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Abstract

In [1] mathematical-physical properties of musical tones, and musical tone systems, were
discussed. In the current article the results obtained in [1] are applied to analyze tonal
systems in greater detail. This is done for the case of the 3-dimensional tonal lattice
system, as well as for its 2-dimensional tonal sub-lattice — the Pythagorean plane.

It will be shown that in the 3-dimensional tonal lattice space a 31-tone system can
be defined which contains the familiar tone scales as substructures, namely the 12-
tone chromatic scales (with their subscales). Moreover, the 31-tone system contains a
3-dimensional 22/23-tone system related to a hypothetical South Indian Carnatic tone
system and to the 3-tone scale of the ancient Greek Lyre.

For the case of the 2-dimensional Pythagorean sub-lattice a 29-tone system can be
defined. This 29-dimensional tone lattice contains a 2-dimensional 22/23-tone system.
Moreover, the 2-dimensional 29-tone system also contains the Pythagorean 12-tone
systems (scales), the Pythagorean 7-tone scale and again the 3-tone scale of the
ancient Greek Lyre.

Subsequently it is shown that the 2-dimensional tonal systems of the Pythagorean
plane are, in fact, images of the 3-dimensional tonal systems of the 31-tonal system, if the
3-dimensional tonal systems are projected along the Pythagorean vector p = (—1, 3, —1)
(= 81/80, the Syntonic comma) into the Pythagorean plane. In particular, the chromatic
minor scale projects upon the 12-tone Pythagorean scale, the chromatic major on another
12-tone Pythagorean scale (quite asymmetric with respect to the tone c), the 7-tone
diatonic scale projects upon the 7-tone Pythagorean scale. The 22/23-tone 3-dimensional
tone system consists of 11 pairs of tones, related to each other by the Pythagorean vector
D, and the tone c. Each pair is mapped upon one tone in the Pythagorean plane, and these
11 images, together with the tone ¢, form the standard 12-tone Pythagorean scale. This
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projection establishes not only a relationship between the tones of the 3-dimensional and
2-dimensional tonal systems, but also a functional relationship between the tone inter-
vals of various musical systems and musical scales.

Finally, it is shown that a 3-dimensional 116-tone system exists which contains all
the 3-dimensional tone systems and scales mentioned above. Moreover, it contains all
the musical tones (not the overtones) of the list of tones given in [2]. As an explicit
example, Table 10.1 lists all the tones, the tone sequence, and the relationship between
the intervals for the various tonal systems, for the first full tone 7' (the tone interval
c—d). This table also illustrates the relationship of the tones with respect to the two
bases used, the (2/1), (3/2) and (5/3) basis used in this article (and in [1]), and the
basis (2/1), (5/4) and (3/2) basis used in [2].

The reversal of certain tone sequences of the images, due to the map along the
Pythagorean vector p, is also discussed, as well as a special form for the formula for
the intervals between the tones derived which expresses the intervals as a linear
equation in terms of three discrete parameters.

1. Introduction

Tonal scales and tonal systems will be discussed in this article. Tonal
systems, as distinguished from tonal scales, are defined as ordered
inventories (Tonmaterial) of musical tones from which tones for actual
musical scales can be selected, as for example the tonal system obtained
by RIEMANN [2]. The ordering of the tonal inventory is however not
merely an ordering according to frequency (a one-parameter ordering)
but an ordering according to a lattice structure (a three-parameter
ordering), of the kind used by MAZZOLA [3]. While the analysis given in
this article is strictly restricted to ““lattice properties” of tonal lattice
systems there are obvious implications for actual musical scales [3], [4].

The musical tones are defined by ratios of frequencies v/,
whereby vy is an arbitrary, but fixed reference tone. The frequencies v
within the n-th octave can be expressed in the form

v=192"(146/2m), 0<6/2r <1, n=0, x1, £2, +£3,...

(1.1a)
or in the form
V=12 0<g/2r<1, n=0, %1, £2, £3,...
(1.1b)
with
&/2m =log,(1 4 6/2m). (I.1c)

The octave tones, given by the parameter value §/27 = 0, are
v=u;=1p2", 6/2m =0, n=0, 1, £2, £3,....
(1.2a)
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The upper index 7 in the expression " for the frequency v denotes the
n-th octave. (This notation for the n-th octave will also hold for any
alphabetical musical tone like the tone ¢”, in distinction to (a)" which
denotes the n-th power of the frequency ratio v = 5/3 associated with
the tone a). The n = 0 octave is called the basic octave. In this article
the value chosen for v is vy = ¢, where ¢ denotes the first tone of the
diatonic scale of C-major. Thus for the case n = 0 holds

vy =1~ =c. (1.2b)

That is, the reference frequency vy is chosen to be the first tone of the
n = 0 octave which has the alphabetical name c.

Note that the expression given by Eq. (1.1) is the inverse function
to the logarithmic function

log, (v/vy) = n+1logy(1+6/27) = n+§/2m. (1.3)

Thus both expressions, Eqgs. (1.1) and (1.3), carry the same informa-
tion. Eq. (1.3) is essentially an expression for the distance, in cent, of
the tone v from the reference tone vy (apart from a factor 1,200).

The relationship Eq. (1.1c) between frequency and perception
(Horempfinden) has also been discussed in ref. [5].

The musical tones considered in this article (and in refs. [1] and
[2]) are of the form

v/vo = (n,m,r) = (2/1)"(3/2)"(5/3)",
n,m,r =0, £1, £2, £3.... (1.4)

It then holds for the musical tones v/1y which are contained within
the basic (2/1)-octave, that

1< (2/1)(3/2)"(5/3) = (n.m,r) <2,
nom,r=0, £1, 42, £3.... (1.5)

It was shown in ref. [1] that the musical tones (n, m, r), Eq. (1.4), can
be mapped onto lattice points of a 3-dimensional scaled lattice, with
the distances between the lattice points scaled by the factor (2/1)"
along the n-axis, by the factor (3/2)" along the m-axis, and by the
factor (5/3)" along the r-axis. That is, each lattice point (n, m, r)
represents a musical tone corresponding to the frequency v/vy, as de-
fined by Eq. (1.4).

Thus, instead of a single number v /1 representing a musical tone, the
musical tones are now expressed in terms of three discrete parameters.
The properties of the 3-dimensional lattice associated with the musi-
cal tones provide a mathematical structure which is not available if
the musical tones are merely given in terms of pure numbers v/
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(which now represents only one property of a musical tone (n, m, r),
namely ““its distance” from the lattice origin). This additional mathe-
matical structure of the musical tones (n, m, r) permits new insights into
the structure of musical tones, and moreover supplies the mathematical
tools needed to systematically study musical tone systems.

As it was noted above, the lattice point (vector) (n, m, r) represents
a musical tone in a 3-dimensional lattice space, and with this lattice
point (n, m, r) is associated a numerical value, namely the number
v /vy (the frequency ratio). In this article a musical tone (n, m, r) will
be understood to represent simultaneously a 3-dimensional vector,
and its associated numerical value v/1y. Thus, symbols like s, 52, 53,
representing musical intervals, denote simultaneously vectors and
their associated numerical value,

S1 = Vl/Vo = (numl,”l),
2 = Vz/l/o = (n27m27r2)7
§3 = V3/Vo = (n3,m3,r3).

It is then the mathematical operation used which will distinguish
between the two meanings, namely

S1+ 852 =83
is understood to be equal to the vector sum of s; and s,
(n1,my,ry) + (o, my,ry) = (ny +ny,my +my,ry +ry) = (n3,ms, r3),
while the equation
S182 = §3

is understood to be equal to the ordinary product of the frequencies
associated with s; and s,

(v /) (/o) = (v3/w), v = 1.

The musical tone systems, i.e. the various musical scales, form sub-
sets of lattice points within the 3-dimensional lattice space [1]. For a
set of lattice points to form a musical scale certain conditions apply.
In particular the ““closure condition” applies. That is, starting out with
a tone /vy =1=(0,0,0) the octave tone 2vy/vp =2 = (1,0,0)
must be reached in an integer number of (discrete) steps — the in-
tervals between the tones. Thus, once the various intervals — interval
vectors — have been chosen, the lattice properties will determine the
possible musical scales which can be based upon the chosen interval
vectors. The vector sum of vector-intervals, however, must not only
reach the octave lattice point but must do this in such a manner that in
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each step only musical tones of the basic n = 0 octave are reached,
Egs. (1.5) and (1.6a).

Using Eq. (1.5) it is possible to determine all musical tones v/vy =
(n,m,r) which belong to the basic n =0 octave [0, 1]. Choosing
from among these musical tones certain tones as interval vectors,

(nlymla r])) (n27m27r2)7 (n3,m3,r3), o
it must hold

(0,0,0) =1<(0,0,0) + ki (n1,my, r1) + ka(nz,my, r2)
+k3(n37m37r3) + - SZ = (17070)7

ki=0,1,2,... k"™, i=1,2,3,... (1.6a)
and
(0,0,0) + k™ (ny,my, r1) + ky™(ny, my, r2)
+ k3™ (n3,mz,r3) +--- = (1,0,0). (1.6b)
The number of tones N of the musical system/scale is then given by
N = k"™ + k™ k3™ + - - (1.6¢)

The formulas given by Eq. (1.6) do not determine the order of the
intervals, i.e. the sequence of the tones, nor the tones themselves.
The tone sequence is only partially obtained by the requirement of
a monotonic increase of the interval sequence. However, since there
are only two fundamental intervals s; and s, for the 2-dimensional
musical scales, and since moreover the Pythagorean musical scale
is assumed to form a subscale of any larger 2-dimensional musi-
cal system, the sequence for the interval-vectors s; and s, is to
some extent determined. The 31-tone, 3-dimensional musical scale,
is based upon three fundamental constants, namely S; and S, and
p = (—1,3,—1) = 81/80. Relationships obtained through the lattice
properties then show that the constants S; and S, are expressible in
terms of sy, s, and p. This limits the possible choice of tones for
3-dimensional musical systems if the images of the 3-dimensional tones,
projected along the constant vector p, are to be tones of musical sys-
tems of the 2-dimensional Pythagorean plane. The unique functional
relationship between the intervals {s;, s} and {S;, S, p}, given by
Egs. (6.3) and (6.4), together with the required simultaneous consis-
tency of both musical systems within the constraints of the musical
tone lattice, permits the selection of a tone system for a 31-tone
3-dimensional musical system from among the 3-dimensional tones
projected along the vector p onto a 29-tone 2-dimensional tone system.
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In [1] it was found that the Pythagorean musical scale is contained
in a 2-dimensional sub-lattice

(n,m,0) = (n,m), n,m=0, £1, £2, +3,... (1.7)
of the 3-dimensional musical lattice
(nym,r), n,m,r =0, £1, £2, £3,.... (1.8)

The Greek Pythagorean musical scale, dating back to around 500 BCA
appears to have been predated, by about 100 years, by similar musical
relationships in Chinese musical theory, dating back to 600 BCA [6].
This may indicate some kind of intercultural dissemination of musi-
cal knowledge between ancient cultures, or may have been simply the
result of rational reasoning inherent in human nature. This reasoning
may not be limited to these two cultures but may include the South
Indian Dravidian culture, whose music tradition, Carnatic music, dates
back to before 1,000 BCA [7]. Using this reasoning as a work hy-
pothesis, it may be possible that the musical traditions of these cultures
may have been related, or been mutually influenced, and were possibly
at some time all based on the 2-dimensional Pythagorean musical
lattice system, while the 3-dimensional musical lattice system may
have been a later western development. This reasoning underlies the
investigation of the tonal systems of the Pythagorean(-Carnatic) plane.

Applying Eq. (1.5) to the Pythagorean(-Carnatic) plane it is found
that there exist two tone intervals (vectors) {s;, so} such that a tonal
system of 29 tones can be constructed. These two fundamental tones
{s1, 52} will be called srutis since they compare closely to the intervals
assumed for the srutis of the Carnatic music [7]. It will then be shown
that the 29-tone system contains as subsystems a 2-dimensional 23-tone
and 22-tone sub-system. These two sub-systems are based upon three
intervals {sy, s2, s3 = (s152)}, with s3 not independent, but given in
terms of s; and s,. Another tonal subsystem is given by a set of 17 tones
of the 29-tone tone system. These 17 tones of the 2-dimensional
Pythagorean lattice are the images of 17 tones of the 3-dimensional tone
lattice system, consisting of the tones corresponding to the 7 natural
diatonic tones and the 10 tones of the sharps and flats of the chromatic
scales. This subsystem is based upon the rwo intervals {(s;s3),s3}.
The Pythagorean 7-tone scale is also based upon fwo intervals, name-
ly {(s{s3),s3}, while the 3-tone scale of the ancient Greek Lyre is
based upon the two intervals {(s] s3), (s} 53)}. (A parenthesis around
an expression indicates that the expression acts as a unit.)

The question then arises in which manner the 2-dimensional
tone systems are related to the western culture 3-dimensional tone
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systems. As it was mentioned above, while only two fundamental con-
stants {s;, s»} are needed for the musical scales in the Pythagorean
plane, three fundamental constants {S;, S,, p} are needed for the
3-dimensional musical tone systems. Moreover, it was also mentioned
before, that the third constant, the vector p = (—1,3, —1) = 81/80,
known as the Syntonic comma, defines a map (projection) from the
3-dimensional 31-tone lattice into the 2-dimensional Pythagorean
tonal plane. All tones of the 3-dimensional lattice lying on a line,
defined by the vector p, are projected upon the same 2-dimensional
tone. This includes, in particular also the tones and the interval factors
of the standard 3-dimensional chromatic musical scales. This results
in a unique functional relationship between the fundamental intervals
of both systems, the properties of the 3-dimensional musical scales
being reflected in the 2-dimensional musical scales, and vice versa.
The mapping from the 3-dimensional musical lattice space into the
2-dimensional Pythagorean lattice subspace is given by the following
equation: All 3-dimensional musical lattice points
(n+r,m—3rr), r=0, £1, £2, £3,..., (1.9)
are mapped, along the vector p, onto the single 2-dimensional tone
(n,m,0) = (n+r,m—73r,r)+r(—1,3,—1),
r=0,£1, £2, £3,.... (1.10)
The inverse process represents an embedding of a 2-dimensional
lattice tone system into the 3-dimensional lattice tone system and
is obviously not unique. The ambiguity for the embedding can
be resolved by the requirement of simultaneous consistency of the
3-dimensional tone system and its mapped image in the Pythagorean
plane. The 3-dimensional tone system can then be considered to
represent a consistent embedding of the 2-dimensional tone systems
into the 3-dimensional lattice space.
The 3-dimensional tonal lattice system with lattice points

(nym,r),... nom,r =0, +1, £2, +3,..., (1.11)
can be considered to be made up of a set of Pythagorean planes, each
plane labeled by r,

r=0, £, £2, £3,...
such that for each fixed value r
(nym,r) n,m=0, 1, £2, £3,... (1.12)
represents a separate Pythagorean plane.

These Pythagorean planes can be considered to be related to each
other by translations p = (—1, 3, —1) such that the origin of the r = 0
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Pythagorean plane — the tone ¢ = (0,0, 0) — is translated into the tone
corresponding to the (new) origin of the r-th Pythagorean plane — the
tone r(—1,3,—1), r=0, £1, £2, +3,.... These Pythagorean
planes will be called equivalent with respect to the Pythagorean vec-
tor p. Similarly, musical tones related by multiples of the Pythagorean
vector p will be called equivalent with respect to translations by the
Pythagorean vector p = (—1,3, —1).

In what follows the names for the musical intervals/tones are taken
from the “List of Intervals” given in ref. [8].

2. The Two-Dimensional Lattice Tone System

In this section the 29-tone 2-dimensional system will be derived. The
tones of this system lie all in the Pythagorean plane,

v/w = (n,m,r=0) = (2/1)"(3/2)",
n,m=0, 1, £2, +£3,.... (2.1)
The lattice points given by Eq. (2.1) correspond to the musical lattice

tones as defined in [1]. Thus the musical lattice tones form a 2-dimen-
sional scaled sub-lattice given by

v/vy = (n,m,0) =n(1,0,0) +m(0,1,0),
mr=0, +1, 42, 43, ... (2.2)
or for short,
v/vy = (n,m) = n(1,0) +m(0, 1), m,r=0, +£1, £2, £3,....
(2.3)

Therefore, these musical tones are uniquely characterized as lattice
points (a two-parameter object)

(n,m), (2.4)

having associated with them the numerical value (a one-parameter
object),

vjvo = (2/1)'(3/2)". (2.5)

Eq. (2.5) represents the frequency ratio of the musical tone (n, m).
By standard convention, the numerical values v/v for the musical
tones of an octave are given alphabetic letter names like, for example,
the letters ¢, d, e, f, g, a, h(b), (c!), for the 7 tones of the natural
diatonic musical scale. In order to distinguish between the musical
tones of the 3-dimensional lattice space and the subsystem of tones of
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the 2-dimensional Pythagorean lattice space, the tones of the latter
will be characterized by a bar over the alphabetic letter,

- ~ =7 - . 1

c(=c), dl=d), e f(=f), &=g), a h c(=c).

(2.6)

This convention is made in order that the alphabetical symbols,
representing tones of the two systems which are related by the
Pythagorean vector, correspond to each other, i.e. a tone with a bar,
like the tone a of the Pythagorean musical scale, is the image of the
3-dimensional lattice tone without a bar, namely the image of the tone
a of the natural diatonic musical scale.

The ratio of two frequency ratios corresponding to two musical
tones vy /vy and v, /vy (the difference, if considered as vectors),

Ip = /v,

is called an interval factor (interval vector) /,. In order to construct a
musical system it is necessary, as a first step, to find interval vectors
which satisfy Eq. (1.6).

This is done by inserting, consecutively, values n, m into the
inequality, Eq. (1.5),

1< (n,m,0) = (2/1)"(3/2)" <2,  nm=0, £1, 2, £3, ...,
(2.7)

and then rejecting those tonal intervals (n, m, 0) which do not satisfy
the inequality. In this manner intervals are obtained which may be
suitable for a tonal system. It is found that the two intervals

51 = (=7,12,0) = 3'2/2" = 531,441/524,288 = 1.013 643 26,
(Pythagorean comma)
sy = (10,—17,0) = 227 /3'7 = 134,217,728/129,140,163
=1.03931825, (Pyth. double diminished 3rd) (2.8)
satisfy the closure condition
si7sh? =2, N =29, (2.9)

for a 29-tone musical tone system. The cyclic ordering of these
intervals, given by

‘Slas27S]7S27S] |S],S2,S],S2,S] ‘S],SQ,S],SZ,S]‘

‘817S2,S1,S2,51 |S1,S2, S1,52, 81 ‘51,S2751,527 (2.10)
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Table 2.2. The Interval Vectors and the Interval Factors for the Two-Dimensional
29-Tone Musical System

si= (=7,12) =  1.013 643 = 23.46 cent
so=(10,—17) = 1.039 318 = 66.76 cent

The tone interval I((ny, my), (nz, my)) between two tones (ny, m;) and (na, my) is
given, in terms of cents, by the formula, Eq. (9.9):

I((n, my), (n2, my)) = 1,200(n; — ny) + 701.955(m; — my)

c= (0,0) = 2030 = 1.000 000
¥, = 5) = (-7,12) = 2719312 = 1.013 643 (= s1)
les = 5180 = (3,-5) = 28375 = 1.053 498 (= 53 = 515)
Cis = 35y = (—4,7) = 271137 = 1.067 871
7= 5783 = (6,—10) = 2163710 = 1.109 858
d= 5183 = (-1,2) = 27332 = 1.125 000
¥, = stsd = (-8,14) = 272231 = 1.140 348
es = sisy = (2,-3) = 25373 = 1.185 185
dis = 5183 = (-5,9) = 271430 = 1.201 355
= 5785 = (5,-8) = 213378 = 1.248 590
= 05t = (-2,4) = 27634 = 1.265 625
V3 = 5753 = (-9,16) = 2725316 = 1.282 892
f= 5183 = (1,-1)= 22371 = 1.333 333
X3 = 3= (—6,11) = 271731 = 1.351 524
ges = s8s§ = (4,-6) = 21036 = 1.404 664
fis = 5758 = (=3,6) = 27930 = 1.423 828
Vs = 51058 = (—10,18) = 278318 = 1.443 157
g= si0s] = 0,1) = 2713 = 1.500 000
Xy = sils) = (=7,13) = 2720313 = 1.520 465
as = sitsd = (3,-4) = 27374 = 1.580 025
gis = si2sd = (—4,8) = 271238 = 1.601 807
ys = si3s8 = (—11,20) = 2731320 = 1.623 660
a= si3s) = (-1,3) = 27433 = 1.687 500
X5 = sids) = (—8,15) = 27835 = 1.710 523
b= sl sl = (2,-2) = 24372 = 1.777 777
ais = 513510 (=5,10) = 2715310 = 1.802 032
Yo = 510510 = (—12,22) = 273432 = 1.862 618
h= siosil = (=2,5) = 2773 = 1.898 437
X6 = si7sil = (=9,17) = 2726317 = 1.924 338
¢! si7 52 (1,0) = 2130 = 2.000 000
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yields a musical system. Calculation of the cent (out of 1,200 cent)
yields the values
s; = 23.46 cent,

52 = 66.76 cent. (2.11)
A third interval factor, to be of importance later on, is given by
53 = 5152 (= 51 + 52, in vector form) = 90.22 cent (Limma).
(2.12)

These values correspond closely to the approximate values of the
sruti (interval factors/vectors) for a hypothetical 22-tone (or 23-tone)
Carnatic musical system, given in [7], namely

s1 = 22 cent, s, = 66 cent, and s3 = 90 cent.

Thus the three interval factors sq, s, s3 will be referred to as sruti.
It is then seen that a 29-tone musical system is obtained, with the
closure condition (2.9), and is given in vector form, by

17(=7,12) +12(10, —17) = (1,0) =¢' = ¢! (2.13a)
or equivalently by

s17sh? = 2. (2.13b)
This implies that the tone cq (= ¢, with upper index n=0) is
“musically equivalent” to the tone ¢! (though not identical to c'), but
differing from c( by the scaling factor 2, with the next octave “cycle”

starting with the tone ¢!,
Thus there exists a cycle of 29 tonal steps (a sequence of sruti s,

and s,) such that the sequence *“‘closes” (i.e. the tone ¢! is reached,
the “octet condition’). Moreover it holds that

3(—7 12) +2(10,-17) = (-1,2) =d = d,

5155 =9/8,

2(3(=7,12) +2(10,-17)) = (=2,4) = e = ¢ + p,

(s s2) =81/64 = (5/4)(81/80) = ¢ - p,

3(3(=7,12) +2(10,—17)) = (=3,6) = fis = fis + 2p,
(s3s3)° = 729/512 = (25/18)(81/80) = (fis) - p*
4(3(=7,12) +2(10,—17)) = (—4,8) = gis = gis + 2p,
(s353)" = 6,561/4,096 = (25/16)(81/80) = (gis) - p*,
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5(3(=7,12) +2(10, —17)) = (=5, 10) = ais = ais + 3p,
(553)” = 59,049/32,768 = (125/72)(81/80)° = (ais) - p°,
5(3(=7,12) 4 2(10,—17)) + 2(=7,12) + 2(10, —17)

=(1,0,0)=¢" =,
(s?s%)s(s%sg) =2=c'=c. (2.14)

The 29-tone 2-dimensional musical system is given in Table 2.1. The
It will be noted that this table exhibits a great amount of symmetry. Table
2.2 lists the numerical values for the tones of the 29-tone musical system.

3. The Two-Dimensional 23/22 Musical Tone Systems

A 22/23-tone system can be obtained from the 29-tone system,
discussed above, by choosing three distinct intervals, namely three
sruti. Choosing the two independent sruti, s; and s,, and forming a
third sruti, s3 = (s152), the set of three sruti

{51, 52, 83 = (s152)} (3.1)

forms the intervals for the 22/23-tone musical system.

It might be remarked that, if the Carnatic musical scale should have
been a Pythagorean type scale, the uncertainty concerning the actual
number of tones of the Carnatic musical scale, 22 tones or more [7],
or denying the existence of a Carnatic musical scale [9], may have to
do with the fact that out of the 29-tone 2-dimensional musical system
at different times different numbers of tones were selected to form
different Carnatic tone systems.

The sequence of intervals for the Carnatic scales/systems is given by

‘S},SI,SZ,SI ‘S},SI,SQ,SI ‘S3,S1,S2,S1‘
’S3,S1,S2,S1 ’S3,S1,SQ,S1 ‘S3,S1,S2, N = 23 tones,

or
‘S?,,S],SQ,S] ‘S3,S1,S2,S1 ’S3,S1,S2,S1‘

’Sg,S],Sz,S1’S3,Sl,S2,S1’S3,S3, N = 22 tones

t=s3508=(-1,2)=9/8=d=d. (3.2)

It will be noted that the sequence of sharps and flats in the Carnatic
scale, like des and cis, is reversed from the sequence of sharp and
flats des and cis, in the chromatic scales. This is caused by the prop-
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erty of the map, along the Pythagorean vector p = (—1,3,—1) = 81/80,
from the (scaled) chromatic lattice into the (scaled) Pythagorean plane
(underlying nonlinear properties of the tonal lattice). For details on the
structure of tones and the intervals see Table 3.1.

4. Scales Contained in the Two-Dimensional 23/22
Musical Tone System

In this section some of the musical systems/scales will be discussed
which can be derived from the Carnatic musical system. The scales/
systems discussed are

(1) A 17-tone system consisting of the images in the Pythagorean
plane of the set of the 7 natural diatonic tones, the 5 sharps and
the 5 flats, see Sect. 7;

(2) two 12-tone Pythagorean scales;

(3) the Pythagorean musical 7-tone scale, and

(4) the 3-tone scale of the ancient Greek Lyre.

A summary for these musical scales can be found in Table 4.1.

(1) The 17-tone system is obtained from the 22-tone Carnatic
system/scale by choosing the two interval factors as

{s1,55 = (s12)}
and choosing the interval sequence
{S},Sl,S?,’S:’,,S],S3|S3,S3,S1‘
|S3,S3,S1‘S3,S3,S1|53,S3, N = 17 tones. (41)

Thus this system depends on the two sruti s; and s3 only.
(2) The Pythagorean 12-tone scales are based upon the interval
factors

{(s3s1), 53},
with the interval sequences
‘(5351),S3|(83S1),S3‘53/(S3S1)‘Ss/(sssl)‘Ss/(S3S1)‘S3/S3
|(s351), 83| (5351), 83|53 /53 (s1]53) /53 (s1|s3) /53 (s1s3) /83
(s351)°(s3) =2, N=12.

(3) The Pythagorean 7-tone scale proper is obtained by choosing
the two interval factors

{t= s? s%, s =s3},
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with the interval sequence
\tlt]s/t/t/t]s, Os* = (s3s2)s2 =2, N=T1. (4.2)
(4) The two intervals for the ancient Greek Lyre are given by
{Ps=Gis)t=(s18)} =518  s=5
with
(Ps)t=2, N=3.
The tone scale is given by the three tones

c(=e)if’s = f(=f)it —g(=g)i’s = ' (= c). (4.3)
The tones of the ancient Greek Lyre musical scale are simultaneously
tones of the 3-dimensional and 2-dimensional musical systems.

Table 4.1 gives a summary of the properties of the Pythagorean
plane-based tonal systems in terms of the two sruti s; and s;.

Whether, or not, the hypothetical Carnatic musical scales derived in
this article were ever used in practice is disputed, ref. [9]. However, the
mathematical system for musical systems/scales developed in this
article does, in a natural way, lead to tonal systems/scales of 29, 23, 22,
12, 7 and 3 tones, numbers which either correspond to established
scales or keep coming up in discussions among scholars concerning
the Carnatic scales, refs. [10], [11]. That a mathematical theory pre-
dicts precisely these numbers — and not other numbers — appears to be
beyond a mere, unrelated, coincidence. In addition, in subsequent sec-
tions of this article it will be shown that the 29-tone 2-dimensional
musical system developed in this article is functionally correlated to
a 31-tone 3-dimensional lattice system, which in turn contains the
standard chromatic musical scales as subscales. The mathematical
structures and correlations discussed in this article appear to reflect
themselves in theoretical discussions, as well as in practical construc-
tions, of musical scales by musicians.

5. Comments on the Embedding of Musical Scales
and Tone Systems

In this section the relationship between the fones of the rone systems
in the 3-dimensional lattice space and the tones of the tone systems in
the 2-dimensional Pythagorean sub-lattice is discussed. This is in view
of embedding the 2-dimensional Pythagorean musical systems/scales
into the 3-dimensional musical lattice space.
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An embedding is given if, for each tone of a 2-dimensional
Pythagorean tone system, a tone in 3-dimensional lattice space can
be found, such that the collection of these 3-dimensional lattice
tones satisfies

(a) all the properties of a 3-dimensional lattice tone system, and

(b) the images of the 3-dimensional tones in the Pythagorean lattice
space, and the images of the properties of the 3-dimensional tone
system in the Pythagorean plane become the tones and the
properties of the Pythagorean tone system.

The Pythagorean tone system is then said to be embedded in the
3-dimensional lattice tone system.
The Pythagorean lattice space with lattice points

(n,m,0), nm=0, +1, £2, £3,... (5.1)

forms a sub-lattice of the 3-dimensional lattice space with lattice
points

(n,m,r), n,m,r=0, £1, £2, £3,... (5.2)
for r = 0.
The tones
c=c¢=(0,0,0), d=d=(-1,2,0), f=f=(1,-1,0),
1 9/8 4/3
g=8=1(0,1,0), c'=c¢c'=(1,0,0), (5.3)
3/2 2

are simultaneously tones of both, the 3-dimensional tone system and
the Pythagorean tone system, while the tones
e=(-1,1,1), a=1(0,0,1), h(b)=(-1,2,1), (5.4)
5/4 5/3 15/8
are tones of the 3-dimensional lattice tone system, but not of
the Pythagorean tone system. These tones however can be mapped

onto tones of the Pythagorean-Carnatic plane by means of the
projection

(nym,r) +r(—=1,3,—1) = (n — r,m+3r,0), (5.5)
where the vector

p=(—1,3,—1)=(2/1)"'(3/2)*(5/3) " = 81/80 (5.6)
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has the numerical value of the syntonic comma. The 3-dimensional
tones e, a, h, Eq. (5.4), are then related to their images e, a, & in the
Pythagorean plane by

e+p=(-2,40)=¢, ep=(5/4)(81/80)=81/64=e¢,

at+p=(-1,3,00=a, ap=(5/3)(81/80)=27/16 =a,

h+p=(-2,50)=h, hp=(15/8)(81/80) = (243/128) = h.
(5.7)

The projection along the vector p into the Pythagorean plane is
however, as it was pointed out before, not one to one. The prob-
lem is then to identify, from among all the 3-dimensional lattice
tones which are projected upon a given 2-dimensional tone, in a
unique way that particular 3-dimensional tone which also satis-
fies the properties of a (possibly) larger 3-dimensional lattice tone
system. In other words, a (possibly) larger 3-dimensional lattice
tone system needs to be found such that the properties of the
3-dimensional lattice tone system, projected into the 2-dimen-
sional Pythagorean lattice space, yields the Pythagorean musical
system, while the properties of both systems must be simultaneously
satisfied.

Such a situation arises for the case of the 29-tone 2-dimensional
Pythagorean tone system. It will be shown that the 29-tone system
can be embedded into the 3-dimensional lattice tone space, such
that 31 3-dimensional lattice tones can be determined which form a
3-dimensional musical lattice tone system. Of the 31 3-dimensional
lattice tones, 29 are projected onto 29 2-dimensional lattice tones
of the basic n =0 octave. The images of the remaining 2 tones,
namely the tones y, and w;, are in the n = —1 and the n =1
octaves of the 2-dimensional lattice tone system and are thus ‘‘lost
tones”. That is, these two tones are not tones of the 29-tone tone
system. Also a reversal of tone sequence occurs, see Tables 6.2
and 6.3.

Another example for this relationship of mapping and embed-
ding is the map of the hypothetical 3-dimensional 23-tone Carnatic
system/scale into the Pythagorean plane resulting into the 12-tone
Pythagorean musical scale. The 12-tone Pythagorean scale is, vice
versa, embedded into the larger 23-tone 3-dimensional system such
that, except for the tone c, two 3-dimensional Carnatic tones cor-
respond to one 2-dimensional Pythagorean tone and the properties
of both systems are simultaneously satisfied. This then implies a
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well defined relationship for the intervals of the two tonal systems.
See Sect. 10 and ref. [10].

6. The Three-Dimensional 31-Tone Musical Tone System

It was shown in [1] that the interval factors for the standard chromatic
tone systems can be expressed in terms of the three constant vectors
(intervals)

T, =S, = (1,1,-2) = 27/25 = 1.080 000 00,

Ty =83 = (—2,1,2) = 25/24 = 1.041 666 67,

S=(2,-2,—1)=(1,1,-2) — (=1,3,-1) = Sop~!
=16/15 = 1.066 666 67. (6.1)

The symbols 7 and 7, denote the two (distinct) tones of the
3-dimensional musical system, while the symbol S denotes its semi-
tone. The symbols S, and S3 have been introduced for reasons to
become clear later on.

It was pointed out in the previous section that the two tones ¢ and d
of the chromatic musical scale are also tones of the Pythagorean
musical scale, ¢ = ¢, d = d. That is, these two tones are lattice points
of the Pythagorean plane and satisfy the properties required by both,
the chromatic tone scale and the Pythagorean tone scale,

t=(—12)

c=c¢ d - d
Ti=(=2,12 To=(1,1,—2
(07070) (—2 (_2, 1,2) (—2 (_17270) ’ (62)
c cis d

where t = (—1,2) = 9/8 denotes an interval factor of the Pythagorean
musical scale.

The question then arises whether additional intervals can be in-
troduced which give rise to tones lying in between the tones ¢ and d
(and thus also in between the other tones of the chromatic scale) such
that (a) an ‘“enlarged chromatic system/scale” can be constructed,
and (b) the projection of the “enlarged chromatic system”, along the
Pythagorean vector p = (—1,3,—1) into the Pythagorean plane,
results into the 29-tone 2-dimensional Pythagorean musical system.
The 31-tone 3-dimensional system/scale will then contain all the
standard chromatic scales and subscales, and by means of projection
also the 29-tone 2-dimensional system and its subsystems. This will
be demonstrated in what follows.
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Table 6.3. Relationship Between the 31-Tone Sequence in Three-Dimensional Lattice
Space and the 29-Tone Sequence in the Two-Dimensional Pythagorean

Lattice Space

The sequence of the 31-tone is from left to right, as is indicated by the arrows. The
images in the Pythagorean plane of the tones of the 31-tone sequence are indicated
by adding a bar to the tone. The tone sequence of the images is also indicated by
arrows, however there is some backtracking involved. A line of dots connects to
tones in the preceding line, a line of bars connects to tones in the following line.

Interval vectors:

5= (=7,12,0:: —-—r

5,=(10,17,0): |

The 29 tone sequence:
5, 8,8, 8,8 | 58,8, 8,8, | s

58,8, 8,8, s

s, 8, [ s

1725 1 SZ Sl SZ Sl SI SZ Sl SZ
w! - w) - ¢ -y, — cis — des -y, — d
-1 e = - = 0 - 7
w] wy' c . cis des Y, d
d -z, — dis — es - Vs — e
d z, dis es v, e
e -z, - X, - f - V. — fis
z zZ X, f Vs fis
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Table 6.3 (continued)

- fis

fis

-y — gis

v, gis
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Defining the two independent vectors,
I s(lp‘* =(3,0,—4) =2°3*5"% =648/625 = 1.036 800 00,
Sy =sis;p* = (1,1,-2) =2%3%5"2 =27/25 = 1.080 000 00
(6.3a)
and the vector
Sy =sisop 2 =(—2,1,2) =27737152 =25/24 = 1.041 666 67,
S3 = 815>, 53 = 5152, (6.3b)

the desired result is obtained.
The interval vectors (factors) for the 31-tone 3-dimensional music
scale are obtained in terms of the constant vectors given by Eq. (6.3) as

{S7' = (3,0,—4), 818 = (=5,1,6),57'p™" = (4,-3,-3)}  (6.4)
with
(SHPsEs)2sp ) =2, N=31

Thus, while the 2-dimensional musical system is defined by means of
two interval vectors s; and s,, the 3-dimensional (and thus the chro-
matic) musical system require three interval vectors, Eq. (6.4). These
three interval vectors can be expressed in terms of the two sruti sy, $3,
and the Pythagorean vector p = (—1,3, —1) in the following way,

Sit=s7p*=(3,0,—4) =233*5"% =648/625
= 1.036 800 00,
$28; = sisop© = (—=5,1,6) =27037550 =15625/15,552
= 1.004 693 93,
Silpt=s7p? = (4,-3,-3) =27573 = 128/125
= 1.024 000 00. (6.5)

Conversely, the two sruti s; and s, can be expressed in terms of s
S> and p as

=Sp* =(-7,12,0) =27"1312 =1.013 643 26,
sp=S71Sp6 =(10,-17,0) =2%¥3"" =1.039 318 25,
s3=1s180=Sp 2 =(3,-5,0) =283  =1.053 497 9%4.

(6.6)

Tables 6.1 to 6.3 list the results obtained for the 31-tone 3-dimen-
sional tonal system.
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7. Subsystems and Subscales of the Three-Dimensional
31-Tone System

In this section tonal subsystems/scales of the 31-tone system are
discussed. These subsystems are obtained, like it for the Pythagorean
case, by combining smaller basic intervals to form new, larger in-
tervals, in such a manner that the sequence of new intervals exhibits
regularity and closes, i.e., forms a “cycle”.

The set of four combined intervals (factors)

{S3751_17(Sl_lp_l)’(SZP_l)} (7'1)

gives rise to the 17-tone subsystem which consists of the combined
tones of the 7-tone natural diatonic musical scale, together with the 5
sharps and the 5 flats. The set of three intervals

{83,852, (S2p7")} (7.2)

yields both the chromatic major and the chromatic minor musical
scales. Which of the two scales is obtained depends upon the order of
the sequence of these intervals. The set of three intervals

{(8153),(S185p71), (S2p71)} (7.3)
yields the natural diatonic musical scale. The set of two intervals
{(5T$5p7%), (S15)} (7.4)

yields the tonal system of the ancient Greek Lyre. Still other tonal
subsystems are contained as subsets of tones of the scales discussed
above.

The properties of the various interval units of the subscales are

( = 25/24,
( = 27/25,
— (4,-3,-3) =128/125,
Sap~h) =(2,-2,—-1) =16/15,
( 0) =9/8,
(0,-1,1)  =10/9,
(1,-1,0) =4/3. (7.5)
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Expressed in terms of the two sruti sy, s,, and the Pythagorean vector
p, these intervals are given as

S3=(sys207%),

Sy = (s152p%),

Si'p™h) =Gy,

S:p™!) = (sis2p) =,

$185) =(sis3) =t =T,

S S%P )= (Sl Szp =1,

(S183p72) = (s753),

p=T/T, =S/s1 52, P> =S2/s51 5, s=s3.  (7.6)

For the 17-tone sub-set of the chromatic musical scales holds

ST (S (S2p71)? = (1,0,0). (7.7)

(S;
(
(
(

For the chromatic major and minor musical scales holds
$383(Sap™ ) = (1,0,0). (7.8)

For the diatonic musical scale, with the two tones 77 and 7,, and the
semitone S, holds

= (8 53) = (s} 53) =(-1,2,0),
=87 =(sissp) =(0,-11),
S = (Sp7") =(s1:2p) =1(2,-2,-1), (7.9)
with
T3 T2S% = (1,0,0) = (2/1)'(3/2)°(5/3)° = 2 (7.10)
and
p=T1T;" = (S/(s152))"/* = (~1,3,—-1) = 81/80.  (7.11)

The last equation expresses the fact that the Pythagorean vector p is
the key to the relationship between the intervals of the Carnatic and
the natural diatonic musical scales. Note that the factor p~2 cancels
in the expression (53 S5 p~2), Eq. (7.5). This is the reason for the fact
that the scale of the ancient Greek Lyre is contained in both the
chromatic and the Carnatic musical systems. Table 7.1 contains a sum-
mary of these results.
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It can also be verified in Table 7.1 that the tone sequence of column
#9 maps, along the vector p, upon the standard 12-tone sequence in
the Pythagorean plane

(070)7 (37 _5)7 (_1’2)7 (27 _3)7 (_274)’ (17 _1>? (47 _6)7 (0’ 1)7
(37 _4)a (_17 3)7 (27 _2)7 (_275)7

while the sequence of tones given by the column #7 maps upon the
12-tone 2-dimensional sequence

(070)7 (_477)7 (_172)7 (—5,9), (_274)7 (17 _l)a (_376)7 (07 1)7
(—4,8),(—1,3),(-5,10),(=2,5).

8. Correlation of Tone Sequences in Two-Dimensional
Pythagorean Plane with the Three-Dimensional
31-Tone Sequence

The images of the chromatic major and minor 3-dimensional scales
in the Pythagorean plane will be called ‘“‘Pythagorean major” and
“Pythagorean minor” musical scales. The tones of the chromatic
major and minor 3-dimensional scales are, by means of the map
along the Pythagorean vector p = (—1,3, —1) = 81/80, uniquely cor-
related with the tones of the 2-dimensional ‘“Pythagorean major’ and
“Pythagorean minor™ scales.

As was pointed out in Sect. 1, the set of 3-dimensional lattice points

(n+r,m—3r,r),n,m = fixed, r=0, £1, £2, +3,... (8.1)
is mapped onto the 2-dimensional Pythagorean lattice point
(n,m,0) = (n+r,m—73r,r)+r(—1,3,-1),
r=0,+1, £2, £3,.... (8.2)

This map is somewhat analogous to the map of the (2/1)-octave tones
", n=0,+£1,+£2 +3,..., along the vector (1,0,0), upon the
reference tone vy = ¢y = ¢’ = (0,0,0) = 1, namely

"/(2"co) =1, n=0, £1, £2, £3,... (8.3a)
or equivalently
(0,0,0) = (n,0,0) —n(1,0,0), n=0,+1,+£2 +3,.... (8.3b)

That is, Eq. (8.3) represents a map of the (2/1)-octave tones ¢”, which
can be considered to be musical tones equivalent to the reference tone
co (except for pitch, i.e. a scaling factor which cancels in musical
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frequency ratios), upon the basic octave tone co=c. Thus the lattice
points given by Eq. (8.1) will also be called equivalent lattice points
(with respect to translations by the Pythagorean vector p).

The members of an equivalent set of lattice points are then dis-
tinguished from each other by their location on distinct Pythagorean
planes labeled by r,

(nym,r),n,m=0, £1, £2, +£3,.... (8.4)

The r=0 Pythagorean plane is the basic plane, while the other
Pythagorean planes are equivalent parallel planes. These parallel
planes can be considered to result from a translation, by integer
multiples, by the Pythagorean vector p = (—1,3, —1). Thus the musi-
cal tones on two planes, related by a translation by an integer multiple
of the vector p = (—1,3,—1), are equivalent musical tones (with
respect to the translation p). In particular, the points equivalent to the
origin (0,0,0) = ¢°/co = 1 of the basic Pythagorean lattice are given
by the chromatic lattice points on the r-th Pythagorean-Carnatic plane
(0,0,0) +r(—1,3,-1)=r(-1,3,-1), r=0,+1, £2, £3,....
1 x (81/80)" =(81/80)"
(8.5)

A familiar example will illustrate this point, PIERCE, ref. [12]. The
frequency ratios of the tones/keys of the sequence c, a, d L g, ¢, with
respect to the tone c, are

cle=1, alc=5/3, d'/c=9/4, g/c=3/2, c/c=]1.

Thus, the interval factors/vectors connecting the corresponding suc-
cessive 3-dimensional lattice tones are

¢; (0,0,1)—a; (1,—1,0) —x; (0,—1,0) —y; (0,—1,0)—>Z:p1.
(Oa070) (Oa071) (17_171) (17_271) (1?_371)

The vectors to the right of the tones are the interval vectors/factors

connecting neighboring tones, while the vectors under the tones rep-

resent the tones as 3-dimensional lattice tones. Itis seen that the sequence

of the 3-dimensional lattice tones ends up not at the tone ¢ = (0, 0, 0) but

at the lattice tone p~! = (1,3, 1) = 80/81, p the syntonic comma.
The Pythagorean tones contained in Table 8.1 are

¢ = (0,0,0) =(0,0) =1 =c,

a =(-1,3,0) =(-1,3) =27/16 =a-+p,
d'=d" =(0,2,0) =(0,2) =9/4 =x+p,
g=¢ =(0,1,0) =(0,1) =3/2 =y+p,
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A (53)

m, (3/2)"

n, 21)"

Fig. 8.1. The tone sequence c, a, d', g, ¢ in the three-dimensional tone lattice and its
projection into the Pythagorean plane. This figure shows a small part of the 3-dimensional
tonal lattice around the tone (0,0, 0) = 1, i.e. the tone c. The lattice point distances are
not to scale but have been chosen such as to admit a clearer graphical representation. It is
seen that the sequence of tones c, a, d', g, ¢ actually corresponds to the tone sequence
(0,0,0), (0,0, 1), (1,—1,1), (1,-2,1), (1,-3,1), and thus leads to the tone p~! =
(1,-3,1) = 80/81, and not to the original tone (0,0,0) = 1. The mapping, along the
vector p, of the 31-tone 3-dimensional sequence ¢, a, d', g, ¢ from the chromatic lattice
into the r = 0 Pythagorean plane, yields the image sequence (“‘the shadow cast in the
plane by the 3-dimensional tones”) ¢ = ¢,a,d' = d', g = g, ¢ = ¢ which does close. It
can also be seen that the numerical values associated with these tones can be mapped onto
the (2/1)-octave line (0, c0), the standard representation for the musical tones. These
numerical values of the musical tones, however, do not fully represent the musical
tones, but represent merely one property of the musical tones which are given as lattice
points (n,m,r)

with
p=(-1,3-1).
The tones x, y, z are defined in the table (the reference tone c is set
equal to 1, except where a special point needs to be made). A
graphical representation of Table 8.1 is given in Fig. 8.1.
Thus, the tone ¢ which is reached by this sequence of lattice tones is
seen to be a tone ¢ which lies in the » = 1 Pythagorean plane, a tone
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which is equivalent, with respect to the Pythagorean vector p, to the tone
c in the basic Pythagorean plane, » = 0. The cycle of tones does not close
since the tone a = 5/3 leads to a tone outside the basic Pythagorean-
Carnatic plane. The sequence of images ¢ =c, a, d', g =g, ¢ = c,
however, closes in the Pythagorean plane. Thus the “inner structure™ of
the musical tones (n,m, r), which characterizes the musical tones in
terms of a “‘three octave system”, the standard (2/1)-octave system and
two rescaled octave systems, the (3/2)-octave system and the (5/3)-
octave system, provides a deeper insight into musical properties of
tones, and tone systems, than their associated numerical values alone
(the frequency ratios) can provide. See Fig. 8.1. (See also Figs. 8, 12
and 15 of [1]).

The correspondence between the chromatic major and minor tone
scales and the ‘““‘Carnatic major” and ‘“‘Carnatic minor” tone scale is
given by

c = (0,0,0) =c

cis =(-4,7,0) =cis+2p =(-2,1,2)+2p
des =(3,-5,00 =des—2p =(1,1,-2)—2p
d =(-1,2,0) =d

es —(2,—3,0) =es—p :(1,0,_1)_[7
dis = (5,-9,0) =dis+2p =(-3,3,2)+2p
e = (—2,4,0) =e—+p =(-1,1,1)+p
f = (1,—1,0) =f

ges = (4a —6,0) =ges—2p = (270a _2) —2p
fiS = (_376a0) :ﬁs+2p = (_17072)+2p
g - (0,1,0) =&

as =(3,-4,00 =as—p =2,-1,-1)—p
gis =(-4,8,00 =gis+2p =(-2,2,2)+2p
a =(-1,3,00 =a+p =(0,0,1)+p

B :(2a_270) :b_p _(171a_1)_p
ais = (-5,10,0) =ais+3p =(-2,1,3)+3p
h  =(-2,500 =h+p =(-1,2,1)+p
¢! = (1,0,0) =c! (8.6)

The list above shows that the frequencies of the pure tones of the
chromatic major and the chromatic minor musical scales are, in the
corresponding tones of the Carnatic system, modified by factors p’,

P’ =(81/80)",  r=0,+1, £2, £3, ..., (8.7)
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where r indicates the r-th level of the Pythagorean plane, with r =0
denoting the basic Pythagorean plane. That is, the r-th Pythagorean
plane is equivalent to the basic Pythagorean-Carnatic plane, modulo
the vector p, and is obtained from it by a translation (a shift) by the
vector

p'=n(-1,3,—1) = (—n,3n,—n). (8.8)
For example, the chromatic tone cis = 25/24, which corresponds
to the lattice point = (—2,1,2) on the r = 2 Pythagorean plane, is
translated by the vector 2p = 2(—1,3,—1) = (81/80) into the r = 0
basic Pythagorean lattice point cis = (—4,7,0),
_. - — — 6 —
cis=(2/1)7(3/2)" = ((2/1)*(3/2)'(5/3))((2/1)*(3/2)°(5/3) %)
= cis p*. (8.9)

The chromatic interval factors for the chromatic major and minor
scales are

{(8152), S5, (Sop™1)1, Sy =(-3,0,4), Sy =(1,1,-2),

p=(-1,3,-1). (8.10)

These three interval factors are projected into the basic Pythagorean
plane,

($182)p* = (s752), Sop~% = (5152), (Sop p ! = (s182)

to become the two interval factors for the “Carnatic major” and
“Carnatic minor” scales

{(s752), (s152)}- (8.11)

Table 8.2. The Images of the Three-Dimensional Major and Minor Chromatic
Musical Scales in the Two-Dimensional Pythagorean Plane

S1 :(7771230)7 S2:(10771770)7 § =853 = 8152,

€ =c; 53 — des;s| — Cis; 83 —d=d ;1=(—1,2,0)=9/8
d; s3 — es; s — dis; 53 —e E=5 s% = v?s%

€; 53 —f=fis — ges; s3 — fis it

fis;ss  —g=gs  —ass — gis it

gis; 3 —a;s — b; 53 — ais it

ais;s3  — ks —el=cl; ;5%

5 882 =2, 5(-7,12,0) + 12(3,-5,0) = (1,0,0)

(=1s?) (=5(-1,2,0)+2(3,-5,0))
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Vice versa, the three intervals

{(5%32)1772 = (8152), (Slsz)P27 (s152)p} (8.12)

represent an embedding of the fwo Carnatic intervals in 3-dimen-
sional lattice space.

The images of the chromatic minor and the major musical scales
are given in Table 8.1. Tables 8.2-8.4 illustrate the correlation of the
Carnatic tone sequence with respect to the 31-tone 3-dimensional
tone sequence.

The images of the chromatic major and minor musical scales in the
Pythagorean plane are given by the ordered sequences:

|(5351)53] (5351)83]s3(5351)[53(5351)[53(5351)[5353

for the “Carnatic major” scale/system, and

|s3(s3s1)[s3(s351)[5353(s1]53)s3(s51]53)53(51[53)53,

containing the tone ges,

|53 (s351) |53 (s351)[53(5351)|(5351)53](5351)53] (535153,

containing the tone fis,

for the “Carnatic minor” scale/system. See also Table 10.1.

9. Linearization — the Unit Interval and the Cent

In [1] two relationships for sound frequencies were discussed. The fre-
quency ratios v/vg within the basic, n = 0, (2/1)-octave interval (as well
as any other (2/1)-octave interval) can be expressed in the two forms

vivg=1+6/2m, 0<é/2r<1 (9.1)
and in the form
v =27 0<¢2m<l, (9.2)

with vy an arbitrarily chosen, but fixed, reference frequency. Both
equations cover the frequency values v/v of the closed interval [1, 2],
but obviously in a linear and in an exponential manner, respectively.
Thus for a fixed parameter value «,

0<6/2m = /21 = a<1, 9.3)
it holds
vivy=1+a # 1V /vy =2, (9.4)
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Table 8.3. Relationship Between the 31-Tone Three-Dimensional Sequence and the
23/22-Tone Carnatic Scales/Systems in the Pythagorean Plane

The sequence of the micro-chromatic tones is from left to right, as is indicated by the
arrows. The 2-dimensional Pythagorean images of the 31-tone, 3-dimensional
system, are characterized by bars. The sequence of these tones is also indicated by
arrows, however there is some backtracking involved.

Interval vectors:

$,=G3,-5,0: |
§,=(7,12,00  —r
$,=(10,-17,0): |
w,' - w) - c -y, — cis = des -y, - d
w, w,' c v, cis des Y, d
d -z, — dis — es -y, - e
d z, dis es ¥, e
_
e -z, - X, - f -y, — fis
€ zZ X, f Y. fis
_
fis — ges - X, - g -y, — gis
fis ges X, g ¥, gis
e
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Table 8.3 (continued)

gis — as - X — a - Y — ais
gis as X, a Ve e
_—
ais - b - X, — h - w, - w,
ais b X, h w, w,
_—
w, - 331 -y — cis' — des' — d'
W, c';23 y! cis' des' d'
_—

ais - b - X, — h - w, - w,
ais b X, h w, w,
—_—
| |

|
w, - 331 = ! — cis' = des' — d'
— — _1 — — —
w, c';23 Y, cis' des' d'
_

for the 22-tone Carnatic scale/tonal system.

i.e. the frequency ratios v/vy and //v, are not equal. They are equal
only at the two end points of the interval, namely for

a=062r=¢/2n=0and 1,
with

v/vp =v/1y =1 and 2.
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Table 8.4. Relationship Between the 31-Tone Three-Dimensional Tonal System and
the Set of 17 Tones of the Two-Dimensional “Carnatic Major” and
“Carnatic Minor” Scales

The sequence of the 3-dimensional tones is from left to right, as is indicated by the
arrows. The Pythagorean 2-dimensional images of the 3-dimensional tones are
characterized by a bar. The sequence of the 2-dimensional tones is also indicated by
arrows, however there is some backtracking involved.

wy' - w; - ¢ -y, — cis — des -, - d
w) w3 c ¥, cis des ¥y, d
53=(3,-5,0)]
———15,=(-7,12,0)
53=(3,-5,0)|

d -z, — dis — es -, — e
d z, dis es v, e
|

—

|
e -z, - X, - f -y, — fis
¢ Z , f Y. fis
| :
fis — ges - X, - g -y, — gis
fls ges ;4 g ;5 gis
_
—
| I
gis — as - X - a - ), — as
gis as S a Ve e
B —
—
| I
ais - b — X - h - w, - w,
ais b X, h W, W,
_—
e
| I
w, - 331 - y! — cis'  — des' — d'
w, ' 17 ill cis' des' d'
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Table 8.5. Relationship Between the 31-Tone Three-Dimensional Sequence and the
7-Tone Two-Dimensional Pythagorean Sequence of Tones

The sequence of the 3-dimensional tones is from left to right, as is indicated by the
arrows. The Pythagorean 2-dimensional images of the 3-dimensional 31-tone system
are characterized by a bar. (s1s3) = (—4,7,0), s3 = (3,-5,0)

w,' - w' - c -y, — cis — des >y, - d
w' w,! < ¥ cis des Y, d
(s, 5) |
d -z, — dis — es -y, - e
d Z dis es v, e
e -z, - X, - f -y, — fis
¢ Z T, 7 7 Jis
|
S3| |
fis — ges - X, - g -y, — gis
fis ges X, g ¥, gis
|
|
gis — as - X — a -y, — ais
gis as X, a Ve e
|
|
ais - b - X, - h - w, - W,
ais b X, h w, w,
|
|
w, - ;31 > ¥, - cis' — des' - d'
W, 7 ! cis' des' d'
_

That is, the relationship between the two parameters /27 and &£/27 is
given by the logarithmic law

&/2m = log,(1 + 6/2m), (9.5)

which represents the inverse function to the exponential law, Eq. (9.2),
see also refs. [3], [5]. The two functions, Eqgs. (9.2) and (9.5), being
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Table 9.1. Interval Vectors, Cents, and Interval Factors for the 31-Tone Three-
Dimensional Musical System

=1,017.596 29 ,S‘I‘Slo -3 ; $15,
=1,025.703 54  ;S0S}!p~3 ;S !

1((n,m,r),(0,0,0)) = 1,200 n + 701.955 m + 884.358 708 r
§;7' = (3,0,—4) = 62.565 224, S, =(1,1,-2) =133.237 584
828, = (—5,1,6) = 8.107 248, Sylp! = (4,-3,-3) = 41.058876
p~' =(1,-3,1) = —21.506 288
wyl =Sip =(-4,3,3) = —41.058876 ;Sip Sy
c =(0,0,0) = 0.0 i1 ;ST
Vi =(3,0,—4) = 62.565224 ;87! ; 535,
cis =(-2,1,2) = 70.672416 ;S,5, ;ST
des =(1,1,-2) = 133.237584 ;S :82S5,
» =(-4,2,4) = 141.344 832 ;$252 ;5!
d =(-1,2,0) 203.910 000 ;S;S2 ;ST ;8152
7 =(2,2,-4) = 266475168 ;S5 ; $28,
dis =(-3,3,2) = 274582416 ;8383 ;S7ip!
es =(1,0,—1) = 315.641 292 Slsgp—l ;82S5,
y3 =(-4,1,5) 323.748 540 ; S3Sip~! ;ST
e =(-1,1,1) 386.313 708 ;S2S3p~! ;STip! :8182p~!
2 =(3,-2,-2)= 427.372 584 ,SlS42p :82S,
X3 =(-2,—1,4)= 435479832 ;583p? ;57!
f =(1,-1,0) = 498.045000 ;S2S5p2 ; S35,
4 =(—4,0,6) = 506.152248 ;SiSSp~? ; Sy !
fis =(-1,0,2) = 568.717 416 ;S3Sgp’2 ;ST :8182p~!
ges =(2,0,-2) = 631.282584 ;S285p2 ;528,
x4 =(-3,1,4) 639.389 832 ;StSip~2 ;57!
g =(0,1,0) = 701955000 ;S3S]p—2 ; 538,
s =(-5,2,6) = 710.062 218 5558 -2 ;57!
gis =(-2,2,2) = 787.796 240 ;S{S3p2 ;STip! ;152
as =(2,—1,—1)=813.686 297 ,S*Szp ;528,
Xs =(-3,0,5) = 821.793 540 ;S}S9p3 ;87!
a =(0,0,1) = 884.358708 ;StSyp—3 ; 528,
Y6 =(=5,1,7) = 892.465 956 56510 I
(
(
= (-

)

ais =(-2,1,3) = 955031124 ;Ssi%  ;s;! ;851857
)
)

X6
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Table 9.1 (continued)

h =(-1,2,1) =1,088.268 71 ;S38kp~3 :528,
wi =(-6,3,7) =1,096.37596 ;5812 p~3 i Sy
W) =(-3,3,3) =1,158.941 12 ; 8§812p~3 ;STip! ;8152
c! = (1,0,0) =1,200.000 00 ;8382 p~* =2 ;Syp!
[($183)[(5185 p~)|(S2p™ ") (S189)|(S185p™ H)|($185)[(Sap ™)

2(Szp_l)2 = 2, the 7-tone natural diatonic scale

(5183)°(5183p™")

Table 9.2. Interval Vectors, Cents, and Interval Factors for the 29-Tone Two-Dimen-
sional Musical System

I((n,m,0), (0,0,0)) = 1,200 n + 701.955 m

s1=(=7,12,0) =23.46 cent
52 = (10, —17,0) = 66.765 cent
p =(=1,3,—1) =21.506 288 cent

57 =(7,-12,0) =y —4p = —23.46 e

¢ = (0,0,0) = = 0 1

Wyl =(-7,12,0) =wy' +4p = 2346 ;51

des =(3,-5,0) =des —2p = 90.225 ;8152

Cis =(—4,7,0) =cis+2p = 113.685 ;5352

Z = (6,-10,0) — 72 —4p — 180.45 252

d = (~1,2,0) —d — 203.91 (32 =1
¥, = (—8,14,0) =y, +4p = 22737 sis2

es =(2,-3,0) =es—p = 294.135 ;5753

dis =(-5,9,0) =dis +2p = 317.595 ;5783

2 = (5,-8,0) =2—-2p = 384.36 ;5785

e =(-2,4,0) =e+p = 407.82 ;8058 =12
V3 =(-9,16,0) =y3+5p = 431.28 ;8183

f =(1,-1,0) =f = 498.054 ;s?sg

X3 = (—6,11,0) =x3+4p = 521.505 ;5583

ges = (4,-6,0) =ges —2p = 588.27 ;5858

fis =(-3,6,0) =fis+2p = 611.73 ;57§ =1
Y4 =(-10,18,0) =ys+6p = 635.19 ;51058

g =(0,1,0) =g = 701.955 ;51047

X4 =(-7,13,0) =x4+4p = 725415 ;sils)

as =(3,-4,0) =as—p = 792.18 ;sils8

(continued)
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Table 9.2 (continued)

gis = (—4,8,0) =as+2p = 815.64 sz =14
¥s = (—11,20,0) =ys+6p = 839.1 ;5138
a =(=1,3,0) =a+p — 905865  ;sPs)
Xs = (—8,15,0) = x5 +5p = 929325 sl4s)
b =(2,-2,0) =b—p — 99609 ;sl4g10
ais = (—5,10,0) = ais + 3p =1,019.55 (513510 = 5
Vs = (—-12,22,0) =y +Tp =1,043.01 ;516510
h =(-2.5,0) —h+p =1,100.775  ;sioslt
Xs =(-9,17,0) =X +5p = 1,133.235 ;5]7sh!
¢ = (1,0,0) = = 1,200 s17512 — o
w2 =(-6,12,0) =w2+3p = 1,223.46 ;518512
W) = des' = (—13,24,0) =w; +7Tp = 1,246.92 ;s{gséz
t=(s353), Jt/t/t]t]t/tsT!

The sequence of intervals given below represents a 22/23-tone musical system given
in 2-dimensional lattice space:

|(51S2)S182S1 |(3152)51st1 \(5132)515231 |(S182)513251 \5251 (Slsz)sl |3251 (5132)

inverse to each other, carry the same information. A physical law,
represented by a mathematical function, needs to be unique. This
requirement of uniqueness of a functional relationship led to the
postulate that ‘“musical lattice tones” are defined for the parameter
values 8/2r=¢&/2m=0 and 1 only, and that this requirement holds
for each of the three octave systems based upon the frequency ratios
(2/1), (3/2) and (5/3). This then led to the introduction of the 3-
dimensional scaled lattice space for musical tones, see also ref. [3].

The ratio of two distinct frequency ratios v1/vg and v,/vg (i.e. two
distinct musical tones) is given by

(v2/wv0)/ (w1 /o) = v2/vi = (1 + &/2m) /(1 + 6, /2m)
— 252/277/251/27T — 2(&/2m)—(&/2m) (9.6)
Taking the logarithm with base 2 one obtains
log, (v2/v1) = log,(1 + 6, /2m) —log,(1 + 61 /2)
= (&/2m) = (&/27) =1 (9.7)

That is, the ratio of the two frequencies v,/v; (the ratio of the two
musical tones (v1/vg) and (v2/v)) is mapped upon the distance /,

0<l=(&/27) — (&/2m) <1.
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If (&/27) — (&1 /2m) = 0, the distance is zero and the two parameter
values obviously represent the same tone. If (&,/27) — (& /27) =1,
then the two tones differ by an octave.

The distances obtained in this manner are unhandy small numbers.
Thus, by convention, the distance formula is renormalized by the
factor 1,200 and is given the name cent (out of 1,200 cent),

I(cent) = 1,2001o0g,(v»/v1) = 1,200(1/log,y2) log,o(v2/v1)

=3,986.313711og,o(v2/11). (9.8)
This is the standard formula for the distance (interval) between two

musical tones in terms of cent.
Given two musical tones in the form of lattice points,

(v2/v) = (nym,r) and (vy/vy) = (k,l,u), n,m,r k,l uintegers,
the frequency ratio of the two tones is obtained as
v/m = (2/1)"(3/2)"(5/3)"/(2/1)(3/2)(5/3)"
=m—km—1r—u).

Thus it follows

log, (/1) = logy(2/1)" ™" +log,(3/2)" ™" +log,(5/3)""
=n—k+ (m—1)1.584 962 50 + (r — u)2.321 928 09.

The cent are then given by the formula

I(cent) = 1,200(n — k) + 701.9555 00(m — [) + 884.358 71(r — u).
(9.9)

It is thus seen that the cents for the distance between two musical
tones are given by the sum of the cents along the (2/1)-based octave,
the (3/2)-based octave and the (5/3)-based octave, respectively. The
distance (in cent) between two musical tones is thus expressed as a
linear equation in terms of three discrete parameters.

10. Determination of Tones — the Three-Dimensional
116-Tone System

In this section the Table of Tones, as given in [2], pp. 796-801, is
discussed. It will be shown that, by adding a few tones to this list, a
structured lattice tone system of 116 tones is obtained which is based
upon three intervals (vectors — lattice points) A, u, p only.
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The system of tones, as presented in ref. [2], uses the (musically
motivated) basis

(1,0,0) =0 (Octave) =2/1 =c'/e,
(=1,1,1) =T (Terz) =5/4 =e/c,
0.1,0) =0 (Quin) =32 =g/e (10.1)

while the (mathematically motivated) basis used in this article is
(1,0,0) = O (Octave) =2/1 =cl/c,
(0,1,0) =Q (Quint) =3/2 =g/c,

(0,0,1) =S (Sixth) =5/3 =alc. (10.2)
The two bases are mathematically equivalent,
S=0T1/Q. (10.3)
Introducing the intervals (tones)
A= (_6797 1) = T(8Q)/(50),
po=(11,-15,-3) = (80)/(37)(120),
p =(-6,4,5) = (5T)/00, (10.4)
as basis intervals, the closure condition
k1>\—|—k2u—|—k3p:(1,0,0) (105)

is satisfied for
k1 = 63, ko, = 41, ks =12, N = 116. (10.6)
Thus a total of 116 tones is obtained.

For purposes of illustration the list of tones for the interval
d/c — c¢/c is given in detail in Table 10.1. For the interval ¢ — d holds

kl)\+k2u—|—k3p:(—1,2,0), k=11, k=7 k3=2, N=20
(10.7)

and thus the tone interval ¢ — d contains 20 tones. The 30 tones
contained in Table 10.1 are then obtained by adding to the list
the tones S$28, = (-5,1,6), u=(11,-15,-3), p=(-6,4,5),
p?=(-2,6,-2), (—8,15,—1), S;' = (3,0, —4), s, = (10,—17,0),
(—9,13,2),(7,—8,-3), y» = (—4,2,—4). Most of these added tones
are base intervals for other musical tone systems.

The 20-tone tonal system for the interval ¢ — d, that is, for the
interval T, is then given, in sequential order, by

Ty = [ APANLPALAALANLPUAA N/
=S+S—p. (10.8)
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Similarly, for the interval T,, the tone interval d — e, a 17-tone
sequence is obtained as

Ty = [ AUANUPAUAA AN o/
=5+S (10.9)
and for the interval S, the tone interval e — f, an 11-tone sequence is
obtained as
S = JAUANUPUANLA/ . (10.10)

This then yields a 116-tonal system for the octave by means of the
(ordered) sequence

/T\/T2/S/T1/T>/T1/S/ (10.11)
having the octave property
NP3 Moz =2 N =116. (10.12)

It needs to be noted that Eqs. (10.8)—(10.10) represent only one

particular choice for the sequence of the intervals. This choice for the

sequence of intervals has been motivated by the aim to include in a

regular manner, as many as possible, of the tones of the List of Tones

of [2], and keeping the introduction of new tones to a minimum.
The 116-tone system contains, as sub-systems (Table 10.1),

(a) the tones of the 31-tone system,

(b) the standard chromatic major and minor scales,

(c) the natural diatonic scale,

(d) the tone scale of the ancient Greek Lyre,

(e) the tones of the hypothetical 22/23-tone Carnatic scale,

(f) and the subsystems/scales of all these systems,

(g) the 2-dimensional tonal lattices in the Pythagorean plane by means
of projection along the Pythagorean vector into the Pythagorean
plane.

Column #1 of Table 10.1 lists the mathematical-musical desig-
nation of the tones. Column #2 lists the tone by its lattice point co-
ordinates (n, m, r). Column #3 indicates the cumulative build up of
the tones based upon the basis A, u, p. The A\, u, p may be looked
upon as frequency ratios or as vectors (for example, the entry \*i, can
be read as 3\ + 2u = 3(—6,9,1) +2(11,—15,-3) = (—18,27,3)+
(22,-30,—6) = (4,—3,—3)). Column #4 shows the interval
factor/vector between two neighboring tones. Columns #5 and
#6 refer to the 31-tone system based upon the base elements
St =(3,0,-4),878, = (-5,1,6)andp = (—1,3, —1). Column #5
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shows the cumulative build up, while column #6 shows the inter-
val factors/vectors between neighboring lattice tones. Columns #7
and #38 describe the hypothetical 23-tone Carnatic system. Column #7
characterizes the tones, column #8 lists the interval factors for the basis
a=(3,-5,0),p=(-1,3,—1) and vy = (=2, 1,2). Column #9 lists
the standard musical names for the intervals/tones as given in ref. [12].
The hypothetical 23-tone Carnatic scale consists of the prime ¢ and
11 pairs of tones, with each pair of tones related by the Pythagorean
vector p. Thus projecting the traditional Carnatic scale along the vector
p into the Pythagorean plane 12 tones are obtained. The tone system
obtained in this manner corresponds to the 12-tone Pythagorean tone
scale, Table 4.1. Table 10.2 contains the following tonal systems:

(a) The traditional 3-dimensional 23-tone Carnatic scale is given
by the sequence of intervals

{e,p,, (v ")},

Japyp/apyp/e/pap(yp~ " )p/apyp/apyp/a/,

o’ p"V(p ) =2, N=23,

Oé:(3,—570), p:(_173a_1)) 7:(_27172%

(app)=Ti=81S3=sis55=t, a=Sp ', ap'"y(p =2
(10.13)

Note that if in Eq. (10.13) the sequence of intervals /pap(yp~1)p/ is
taken as /papy/ then an N = 22-tone Carnatic scale/system is ob-
tained. If the order of the sequence in Eq. (10.13) is changed to

Japyp/apyp/a/p(vp~ Ypap/apyp/opyp/a/, (10.14)

then the tone fis is obtained in place of the tone ges. Again, if the se-
quence /p(yp~"pap/ is replaced by the sequence /pyap/ an N = 22
Carnatic scale/system is obtained.

(b) The 12-tone Pythagorean scale: The tones obtained via the
sequence Eq. (10.14) consist of the prime ¢ and 11 pairs of tones,
with each pair related by the Pythagorean vector p. Thus, if projected
into the Pythagorean plane each pair is mapped upon a single tone.
The 12 tones thus obtained correspond to the 12-tone Pythagorean
scale given in Table 4.1,

{a, (pyp)}
/a(pyp)/c(pp)/a/a(pyp)/a(pyp) /a(pp) [/
o (pwp) =2, N=12,
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a=(3,-500=8p ' =53, (pyp)=515p>=(—4,7,0) = (s153),
w ' =818p7 =(-1,-2,3). (10.15)

See also refs. [10], [11].
(c) The 7-tone natural Pythagorean scale: The Pythagorean 7-tone
natural diatonic scale is obtained as

{Tl =1, (Sp_l) = S},

/T /T /(Sp~) /T /T /Ty /(Sp~")/

T (Sp~')yY =2, N=T. (10.16)
(d) The 3-tone scale of the ancient Greek Lyre:

(NT(Sp™)/T/(TTi(Sp™Y),  (MT(Sp™")*Th = 2.
A summary of the results is given in Table 10.2.

The relationship between the three bases {\,u, p}, {S7!,S2S,,
S;'p~'} and {a,p,~} for the 116-tone musical system, the 31-tone
musical system and the Carnatic musical system, respectively, is
given by

Sl_l — )\5 3’ Sl_lp_l — )\3 2’ = S1P3 — S1p_l,
S =Xpp, SIS =27l p=87p7 =57p,
S3 = Nplp, p=Nu, p=SiSp=si5p",
(10.17a)

a=8Sp ' =X lp, T = (apyp) =815 =s]s5=1,5=s53,

p=%/S=Np,  T=Tip,

=818 =Nu*p, S=ap. (10.17b)
The tones given by Egs. (10.1) and (10.2) are obtained, in terms of

the basic vectors A, u, p, Eq. (10.4), by means of the vector
equation

(nym,r) =ki A+ ko p + k3 p, ki, i =1,2,3,integers, (10.18)

by substituting for (n, m, r) the desired lattice tone. For the lattice
tone g/c = (0,1,0) one obtains the set of three equations

0 = —6k; + 11k, — 6k3,
1 = 9%k; — 15ky + 4k;,
0 = ki — 3k + Sk;. (10.19)
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These equations yield the values

ki =37, k=24, k=1, (10.20)
and thus
g/c=1(0,1,0)=3/2=X"*p",  N=68. (10.21)
Similarly one obtains
a/c =(0,0,1) =5/3 =\, N = 85,
efc =(-1,1,1) =5/4 = 0uBp*4 N =137,
/e =(1,0,0) =2/1 =X\BuHpl2 N =116,
and

fle=(c"fe)(g/e)™ = APt pP (N2 ") 7h = N0,
N =48, (10.22)

By introducing still finer lattice systems it is possible to approximate
arbitrarily close any tonal system (see also ref. [13]), like the 12-tone
equal-tempered tonal scale ('2/2) or the 25-tone experimental scale
(*1/5), developed by STOCKHAUSEN, in terms of “natural parameters
(intervals)”. While the equal tempered scale is based upon the
lattice tone (1,0,0) = 2/1, STOCKHAUSEN’s scale is based upon the
lattice tone (1, 1,1) = (2/1)(3/2)(5/3) =5, an octave plus a fifth plus
a sixth.
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