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Abstract

We combine two aspects of fitness – lifetime reproductive success and (population)
growth rate (“propensity fitness”) – for defining a generation duration which, in
combination with either of these fitness definitions, can quantitatively answer one of
the classic questions of evolution: What is the effect, on later generations, of a single
case of reproduction greater (or smaller) than average? Individual breeding success of
offspring can be included by a simple multiplication of generations, or by referring the
reproductive history directly to grandchildren or later generations. We define inclusive
fitness by an inclusive lifetime reproductive history, combining the histories of two
individuals sharing an altruistic act. HAMILTON’s rule should rather be expressed as a
ratio of inclusive growth rate fitnesses. The termination of growth/decline after a few
generations or within one generation, respectively, has different results so it is
mandatory to distinguish clearly between these two cases of constant vs. waxing and
waning populations. Observed life reproductive histories need a reduction to successful
histories (i.e., reproductive offspring) for quantitative answers.

Key words: Individual fitness, inclusive fitness, lifetime reproductive history, repro-
ductive success, generation length, HAMILTON’s rule.

1. Introduction

Individual fitness is supposed to be a measure of the reproductive
success of an individual as translated into future generations. Origin-
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ally, it was essentially the number S of offspring produced in a lifetime
(lifetime reproductive success LRS) that was used as fitness measure
(often, but not always, as a ratio to a maximum LRS). It soon became
clear that the time of reproduction and thus the life history of reproduc-
tion play a major role. This is where the concept of fitness as a
(population) growth rate (propensity fitness) was introduced.
MCGRAW and CASWELL ([5], henceforth MG&C) considered a
“population projection matrix” the positive eigenvalue l of which is
an “individual growth rate” (or “asymptotic growth rate”) that is a
measure of the exponential population development introduced by a
given reproductive success.
The primary information in both cases is the lifetime reproductive

history (LRH). MG&C give, as example, the history of a particular
bird (blue tit, Parus caeruleus, individual 1493900) as (3.5, 5, 5, 6,
4.5) which means that the bird produced 3.5 offspring “of its own
genotype” in the first year (i.e., 7 together with the partner), 5 (10)
offspring in the second and third, 6 (12) in the fourth, 4.5 (9) in the fifth
year and stopped reproduction thereafter. The corresponding fitness
numbers are S¼ 24 (LRS) and l¼ 4.82 (growth rate per year). To our
knowledge, there is no other fitness definition derived directly from
the LRH.
BROMMER et al. [1] have discussed empirical uses of either defini-

tion. Their main result is, not surprisingly, that both forms have their
advantages.Which form seems to givemore reliable results depends on
the question asked.
Indeed, the definition of fitness as total lifetime reproductive success

can give insight into problems where the modern growth rate definition
is of little use. Probably the oldest example goes back to MALTHUS and
DARWIN: the population explosion following from an average LRS
greater than 1 per individual, regardless of the generation length, or of
when the offspring is raised (i.e., the propensity fitness is – nearly –
irrelevant). For stable conditions, some offspring have to die without
reproducing – let us call this the natural death toll or non-reproduction
toll. LEYHAUSEN [4] tried repeatedly to convey this simple but im-
portant fact, which scientists often take too much for granted to be even
considered, to laymen who need this information in order to make
decisions on environmental politics.
Note that it is the average LRS that is restricted, not the individual

LRS as an exception. The difference between average and exceptional
fitness is, in many publications, not very clearly mentioned, perhaps
because there seems to be a tendency to consider any individual fitness
as of mainly hereditary origin.
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Of course, there are cases in which the population does indeed
explode, for example when filling an empty niche, but then the
explosion must necessarily – and indeed does – stop after a while.
Also, it is generally preceded by a corresponding population implosion
that was necessary for creating the niche.
On the other hand, the growth rate definition of fitness gives insight

into other problems where the older total-reproduction definition fails.
For example, the time needed to fill a niche (and, by that, the ability to
fill a niche) essentially depends only on the possible growth rate. A fly
with a multiplying time of weeks is so superior over a predating beetle
with a one-year cycle that it is useless to keep applying fly poison that
also kills the beetles but closes the niche to the flies for only a short time
[3]. Here, the number of offspring is (nearly) irrelevant. As before, the
argument rests on the average fitness, not at all on an individual and
exceptional one.
A problem that needs both definitions to be understood is the

following: What is the best average strategy for a species living in
niches that frequently open (and, of course, close again, killing the
current population). Apparently, a high growth rate is useful. This is
accomplished for any genotype as well by, say, a twofold one-time
reproduction (4 per pair) in a given time as by a fourfold one-time
reproduction (8 per pair) in twice the time. But in average conditions
(no open niche, constant population) the first case means that 1/2 of the
offspring (2 of 4) must die without reproducing while the second case
requires a higher toll of 3/4 (viz., 6 of 8). That is to say, a small
generation length has advantages, which means a smaller total re-
production (fitness definition one) with given growth rate (fitness
definition two), as well as a larger growth rate with given total
reproduction.
The evolutionary answer to these problems is well-known (e.g.,

[6]). The r-strategy (for niche filling) prefers short generations and
many offspring while the K-strategy (for essentially constant popu-
lation) puts emphasis on long generations, few offspring and parental
care.

2. Generation Length and Its Application to Individual Fitness

The foregoing examples use fitness in the same sense in which it
seems most often to be understood, viz., as a property or average
property of species, populations, sub-populations, or types within
populations. Such fitness is always meant to be valid over many

The Demographic Effect of “Lucky” Breeding 17



generations, even if this is hardly ever stated. There is no need to
distinguish between generations, and thus no need to follow the
course of overlapping generations. For example, if all animals had
the same (average) growth rate fitness l, then the total population
would grow incrementally with l. Or, if an individual had fitness l
and its entire offspring inherited properties giving rise to the same
(average) fitness, then the descendants of this individual would
increase asymptotically (i.e., after a few generations) with this same
growth rate, l. It is of no interest how many generations a certain
development needs.
Observed individual fitnesses are, in most cases, used as probes in a

statistical sample, that is, used as an indication of how large the average
fitness might be, especially in qualitative comparison with another
observed fitness of an individual showing other properties or other
traits. In other words, they are used as an indication of how different
properties or behaviour might influence the average fitness and thus be
of evolutionary consequence.
However, things become different if we want to consider a single

individual and the singular effect of its individual fitness: the impact of
the “lucky” (or, as well, “unlucky”) breeder. Even the simplest case of
reproduction, i.e., only once a lifetime, contains two items of informa-
tion: the number of offspring and the age at reproduction, i.e. the
generation length. It is not possible to describe those two items by one
number only. In general, it is the lifetime reproductive history LRH that
gives the full amount (or, at least, a fuller amount) of information. Thus,
even two numbers cannot do more than approximate to what is really
happening.
In the LRS definition of fitness, one misses information about when

the offspring is born, or at least information on the average generation
length. In the growth rate definition, information is missing about how
long the growth rate is valid. One could speculate on a growth rate that
changes according to offspring already born.A simpler approachwould
be to estimate an averagegeneration length as the time of validity for the
original growth rate.
Neither fitness definition alone can quantitatively answer the

classic question of fitness theory for which the concept of individual
fitness was originally invented: to be a measure of the reproductive
success of one single individual as translated into future genera-
tions. But a combination of both can, and each can separately if
combined with a generation length that is determined from both
fitness numbers. We define a medium or effective generation length
T by the time it takes an exponential growth with rate l (as
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following from the population projection matrix) to produce the
total offspring S, that is,

T ¼ lnS=lnl:

The lifetime reproductive history is thus approximated by a one-
time reproduction, at age T, of the total offspring S, or, alternatively, by
a continuous exponential increase (or decrease) with l for time T. The
latter interpretation shows that the name “individual growth rate” for
l was indeed well-chosen. Instead of following up the detailed life
histories for generations that partly overlap, one can follow up the
consecutive row of average generations.
The answer to the question what the effect of a single case of

reproductive success greater (or smaller) than average would be on later
generations is quite simple but it is, of course, an approximation. The
three “fitness numbers” S, l, and T of which only two are independent
replace the fuller information of the LRH, which itself is an approxima-
tion. Let the average LRH yield fitness numbers S0, l0, T0 while the
exceptional breeder – “exceptional” meaning primarily that it is a single
case, the offspring and later generations being as average as all others –
has fitness numbers S, l, T. Then the latter will breed with l for time T
while the average animal breeds, during the same time, with l0, or,
alternatively, the latter will produce its offspring S in time T while the
average animal will, in the same time T, encounter T/T0 generations and
produce a total offspring S0 ** (T/T0), where the double asterisk means
“to the power of” and stands for an exponential with easier readability of
indexed exponents. Thus the ratio x of offspring of the exceptional
breeder and of the average breeder will later be

x ¼ ðl=l0ÞT ¼ ðl=l0Þ ** T ¼ S=ðS0 ** ðT=T0ÞÞ:
This simple recipe, which we illustrate below by examples, shows

clearly that the problems for which the concept of fitness was originally
invented needmore than one number to be quantitatively answered. The
growth rate alone is sufficient to distinguish between lucky (x> 1,
l> l0) and unlucky (x<1, l<l0) breeder but the generation length of
the exceptional breeder is needed for quantification.
The examples include the case of one single reproductive success

(“lucky/unlucky breeder”); the model of unusual reproductive success
in more than one generation (multiplication of generations); the effects
of the necessary termination of any unlimited growth (waxing and
waning vs. constant population); and finally the question of inclusive
fitness (altruistic acts, where at least two individuals – donor and
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recipient – with different reproduction details and different direct
fitness have to be combined).

3. Examples of Lucky Breeding

Wenow showhow the combination of either fitness number, S orl, with
the generation length T may be used. The examples are chosen to be
quite simple in order that the reader may check the calculations
without much effort. Most examples deal with growing populations,
the simple reason being that one can work with integers, which makes
things easier without limiting the generality at all. For the calculation of
the growth rate we use, as pendant to the individual lifetime repro-
ductive success S, the individual form of the matrix that yields the
characteristic equation Ssi/l–i¼ 1, where (s1,s2, . . .) is the life repro-
ductive history (see MG&C).
In the first example, we ask what influence one individual with

increased fitness number of either definition – this is the lucky breeder –
has on the further development of the population with the restriction
that the offspring does not apply the same increased reproduction but
rather behaves normally, i.e., shows average reproduction: the luck does
not continue. The “lucky mate” or the “unlucky breeder” (reduced
reproduction) could be treated similarly.
We assume a species or population that reproduceswith an average of

1 each per parent (i.e., 1 with probably the same genomic type as the
parent in question, or 2 offspring per pair) in each of the first and second
years (or time unit). The (average) LRH is thus (1,1) or, aswell, (1,1,0) –
no offspring in the third year –, with S0¼ 2, l0¼ 1.62, T0¼ 1.44. Let
one individual, the “luckybreeder”, have a different LRHof (1,1,1), i.e.,
it adds another 1 offspring (2 per pair) in its third year, giving S1¼ 3,
l1¼ 1.84, T1¼ 1.80.
Let us first consider the further development in detail (see Table 1).

Table 1 should be understood as giving, except for the original parents,
average numbers in at least two respects: an average concerning the
LRH as well as an average concerning the probability that an offspring
has the same genomic type as the individual parent. We give definite
numbers instead of probabilities in order to be able to compare them
with our estimates x. The counts are given for ten years to show the
gradual development towards an exponential increase.
In the first year, 1 offspring with the same type as the parent

individual is born (this is an average). In the second year, 1 offspring
of the parent (second year) as well as 1 grandchild (first-year offspring
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of the first-year child) of the same type is born on average, making
together 2 of the same type born in that year. All of the offspring is
assumed to reproduce normally with (1,1). Following this further in the
first 10 years, the average number of offspring born each year and
having the same type as the original parent is 1, 2, 3, 5, 8, 13, 21, 34, 55,

Table 1. Birth development for 10 years (examples 1 and 2). (a) normal case, (b) one
lucky breeder, (c) hereditary well-breeder (hereditary increased reproductive
success), (d) average continuation of a lucky breeder with one lucky child into
the second generation (see text). Total number born in a year (bold) and their
offspring in following years (fine) according to the LRH.Ratio of births to last
year (italic)

Year 0 1 2 3 4 5 6 7 8 9 10

normal 1 1 1
breeder – 1 1 1
LRH¼ (1,1) 1.0 2 2 2

2.0 3 3 3
1.5 5 5 5

1.67 8 8 8

lucky 1 1 1 1 1.60 13 13 13
breeder – 1 1 1 1.63 21 21 21
LRH¼ (1,1,1) 1.0 2 2 2 1.62 34 34 34
then (1,1) 2.0 4 4 4 1.62 55 55 ..

2.0 6 6 6 1.62 89 ..
1.5 10 10 10 1.62

1.67 16 16 16

hereditary 1 1 1 1 1.60 26 26 26
well-breeder – 1 1 1 1 1.63 42 42 42
LRH¼ (1,1,1) 1.0 2 2 2 2 1.62 68 68 ..

2.0 4 4 4 4 1.62 110 ..
2.0 7 7 7 7 1.62

1.75 13 13 13 13
1.85 24 24 24 24

generation 1 1 1 1 1.85 44 44 44 44
addition – 1 1 1 0.33 1.83 81 81 81 ..
(average of 1.0 1 1 1 0.33 1.84 149 149 ..
one of three) 1 1 1 1.84 274 ..
LRH¼ (1,1,1) 2.0 1 1 1 0.33 1.84
then (1,1,1/3) 3 3 3

2.0 6.33 6.33 6.33
1.58 10.66 10.66 10.66

1.68 17.33 17.33 17.33
1.63 28 28 28

1.62 45.33 45.33 45.33
1.62 73.33 73.33 ..

1.62 118.66 ..
1.62

The Demographic Effect of “Lucky” Breeding 21



and finallyB0¼ 89 (whereB is the number of births after 10 years) if the
parent has the usual or average LRH (1,1). The increased reproductive
success of the lucky breeder with LRH (1,1,1) renders, instead, 1, 2, 4,
6, 10, 16, 26, 42, 68, B1¼ 110 if all offspring is assumed to have an
average LRH of (1,1) and not the increased one (the “luck” does not
continue). Both rows of numbers increase, after the first years, with the
“normal” growth factor of l0¼ 1.62, but the fraction x of specimens of
the genomic type of the “successful” individual has increased, as
compared to the offspring of one “normal” individual with another
(its own) genomic type, by B1/B0¼ 110/89¼ 1.24, or 24%, and this
holds for all further generations.
Considering the same problem with only the fitness numbers given,

the simplest approach would be that the “different” individual repro-
duces at its owngrowth ratel1¼ 1.84 for onegeneration lengthT1 (1.80
years or time units) compared with a “normal” individual reproducing
at its reduced growth rate l0¼ 1.62 for the same time, while later on all
offspring reproduce with the same, normal growth rate of 1.62. The
result, x¼ (l1/l0) ** T1¼ (1.84/1.62)1.80¼ 1.26 or 26% is sufficiently
close to the true result which uses the complete reproduction informa-
tion instead of only the two fitness numbers.
Another interpretation of the same formula is as follows: In the

generation time T1¼ 1.80 in which the “different” individual produces
its offspring S1¼ 3, the normal individuals with T0¼ 1.44 already
enter the next generation and thus produce more than the one-genera-
tion offspring S0. The corresponding estimate with S and T is x¼
S1/(S0 ** (T1/T0))¼ 3/(2 ** 1.25)¼ 1.26.
The reason for the slight discrepancy between the calculated factor

1.26 and the true factor 1.24 can be found in an effect aptly described
by the second well-chosen name for l as used by MG&C, viz.,
“asymptotic growth rate”. The growth rate of the offspring is reached
only after a few generations (cp. Table 1). That is the same as assuming
that the growth rate starts working at a time t that is not zero. For
instance, the “normal” outcome after 10 years is not l0 ** 10¼ 124
but rather B0¼ 89¼ l0 ** 9.3, implying t0¼ 10�9.3¼ 0.7. The cor-
responding number for the enhanced growth rate 1.84 of LRH (1,1,1)
over 10 years would give (Table 1) B� ¼ 274¼ 1.84 ** 9.2, or t¼ 0.8.
Using this information (which goes beyond our 2-number approx-
imation), a better estimate for the increase factor would be x¼ (l1/
l0) ** (T1 þ t0�t)¼ 1.136 ** 1.7¼ 1.24.
The second example shows that things become only slightly more

complicated if an LRH is heritable but not inherited or not displayed
by the entire offspring, or if some of the offspring show again, by good
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or bad luck, LRHs that differ from the normal case. We again take
the “successful” individual of the first example, with LRH (1,1,1).
If all 3 first-generation offspring had the increased LRH but any of
the following generations did not, then we would expect the
increased growth rate to last for two generations, yielding x¼
(l1/l0) ** 2T1¼ 1.59, close to the direct result of 1.53 (i.e., calculated
according to the method of Table 1) but larger due to the above-
mentioned asymptotic effect.
Assume now that only one of the offspring displays the same

increased LRH, while the other 2 as well as all grandchildren and
further generations (including the children of the “successful” child)
behave normally, with history (1,1). If it is the first (second, third) child
that is “successful”, the total ten-year outcome (number of births after
10 years) is 123 (118, 115), or a factor of 1.38 (1.33, 1.29) above the
“normal” result of 89. The average (Table 1) is 119, a factor of 1.34.Our
two-number approximation can, of course, only reproduce the effect of
an average child. It is born after 1 generation length, T1¼ 1.8, and starts
reproduction correspondingly later. Its average LRH is (1,1,1/3) with
S2¼ 2.33, l2¼ 1.70, T2¼ 1.60. Multiplication of generations gives
x¼ ((l1/l0) **T1) * ((l2/l0) **T2))¼ 1.36.
Alternatively, the two generations can be combined into a double

generation for which the grandchildren are counted instead of the
children. This gives an LRH of (0,1,2,2.33,1.33,0.33) with S¼ 7,
l¼ 1.77, T¼ 3.40, x¼ (l/l0) ** T¼ 1.35.
Playing around a little morewith generationmultiplication, consider

the case of a lucky breeder (1,1,1) whose 3 children are normal (1,1)
but all the 6 grandchildren are again lucky (1,1,1), the great-grand-
children normal, their children again lucky and so on. The direct count
according to the scheme of Table 1 (but not included there) gives
174 births in the tenth year, or an 174/89¼ 1.96-fold increase. The ten
years correspond very nearly to 3.0 double-generations with a grand-
children-LRH¼ (0,1,2,2,1), S¼ 6, l¼ 1.74, T¼ 3.24, yielding a gain
of (l/l0) ** (3 *T)¼ 2.00, or just to 3 lucky plus 3 normal generations
yielding (l1/l0) ** (3 * T1)¼ 2.00.
These examples dealt with growing populations. No population

can grow forever. Discontinued growth, or a reduction to the original
level, will not change our results if started only after a few
generations.
Take, for instance, the first example. There are three categories of

animals, viz., no longer reproducing (more than two years old),
reproducing once more (between one and two years old), and reprodu-
cing twice more (youngsters, less than one year old). Comparing the
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two cases “normal” and “successful”, all of these three categories are
present in one and the same ratio, 1.24. That is,whateverwaywe choose
to reduce the population, whether suddenly or more slowly, whether
more the old ormore theyoungpopulation, that ratiowill remain, unless
the reduction was not neutral, i.e., was able to affect the offspring of
the two cases differently.
The situation changes, however, if we consider discontinued growth

or reduction to constant populationwithin one generation.We illustrate
this by another version of the first example.
Constant population requires average fitnesses S¼ 1, l¼ 1 (projec-

tion matrix of the population), which means in our first example that
one-half of the total offspring S0¼ 2 will finally not reproduce and
should thus not be integrated into the LRH. The “normal” (average)
history (1/2,

1/2) gives S9¼ 1, l9¼ 1 (individual projection matrix),
T9¼ 1.5 which levels off, after a few years, towards 2/3 births per year
(1.0 births per generation length T9¼ 1.5 years). The lucky breeder,
also losing 1/2 of its offspring, has history (1/2,

1/2,
1/2) and S10¼ 1.5,

l10¼ 1.24, T10¼ 1.88. If, again, all descendants have the normal
average history (1/2,

1/2), this levels off towards 1.0 births per year, up
by a factor of 1.5. Indeed, (l10/l9) **T10¼ S10¼ 1.5. Table 2 illustrates

Table 2. Early and late births. N: Normal breeder; all later generations are assumed
normal

LRH S l T x

1,1 2 1.62 1.44 N (waxing)¼ 1.0
2,0 2 2.00 1.00 1.23
0,2 2 1.41 2.00 0.76
2,1 3 2.41 1.25 1.54
1,2 3 2.00 1.59 1.40
1,1,1 3 1.84 1.80 1.26

0.5,0.5 1 1.00 1.50 N (constant)¼ 1.0
1,0 1 1.00 1.00 1.00
0,1 1 1.00 2.00 1.00
1,0.5 1.5 1.37 1.30 1.50
0.5,1 1.5 1.28 1.64 1.50
0.5,0.5,0.5 1.5 1.24 1.88 1.50

0.25,0.25 0.5 0.64 1.56 N (waning)¼ 1.0
0.5,0 0.5 0.50 1.00 0.78
0,0.5 0.5 0.71 2.00 1.23
0.5,0.25 0.75 0.81 1.36 1.38
0.25,0.5 0.75 0.84 1.70 1.60
0.25,0.25,0.25 0.75 0.87 2.06 1.88
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quantitatively the well known fact (r- and K-strategic reproduction)
that time of birth plays a role in waxing and waning populations but not
in a constant one.
That is to say, it is useful to distinguish clearly betweenmore or less

unlimited growth for several generations (niche filling) with later
cessation of growth (full niche) or reduction (niche emptying) on the
one hand and, on the other hand, essentially-zero growth of levelled
populations living in equilibrium with the environment. Observed
LRHs will often be a mixture of those two cases, part of the offspring
not reproducing again (when it should be removed from the LRH for
relevant fitness numbers), the other part inducing growth for several
generations followed by a later decrease (or vice versa). What is
needed for quantitative answers is not an observed LRH but a
successful LRH.

4. Altruistic Acts and Inclusive Fitness

Here, we deal with the effect of one single altruistic act on later
generations. To our knowledge, no valid definition of inclusive growth
rate fitness (inclusive propensity fitness) has hitherto been put for-
ward. We show that an inclusive LRH is apt. We consider the same
population, with normal (no altruism) LRH of (1,1). Let an altruistic
act leave the donor, D, with the loss of its first offspring (cost c) and an
LRH of (0,1), yielding the direct fitness numbers S3¼ 1, l3¼ 1,
T3¼ 2.00, and B3¼ 34 (the following generations are supposed to
reproduce normally). The latter number compares to the non-altruistic
case by the ratio B3/B0¼ 34/89¼ 0.38, estimated as x¼ (l3/l0) ** T3
¼ (1/1.62)2¼ 0.38. It applies also to the “unlucky” mate of D, even if
the mate may start out, in the first year without offspring, as but a
virtual mate. There may generally be more than one mate, but fewer
offspring with genes frommates is born, so the loss can be considered
as a loss for the community of mates. The usual procedure, in the
model of projection matrices, of counting only the females seems not
advisable for altruistic acts where a systematic genetic difference
between altruist and mate(s) is well possible.
Let the recipient R for whomwe assume a relatedness r¼ 0.5 receive

an additional 3 first-year offspring (benefit b) and an LRH (4,1), S4¼ 5,
l4¼ 4.23, T4¼ 1.12, and (again with normal reproduction of later
generations) B4¼ 254. This compares to the non-altruistic case by the
ratio B4/B0¼ 254/89¼ 2.85, estimated as x¼ (l4/l0) ** T4¼ (4.23/
1.62) ** 1.12¼ 2.93, and applies also to the “lucky” mate of R (or the
lucky community of mates).
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However, as far as the donor’s altruistic genotype is concerned, R
counts but one-half, with LRH (2,0.5). Considering first both D and R
together, they count as 1.5 individuals with a ten-year offspring
production of 2, 3.5, 5.5, 9, 14.5, 23.5, 38, 61.5, 99.5, and B5¼ 161,
or additional 27.5 (¼ a factor of 1.21) compared to the expected
89 * 1.5¼ 133.5 without altruistic act. The shared inclusive LRH or
combined LRH (2,1.5) for 1.5 individuals, or the average combined
LRH (4/3,1) per individual, gives S5¼ 3.5/1.5¼ 2.33 per individual,
l5¼ 1.87, T5¼ 1.35. Our estimate yields x¼ (l5/l0) ** T5¼ (1.87/
1.62) ** 1.35¼ 1.21.
The inclusive LRH of the donor alone is found by putting the

recipient’s relevant surplus offspring 1/2{(4,1)�(1,1)}¼ (1.5,0) com-
pletely on the donor’s account to yield (1.5,1), S6¼ 2.5, l6¼ 2.00,
T6¼ 1.32. The inclusive offspring of D (i.e., total of both minus
“normal” offspring of R) after ten years is B6¼ 161�89/2¼ 116.5, a
factor of 1.31 over the non-altruistic expectation of 89. Our estimate
renders x¼ (l6/l0) ** T6¼ 1.32.
On the other hand, putting the donor’s loss (1,0) completely on the

recipient’s account yields an inclusive LRH for the altruistic genotype
inRof (1,0.5) for the half-counting individual R, or (2,1) per individual,
giving S7¼ 3, l7¼ 2.41, T7¼ 1.25. The ten-year output (sum of DþR
minus “normal” D) is 161�89¼ 72, to be compared to the non-
altruistic case for R with output 1/2 * 89¼ 44.5. The ratio is 72/
44.5¼ 1.62. Our estimate renders x¼ (l7/l0) ** T7¼ 1.64.
As seen from the standpoint of the recipient, its direct LRH is reduced

by the cost of D who counts 1/2 as seen from R. The inclusive LRH and
inclusive fitness of R as primary individual is thus (3.5, 1), S8¼ 4.5,
l8¼ 3.77, T8¼ 1.13, B8¼ 226.5. The gain is B8/B0¼ 226.5/89¼ 2.54,
estimated as (l8/l0) ** T8¼ 2.60.
The example was chosen such that HAMILTON’s [2] famous rule is

positively fulfilled, with HAMILTON’s number H¼ br�c> 0. The rule
can be directly applied only because cost and benefit occur in the same
year or breeding season. In general, a translation into our notation has to
be used. It is, obviously,

H!l5/l0 > 1

(alternatively, l6/l0> 1 or l7/l0> 1). We illustrate this by a slight
change of the conditions: Let the donor D remain unchanged, with
LRH¼ (0,1) and c¼ 1. However, the recipient R receives the same
additional offspring b¼ 3 not in the first, as above, but only in the
second year, with LRH¼ (1,4). The shared LRH is (0.5,3) for 1.5
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individuals, yielding S5¼ 2.33 (per individual), l5¼ 1.59, T5¼ 1.82.
HAMILTON’s translated rule is not fulfilled. The direct ten-year result
D þ R (if all offspring has normal LRH of (1,1)) is B5¼ 129.5, a slight
loss of 4 as compared to the non-altruistic case. The multiplicative
loss of 129.5/133.5¼ 0.97 is estimated as (l5/l0) **T5¼ 0.97. Corre-
spondingly, the inclusive LRH of the donor (0,2.5) gives S6¼ 2.5,
l6¼ 1.58, T6¼ 2.00, B6¼ 85, B6/B0¼ 85/89¼ 0.95, (l6/l0) **T6¼
0.95 while the inclusive LRH of the half-counting recipient
(0.5,2) þ (–1,0) gives (–1,4) as effective LRH per one individual
with S7¼ 3, l7¼ 1.56, T7¼ 2.47, B7¼ 40.5, 2B7/B0¼ 40.5/
44.5¼ 0.91, (l7/l0) **T7¼ 0.91.
The 3 cases (LRH shared D þ R, inclusive D, inclusive R) are, of

course, equivalent, the loss of 4 in the ten-year total resultB5 amounting
to about 3% loss for 1.5 individuals (D þ R), 5% for 1 (D), and 9% for
0.5 individuals (R). In the foregoing example, the additional 27.5
offspring constitute a gain of 21% (31%, 62%) over the normal off-
spring for 1.5 (1, 0.5) individuals.

5. Conclusions

As far as the original and primary meaning of the fitness concept is
concerned, viz., to describe quantitatively the influence of the repro-
duction of one individual on the gene distribution in later generations,
the present definitions of fitness as one-number quantities are, generally
speaking, inadequate. Even the use of two numbers, individual fitness
and generation length, can fully account only for the simplest once-a-
life case of reproduction, but it can provide at least approximate
answers to questions that were hitherto unanswerable, especially the
primary question of fitness theory as mentioned above. A definite
advantage over the use of the growth rate fitness alone is that instead
of heavily weighting the offspring by time of birth (a possible problem
as discussed by, e.g., BROMMER et al. [1]) a commonmediumweight is
given to the entire offspring. On the other hand, such mediumweight is
also an advantage over the simple LRS fitness definition that includes
no weighting of offspring at all.
Our approach can handle not only cases such as one different LRH –

so to speak a lucky or, as well, unlucky breeder –, but also successive
different LRHs describing, e.g., a heritable reproduction pattern that is
displayed by only part of the offspring. Altruistic acts can be included
by defining inclusive fitness as the fitness following from an inclusive
LRH where the LRHs of different animals are combined. We do not
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claim that our approach to inclusive fitness is new but we did not find it
in the literature.
In order to transfer x into further generations, good or bad luck need

not be continued. On the contrary, any continuation must be treated as
multiplication of generations, or multiplication of different gener-
ations’ values of x.
It should be stressed that our approach can do no more than compare

the effects of two different LRHs, i.e., we can compare only the
outcome in later generations of two individuals or two sets of indivi-
duals. We cannot say anything about the second main question of the
fitness concept, namely the effect of a certain LRH on the relative
abundance of certain genotypes (“spreading of genes”, evolutionary
effect). This question cannot be answered without additional informa-
tion on how often different LRHs occur, and how these are related to
certain genes or gene combinations.
Most observed LRHs, as well as most of our examples, would

indicate a rapidly growing population. It is, therefore, useful tomention
that our results can survive the necessary occasional or – with quanti-
tatively different outcome – quasi-continuous reduction to more or less
constant population. One should thus distinguish clearly between the
different cases of unlimited growth for several generations (niche
filling) with later cessation of growth (full niche) or reduction to a
former level (niche emptying, decline of population) on the one hand
and, on the other hand, essentially-zero growth of levelled populations
living in equilibriumwith the environment. If theLRHs are not properly
reduced to offspring numbers that actually contribute to the next
generation’s reproduction, the resulting fitness numbers do not give
reliable results. In other words: unreduced observed LRHs and the
corresponding fitness numbers are nice for qualitative estimates and
comparisons (e.g., the advantage of early births in growing and late
births in waning populations) but the reduction to successful LRHs is
mandatory for quantitative answers to thefirst question offitness theory.
Of course, some kind of repetition of luck is necessary for evolu-

tionary consequences. If luck is somehowgenetically fixed, for instance
if external circumstances favour the occasional luck of a certain allele,
one can, in principle, define an “average hereditary luck” with corre-
sponding average S, l, T, and x valid for all animals carrying that
particular allele. This would lead back to the usually considered case,
mentioned above, where a definition of a generation length is no longer
necessary because all averaged animals are assumed to have the same
fully hereditary average LRH – and where it is the observer who is left
with the problem of obtaining proper data.
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If, on the other hand, no allele, or allele combination, is favoured, any
of them will have a chance to be occasionally lucky or unlucky in one
particular individual, which thus distinguishes itself from others by any
x „ 1 and approximately equalling the x of another lucky/unlucky
breeder of perhaps many generations before. Then, as a final result,
the allele distribution is not much changed and its multiplicity con-
served even if in each single generation the dice seem to favour one
particular allele.
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