) =

∞
∑

i=1

ai [1 + bi sin (Ωt +Φi )] sin [iωt + ci sinΩt] . (21)

In the previous section we confined ourselves to the fundamental frequency.
The same deduction is, however, valid and true for the harmonics, simply ω
should be replaced by iω. Therefore, we conclude that the frequency spectrum
of any periodically modulated periodic oscillation i.e. the light curve of Blazhko
stars is the infinite series of the multiplets of the fundamental frequency and
its harmonics:
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(22)

We also note here that, if the sums in Eq. 22 start from i = 0, then this
description gives a natural ground to the appearance of A00, and frequencies at
jfm, which correspond to an arbitrary zero point of the scale, and the modulation
frequency and its harmonics, respectively. Although the appearance of fm (and
perhaps 2fm) is hardly (if at all) discernible in most of the observed frequency
spectra of Blazhko stars, in accurate, extended data the modulation frequency
can be always detected with very small amplitude. This is most probably due to
the fact that the star’s physical parameters (e.g. mean luminosity, temperature)
change only weakly during the Blazhko cycle (Jurcsik et al. 2009a, 2009b).

A priori there is no definite connection between the parameters of the mod-
ulation. The rough constancy of the phase differences and the systematic be-
haviour of the amplitudes of the triplet components with increasing orders i
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Figure 1: Variations of the S (dots), S1 (circles) sums and their combination term
(crosses) which define the amplitude decrease of the f0 frequency component with
increasing phase modulation amplitude, c.

(see Fig. 10 in Jurcsik et al. 2009a) suggests, however, the existence of some
connection between them. If we suppose that b, c and Φ are unique parame-

ters of the modulation in the different harmonic orders then A
+/−
ij and χ

+/−
ij

would depend only on ai . In this case the side frequencies of the different order
pulsation components would naturally have some common properties.

In all probability the amplitudes of the if0 frequencies in the spectrum of
modulated light curves run more or less similarly to that of the single periodic
RR Lyraes. It should, however, be noted that according to Eq. 16, a2[S2 +
(S − S1)

2c2/4] is an upper limit (b = 1,Φ = 0) for the amplitude of f0, i.e.,
A0/a = 1 only if the modulation is pure amplitude modulation (c = 0). Any
phase modulation component lowers the amplitude of the f0 frequency. Fig. 1
shows the dependence of S , S1 and the upper limit of the amplitude reduction
factor (S2 + (S − S1)

2c2/4) on c , using f0 = 2.1925 c/d oscillation frequency,
corresponding to the pulsation frequency of DM Cyg. The phase modulation
lowers the amplitudes of the harmonic components, too, (Ai0/ai < 1 if ci > 0)
as E.q. 16 also holds for the frequencies ω = iω.

As mentioned above, the accurate and well-distributed (over both frequen-
cies f0 and fm) observations of Blazhko stars clearly show the multiplet structure
around the fundamental mode frequency and its harmonics in their Fourier spec-
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trum (Jurcsik et al. 2008, Kolenberg et al. 2009). The question arises why the
triplet is a striking feature while the higher multiplets are hardly perceptible in
the frequency spectrum of a Blazhko star.
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Figure 2: Amplitude decrease of the multiplet components in the different orders
of the modulation. Artificial datasets were generated for different values of c (0.1,
0.5, 1.0) according to Eq. 3 using a = 1, b = 0.1 and Φ = 72◦ values and f0, fm
frequencies of DM Cyg. The phase modulation with c = 1 amplitude corresponds
to full amplitude of the phase modulation slightly less than 1/3 of the main period
which is substantially larger than the amplitude of the phase modulation observed in
Blazhko stars, which is typically about 0.1 − 0.2 pulsation phase. Even in the c = 1
simulations the amplitudes of the higher order modulation components (f0 ± kfm,
k ≥ 3) are neglectably small.

Although the formulae of the amplitudes of the multiplets can be exactly
derived as it was shown in the previous section, they are fairly complicated
expressions (besides the outlined procedure is too laborious). Their behaviour
can be, however, easily studied through the Fourier analysis of synthetic light
curves. As examples, Figs. 2, 3 and Table 1 show the amplitudes of subsequent
multiplets of the frequency spectra of Eq. 2 at different choice of the modulation
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Table 1: Amplitudes of the frequency multiplets appearing in the Fourier spectrum of
amplitude and phase modulated sinusoidal signal according to Eq. 2 using a = 1, b =
0.1, c = 0.5 parameters for different Φ values.

Φ f0 − 5fm f0 − 4fm f0 − 3fm f0 − 2fm f0 − fm f0
36◦ 0.000007 0.000134 0.002067 0.025337 0.216919 0.938674
72◦ 0.000003 0.000055 0.001197 0.019320 0.196687 0.938500
90◦ 0.000000 0.000032 0.001025 0.018363 0.193815 0.938470

Φ f0 + 5fm f0 + 4fm f0 + 3fm f0 + 2fm f0 + fm
36◦ 0.000014 0.000258 0.003680 0.039023 0.273228
72◦ 0.000016 0.000286 0.004054 0.042408 0.288692
90◦ 0.000016 0.000289 0.004102 0.042845 0.290722

parameters. The striking feature is that the amplitudes of the subsequent
frequencies on both sides of the fundamental frequency approach zero rapidly.
The degree of the decrease depends on the parameter of the phase modulation
c , the weaker the phase modulation, the faster the amplitude decrease is. Even
if the phase modulation has a high value, c = 1, the amplitude of the f0 ± 5fm
frequencies are more than three orders of magnitude less than the amplitude
of f0 (see Fig 2). For a more realistic case e.g., with c = 0.5 the amplitude
difference between the first and fifth order modulation components is larger
than four orders of magnitude as shown in Table 1. It is now clear that only
the observational accuracy sets limit to the perception of higher multiplets in
the frequency spectrum.

Another important implication of our results is that Eq. 20 proves that the
power difference of the side frequencies in the triplet is the physically meaningful
quantity to measure the asymmetry of the triplet instead of their amplitude
ratios.

Our calculations have further serious and amazing consequences on the
symmetry and asymmetry of the triplet components. It results also from Eq. 20
that the triplet will only be symmetrical if any of the quantities b, c or Φ
equals to zero, or Φ = π. If the quantities b, c and Φ have appropriate
numerical values, one of the amplitudes of the triplet side frequencies A+

1 or
A−

1 may become zero. The only solution of the (A+
1 )

2 = 0 or (A−

1 )
2 = 0

second order equations (Eqs. 17) is b = c and Φ = 3π/2 or Φ = π/2. In this
case the spectrum of the modulated oscillation is doublet instead of triplet. As
an instructive example Fig. 3 shows the amplitude changes of the frequencies
as a function of Φ for a = 1, b = 0.1 and c = 0.1, 0.5, 1.0. In Blazhko stars,
usually there is a phase difference between the amplitude and phase modulation
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Figure 3: Amplitude variations of the multiplet frequency components of peri-
odically amplitude and phase modulated sinusoidal signal as a function of Φ,
the phase difference between the amplitude and phase modulation components.
A0,A

+/−
1 ,A

+/−
2 ,A

+/−
3 denote the amplitudes of the f0, f0 ± fm, f0 ± 2fm, and f0 ± 3fm

frequency components. The three panels show the results for different combinations
of b and c, the amplitudes of the amplitude and phase modulations, respectively. Ar-
tificial datasets were generated using Eq. 2 with a = 1 and f0 = 2.3817, fm = 0.06043
c/d values corresponding to the pulsation and modulation frequencies of DM Cyg,
and Fourier analysed in order to determine the amplitude values.

components (see e.g., Fig 8 in Jurcsik et al 2008, and Fig 3 in Jurcsik et al
2009a) and this explains why asymmetric triplets are detected in most of the
cases.

Concerning the phases, from Eq. 18 it follows that if either b = 0 or c = 0
the phase of the oscillation is 0 or π (tanχ0 = 0) if the initial epoch is chosen
as described in the beginning of Sect. 1. When the modulation is pure phase
modulation, then tanχ−

1 = tanχ+
1 = 0, i.e., χ−

1 , and χ+
1 are 0 or π. When

the modulation is pure amplitude modulation, then Eq. 1 can be easily solved
with appropriate choice of the initial epoch. If the initial epoch is chosen to
fulfill ϕ0 = 0 and ϕ1 = 0, i.e., it corresponds to the timing of both the mid
rising branch of the amplitude modulation and the mid descending branch of
the oscillation, the solution of Eq. 1 shows that χ−

1 = π/2 and χ+
1 = −π/2.
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Alternatively, if the initial epoch corresponds to the maximum phase of the
amplitude modulation i.e., ϕ1 = π/2, then χ−

1 = χ+
1 = χ0 fulfill.

Eq. 20 provides another interesting result. If 0 < Φ < π, then A+
1 > A−

1

and the plot that shows the amplitude of the light variation vs. phase shift of
maximum light during the Blazhko cycle has anticlockwise progression, while
in the case of −π < Φ < 0, A+

1 < A−

1 , the progression is the opposite. In
reality, of course, the situation is more complex because the modulations of the
harmonic components may modify the picture.

4. Conclusions

The model of periodically modulated harmonic oscillation properly explains the
main features of the frequency spectrum of Blazhko RR Lyrae stars. It pre-
dicts the infinite multiplet systems around the fundamental frequency and its
harmonics, accounts for the often detected asymmetry of the amplitudes of the
side frequency pairs in the triplets (quintuplets) and for the rapid decrease of
the amplitudes of the multiplets with increasing orders.

Our results also indicate that the suggested classification schemes of Blazhko
stars based on their frequency spectrum (Alcock et al. 2003, Moskalik and
Poretti 2003) are dubious. For example, the frequency doublets, which are
generally interpreted with a nonradial frequency component close to the radial
frequency, can naturally take its origin from amplitude and phase modulations
of a single oscillation. Our analysis also shows that the asymmetry of the triplets
are a natural consequence of the mixture of amplitude and phase modulations.
We thus conclude that the occurrence of multiplets does not necessarily imply
the presence of more than a single oscillation, and prefers those physical models
which connect the phenomenon to one modulation frequency, fm. Recently,
Stothers (2006) proposed such a model for Blazhko RR Lyrae stars. In his
model the cyclic changes in the strength of the envelope convection gives rise
to the modulation of the periodic oscillation of these stars.

In the near future we plan further investigations to exploit the potential of
this model and to find connections between the amplitudes and phase angles in
the frequency spectrum. We also plan to carry out a more profound comparison
with observational facts.
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