From natural forest to cultivated land: Lichen species diversity along land-use gradients in Kanchenjunga, Eastern Nepal

Til Bikram Chongbang, Christine Keller, Michael Nobis, Christoph Scheidegger & Chitra Bahadur Baniya

Keywords: canopy openness, Canonical Correspondence Analysis, Ghunsa valley, hemispherical photography, land-use change, lichen diversity

Abstract

This study aimed to evaluate the effects of elevation, land use and canopy openness on species richness and composition of lichens in Ghunsa valley of Kanchenjunga Conservation Area, Eastern Nepal. At five elevational levels, from 2 200 m to 3800 m, transects were established in four land-use types - cultivated land, meadows, exploited and natural forests. Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis techniques were used to explore the lichen species distribution patterns. Generalized linear models were applied to analyse the impact of elevation and canopy openness on lichen species richness. Canopy openness was measured by hemispherical photography. A total of 229 species belonging to 71 genera were recorded. The length of the first DCA axis of 8.01 SD units indicated a complete species turnover and high beta diversity along the elevation gradient. Exploited forests with lower canopy openness supported higher lichen diversity than open meadows and cultivated areas. Significant differences in lichen species richness were found for different land-use types, along the elevation gradient, and with varying canopy openness. A gradual increase of lichen species richness from cultivated land to forests was observed. We concluded that substrate types that depend on land-use types as well as canopy openness significantly affect the distribution of lichen communities.

Profile Protected area Kanchenjunga Conservation Area Mountain range Himalaya Country Nepal

Introduction

Lichen diversity along elevational gradients has been analysed intensively in recent years (Bruun et al. 2006; Grytnes et al. 2006; Pinokiyo et al. 2008; Cobanoglu & Sevgi 2009; Baniya et al. 2010; Rai et al. 2011; Baniya et al. 2012) as well as lichen diversity along land-use gradients (Bergamini et al. 2005; Motiejûnaitë & Faùtynowicz 2005; Stofer et al. 2006; Wolseley et al. 2006; Giordani et al. 2010). Similarly, some recent studies are concerned with the influence of canopy openness on species richness, diversity and distribution of lichens (Li et al. 2011; Marmor et al. 2012; Li et al. 2013b, 2013a). However, effects of landuse related canopy openness on species richness and composition of lichens have rarely been studied.

Land-use change determines vegetation cover, species composition and distribution patterns of plant communities (Tasser & Tappeiner 2002) and, consequently, the variation in key characteristics of host tree species, like their density, age and diameter, which all influence the composition and distribution of epiphytic lichen communities (Löbel et al. 2006; Mežaka et al. 2008; Cobanoglu & Sevgi 2009; Li et al. 2011; Mežaka et al. 2012; Odor et al. 2013). Land-use changes, habitat loss and degradation often decline lichen populations (Scheidegger & Werth 2009). Compared with other factors, changing light and moisture conditions are often the dominant factors to explain differences in lichen diversity and abundance (Li et al. 2013a).

Nepal is a mountainous country in the central Himalayas with an area of 147181 km². It is situated between China in the north and India in the east, south and west. The elevation ranges from 60 m above sea level in Terai to 8848 m at Mt Everest, the highest peak in the world (Chaudhary 1998).

In Nepal, lichens are found in all climatic zones. However, floristic and ecological studies on lichens are largely missing. The latest physiographic data of Nepal showed 29% of the total land area covered by forests, 10% by shrubs and degraded forests and 21% by cultivated land (MFSC 2009). Land-use and land-cover change are substantial in Nepal; especially the forest cover shows a drastic decline - even in protected areas. For the Kanchenjunga Conservation Area (KCA), for instance, Gautam and Watanabe (2004) found a decline in forest land cover by 14.9% and grazing land cover by 77.9% between 1979 and 1992. This was the result of an increase in cultivated land by 4.9% and shrubland by 19.7%. KCA is a community-managed protected area established in 1997 and handed over to the KCA Management Council by the government of Nepal in 2006. The shifting cultivation is a common traditional farming system practiced in this protected area by the local ethnic groups as their traditional oc-

Figure 1 – Map of the study area showing the locations of the study sites.

cupation and livelihood. It also falls within the Sacred Himalayan Landscape being developed by WWF Nepal (Aryal et al. 2010).

The main objective in the present study, therefore, is to evaluate the effects of different land-use types, canopy openness on species richness and composition of lichens along the elevational gradient in KCA, Eastern Nepal. We hypothesized that (a) lichen diversity generally decreases from forests to open land and (b) highest lichen diversity is reached in forests under intermediate canopy openness.

Materials and methods

Study area

This study was carried out in Ghunsa of Eastern Nepal between 2200 m and 3800 m (Figure 1). Ghunsa lies towards the north-eastern part of Nepal in the KCA. KCA is located between 27°24'-27°57' N latitudes and 87° 39'-88° 12' E longitudes, close to the boarders of China in the North and India in the East. KCA covers an area of 2035 km² between the Middle Mountains and the high Himalayas, with an elevational range from 1200 m (Thiwa Khola) to Mt Kanchenjunga (8586 m), the third-highest peak in the world. The area includes three river valleys: Simbua, Ghunsa, and Tamur (Anonymous 2011). KCA has diverse climatic zones, including subtropical monsoon at 1200 m to alpine forests (above 4000 m), where June to August are the warmest months, with monthly maximums of 24.73°C to 24.81°C, and January is the coldest month, with a maximum temperature of 13.8°C (Shrestha & Ghimire 1996). KCA receives a good amount of monsoon rainfall from April/May to September/October, with a mean annual precipitation of 2013 mm / yr (Anonymous 2009).

Field methods and data collection

Land-use types were classified according to land cover, disturbance frequency and intensity. At each elevational level, land-use gradients were stratified into four land-use types (Scheidegger et al. 2010).

- 1. Natural forest: Forested area with very little or no human disturbance. It includes mainly broad-leaved trees and pine trees. This land-use type is often several hours walking distance away from human settlements.
- Exploited forest: Disturbed and / or exploited forests used for extensive grazing and / or the collection of fodder and firewood, which are close to human settlements.
- Meadow: Areas dominated by grasses and scattered trees and shrubs. Grazed by domestic livestock like sheep, goats, buffaloes, cows, yaks, and horses.
- Cultivated land: Land extensively used for cultivation and including terraced fields. These arable fields are often irrigated and fertilized.

Fieldwork was carried out in April 2012. Five elevation levels, from 2 200–3 800 m, with an interval of approximately 400 m were selected for the study. At each level, the four land-use types were selected on both sides of the Ghunsa river valley and two transects of 2.5 m \times 25 m each were studied at each land-use type on both sides of the valley, which showed southeast and north-west facing aspects. A total of 72 of 80 planned transects were established, because not all land-use types were found at each elevation level. The distance between two transects within the same landuse type was at least ten meters.

On each transect, elevation was recorded by Global Positioning System (*Garmin, GPSmap60CSx*) and slope, and the direction of the slope was recorded by a clinometer (*Silva, Ranger*). The growth form and substrate types were recorded. We considered the growth forms crustose, foliose, fruticose and leprose, and the substrate types corticolous (on bark), saxicolous (on rock), muscicolous (on moss) and terricolous (on soil) (Hale 1983). Hemispherical photographs were taken using a digital camera (*Coolpix995 Nikon*) and fish-eye lens (*Fish-eye converter FC-E8 Nikon*). The camera was mounted at a height of 1.5 m above the ground on a tripod and levelled with a bubble level.

Lichen identification and image analysis

Collected lichen specimens were examined at the Laboratory of the Central Department of Botany, Tribhuvan University, Kathmandu, Nepal, and at the Swiss Federal Research Institute, WSL, Switzerland. Identification of lichens was carried using the relevant keys and checklists (Awasthi 1991; Sharma 1995; Awasthi 2007; Singh & Sinha 2010). Identified specimens were deposited at the Swiss Federal Research Institute WSL, Switzerland.

Lichen species were categorized according to family, growth forms, substrate type and photobiont types, i. e. cyanobacteria or green algae, following the recent updated taxonomical classification (Lücking et al. 2016). Data were organized in a relational database (MS Access). Hemispherical photographs were converted to binary (black and white pixels) following the image analysis manual described by Frazer et al. (1999). All image analyses were performed using image-processing software, Gap Light Analyzer (GLA Version 2.0).

Statistical analysis

We calculated Pearson correlation coefficients between variables such as total lichen species richness, growth forms, substrate types and photobiont types (i. e. green algal and cyanobacterial lichen species richness) and canopy openness. TukeyHSD multiple comparison tests were used to test the effect of particular land-use types on species richness of lichens. Generalized Linear Models (GLMs; McCullagh & Nelder 1989) with quasi-poisson error distribution were performed for modelling lichen richness. We build models with linear only and linear and quadric predictor terms and chose the final model parameterization according to the significance of the quadratic term. Graphics were made only for statistically significant models by using GLM. GLMs were not built for species richness of leprose, terricolous and muscicolous lichens because of the scarcity of occurrence data.

Detrended Correspondence Analysis (DCA; Hill & Gauch 1980) was used to determine the lengths of the main gradient in species composition based on the sample by species data matrix. We performed DCA

with downweighting of rare species and found a gradient length 8.01 standard unit (SD) for the first axis. This indicated the use of Canonical Correspondence Analysis (CCA) (Lepš & Šmilauer 2003) and its implied unimodal response model over a linear model like in Redundancy Analysis (RDA) to analyse the relationships between species co-occurrence and environmental variables (i. e., elevation, land-use type and canopy openness). All environmental variables were permuted 199 times during CCA to test for significant environmental variables. Direct correlations of environmental predictors with CCA axes were also performed.

All statistical analyses were performed using the *vegan* 2.4-0 package (Oksanen et al. 2016) under the free statistical software environment R version 3.3.1 (R Core Team 2016).

Results

A total of 518 lichen specimens were collected from 72 transects, which included 229 lichen species of 71 genera (Appendix 1). 95 species belonged to the foliose growth form, 87 species were crustose, 44 species fruticose and 3 species were leprose. With regard to the substrate preference, 157 species were corticolous, 55 saxicolous, 14 muscicolous and 3 terricolous species. Green algal photobionts were associated with 205 lichen species, while the remaining 24 lichen species were associated with cyanobacteria. A TukeyHSD test showed significant differences in lichen species richness between cultivated and other land-use types (p < 0.05) (Appendix 2a).

Species richness between land-use types

According to land-use types, 174 species were recorded from exploited forests with the highest number of foliose lichens (77 species), followed by 172 species on natural forests, dominated again by foliose lichens (70 species). Likewise, the highest number of corticolous species (151 species) was recorded from natural forests followed by exploited forests with 135 species.

Species richness and canopy openness

Total species richness showed a significant monotonic decline with canopy openness (Figure 2a). Such a monotonic decline of species richness was also found for specific growth forms, specific photobiont species richness and species richness of corticolous of specific substrate types (Figure 2, Appendix 3). As an exception, a significant monotonic increase was found for saxicolous species richness towards higher canopy openness (Figures 2e, Appendix 3). An optimum of total lichen richness was found at low canopy openness with 20.1 species predicted at 10% canopy openness, with a gradual decline towards higher canopy openness (Figure 2a). Similarly, species numbers of crustose and fruticose lichens showed a decline towards higher canopy openness, with a predicted species number of 6.4 and 5.2 species at 10% canopy openness respec-

Figure 2 – Relationship between lichen species richness and canopy openness. a-g: a) total species richness; $b \overset{\infty}{\smile} c$) species richness of specific growth forms; $d \overset{\omega}{\leadsto} e$) species richness of specific substrate types and $f \overset{\omega}{\backsim} g$) specific photobiont species richness. The fitted regression lines represent Model 1 (Appendix 3).

tively (Figures 2b & c). Regression analysis was not performed for the leprose growth form because only three species presented this feature. Regarding the four substrate categories, corticolous lichen richness also showed a gradual decline with increasing canopy openness, with an average of 19.8 species at 10% canopy openness (Figure 2d). In contrast, saxicolous lichen richness had a positive trend with increasing canopy openness with an average of 7.4 species at 85% canopy openness (Figure 2e). GLM was not performed for muscicolous and terricolous species as their number was too low (14 and 3 species respectively). With respect to photobiont type, both cyanolichens and green algal lichens exhibited a significant decrease with canopy openness, with an average of 2.9 species of cy-

anolichens, 17.2 species of green algal lichens at 10% canopy openness (Figures 2f & g) respectively.

Species richness along elevation

There is a significant correlation of the total lichen species richness with the elevation and canopy openness ($p \le 0.05$). Total species richness of lichens and species richness of specific growth forms, specific substrate types and specific photobiont types, except species richness of leprose, muscicolous, terricolous lichens, showed a significant ($p \le 0.05$) monotonic increase with elevation (Figures 3a-g, Appendix 3). A total richness of 21.9 species was predicted at 3 800 m with a predicted species richness of 6.3 crustose, 10.3 foliose, 5.2 fruticose, 16.5 corticolous and 2.4 cyanoli-

Figure 3 – Relationship between lichen species richness and elevation. a–g: a) total species richness; b–d) species richness of specific growth forms; e) species richness of specific substrate types and $f \Leftrightarrow g$) specific photobiont species richness. The fitted regression lines represent Model 1 (Appendix 3).

chens and 19.5 green algal lichen species at 3800 m (Figures 3a–g). The regression analysis results showing the best selected model for each response variable is shown in Appendix 3.

Species composition

The length of the first DCA axis was 8.01 SD units (Table 2) that indicated a high beta diversity with almost complete species turnover between transects. The first two DCA axes explained 12.3% of the total variance in the data matrix.

In CCA, the environmental variables elevation, canopy openness and land-use explained 21 % of the total species variation variance (Table 3). CCA axis I was significantly correlated with elevation, while CCA

axis II was highly correlated with canopy openness and land-use types (Figure 4, Appendix 2b). Along the CCA axis I, the highest abundance of Aspicilia contorta, Chaenotheca chrysocephala, Evernia mesomorpha, Leptogium burnetiae, Umbilicaria indica var. indica and Usnea longissima showed more preference towards high elevation, while species such as Cladonia scabriuscula, Heterodermia comosa, Lecanora cenisia showed high preference towards low elevation. Likewise, along the CCA axis II, species composition of Aspicilia caesiocinerea, Coccocarpia erythroxyli, Phaeophyscia ciliata, Umbilicaria badia, Xanthoria fallax showed higher abundance towards higher canopy openness, while species like Caloplaca farinosa, Hypogymnia vittata, Cladonia crispata var. cetrariiformis, Usnea himalayana, Chaenotheca chryso-

Table 1 – Environmental correlation coefficient matrix (Pearson correlation) among variables used during the study ($p \le 0.05$). elv = elevation, cano = canopy openness, spn = total species number, cru = crustose species number, fol = foliose species number, fru = fruticose species number, lep = leprose species number, cort = corticolous species, musc = muscicolous species, saxi = saxicolousspecies, terr = terricolous species, blgrn = blue green algae and grnal = green algae

	Elev	Canopy	Spn	Cru	Fol	Fru	Lep	Cort	Musc	Saxi	Terr	Blgrn	Grnal
Elev	0.00	1.00	0.06	0.85	0.06	0.47	1.00	0.26	0.65	1.00	1.00	0.81	0.07
Canopy	0.29	0.00	1.00	1.00	1.00	1.00	1.00	0.06	1.00	0.09	1.00	0.28	1.00
Spn	0.00	0.05	0.00	0.00	0.00	0.00	1.00	0.00	0.06	1.00	1.00	0.00	0.00
Cru	0.02	0.05	0.00	0.00	0.00	0.00	1.00	0.00	0.78	1.00	1.00	0.00	0.00
Fol	0.00	0.18	0.00	0.00	0.00	0.00	1.00	0.00	0.61	1.00	1.00	0.00	0.00
Fru	0.01	0.05	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00
Lep	0.41	0.64	0.21	0.10	0.47	0.50	0.00	1.00	1.00	1.00	1.00	1.00	1.00
Cort	0.01	0.00	0.00	0.00	0.00	0.00	0.33	0.00	0.61	1.00	1.00	0.00	0.00
Musc	0.02	0.29	0.00	0.02	0.01	0.00	0.67	0.01	0.00	1.00	1.00	0.37	0.07
Saxi	0.27	0.00	0.16	0.33	0.04	0.84	0.32	0.55	0.36	0.00	1.00	1.00	1.00
Terr	0.68	0.09	0.58	0.31	0.97	0.38	0.60	0.44	0.83	0.34	0.00	1.00	1.00
Blgrn	0.02	0.01	0.00	0.00	0.00	0.00	0.93	0.00	0.01	0.56	0.51	0.00	0.00
Grnal	0.00	0.09	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.09	0.61	0.00	0.00

Table 2 – DCA summary of the study site.

DCA Axis	I	II	Ш	IV	Total inertia
Eigenvalues	0.63	0.50	0.40	0.33	9.16
Axis lengths	8.01	6.30	4.28	3.77	
Cumulative % vari- ance of species data	6.87	12.32	16.71	20.30	

Table 3 – DCA analysis summary of the study site.

	Inertia	Proportion	Rank
Total	9.15	1.00	
Constrained	1.92	0.21	6
Unconstrained	7.23	0.79	29

cephala showed a higher abundance towards low canopy openness (Figure 4).

Similarly, species like Phaeophyscia endococcina, Lecanora polytropa, Umbilicaria badia, Parmotrema subarnoldii showed high abundance towards open habitats and cultivated land, while species like Aspicilia cinerea, Hypotrachyna scytophylla, Parmelina quercina, Heterodermia obscurata, Stereocaulon paradoxum, Rhizoplaca chrysoleuca showed high abundance in meadows. Likewise, Hypotrachyna cirrhata, Hypotrachyna nepalensis, Cetrelia cetrarioides, Parmotrema pseudonilgherrense, Usnea compressula showed high abundance towards exploited forest and species like Lobaria retigera, Cladonia crispata var. cetrariiformis, Hypogymnia vittata, Caloplaca farinosa, Nephromopsis ahtii showed high abundance towards natural forest landscapes (Figure 4).

Discussion

Lichen species richness and composition along gradients of land use, canopy openness and elevation

Our study indicated distinct effects of elevation, land use and canopy openness on lichen species richness and composition. We found a considerable variation in lichen species richness among the four selected land-use types, with decline of species richness from forest to cultivated land. These findings are in accordance with other studies like Stofer et al. (2006), who also observed decreasing lichen species richness from natural forest landscape to open agricultural landscape in a large-scale study covering several European biogeographic zones. Our study revealed a monotonic decrease in total lichen species richness with increasing canopy openness. In the present study, low canopy openness of about 10% still supported a high number of lichen species. In the steep Himalayan mixed forests, canopy openness of 10% and more is likely to provide sufficient light into the forest stand and, in general, light limitation does not seem to be a major limiting factor for lichen species richness in the mountain forests of KCA.

Figure 4 – Canonical Correspondence Analysis (CCA) of lichen composition constraint by elevation, canopy openness and land-use types; C = Cultivated, M = Meadon, E = Exploited, and N = Natural. Arrow indicates the direction of increasing values and their length is proportional to the correlation between the variable and the plot scores (not shown) on the two ordination axes. Land-use types are shown as centroids. For full names of species see Appendix 1.

As trees are an important factor explaining lichen species composition and richness (Mežaka et al. 2008; Odor et al. 2013), meadows and natural forests seemed to provide lichen-rich habitats because of a high diversity and abundance of trees. The exploited forest type with varying disturbance intensity still maintained a reasonable diversity of microhabitats for epiphytic lichens, but some species that depend on semi-shaded habitats and high moisture in natural forests, such as corticolous lichens, are declining in exploited forests. Pinokiyo et al. (2008) also found the maximum number of corticolous lichens in dense forest. In the present study, we found high saxicolous lichen richness in meadows, because a high abundance of rocks and boulders are exposed on meadows, where litter does not continuously cover their surface. Exposed rock surfaces can support more saxicolous lichens than in closed forests, where slightly inclined rock surfaces are often covered with litter. On cultivated lands, slightly inclined rock surfaces are often disturbed by human

influence to remove them or to use them for various activities related to farming. Frequent and intense disturbance of rock surfaces in agricultural land is a significant difference to European land-use gradients, where Wolseley et al. (2006) recorded high saxicolous richness in farmland including cultivated land.

The saxicolous species richness revealed a gradual increase of species richness with increasing canopy openness and reached an average of 7.4 species per transect at 85% openness, which corresponds to meadows and open cultivated land. Rocks and boulders inside forest landscapes are primarily covered by litter or mosses and also have a low exposition to solar radiation. However, corticolous species richness showed a decline with increasing openness and reached an average of 19.8 species at 10% openness. Because corticolous lichens in the studied land-use gradients form a more species-rich species pool than saxicolous species, the observed decline of saxicolous species richness is overcompensated by a stronger increase of epiphytic lichens. As the lichen diversity is related to tree diversity, density (Baniya et al. 1999; Li et al. 2011; Li et al. 2013b, 2013a) and humidity (Pinokiyo et al. 2008), cultivated landscapes bear a limited number of trees, shrubs and fewer rocks and boulders as well as less humidity. The resulting lower epiphytic lichen species richness cannot be compensated by an increased density of boulders and bare rocks, which are generally covered with lichen vegetation under an open sky receiving direct solar radiation.

The lichen richness pattern is also closely related to the management practices of the particular landscape, e.g. the protected area. The traditional shifting cultivation practice common to this area (Aryal et al. 2010) is significantly explained after finding of declining lichen richness pattern with open canopy. The shifting cultivation practice opens up a landscape which seems not to support lichen richness and its diversity pattern. Further, the shifting cultivation practice is also common to Makalu-Barun areas of East Nepal. Thus, future diversity of lichen seems in a difficult situation. Conservation of lichen will automatically conserve the landscape.

In addition to the differences between land-use types, our study clearly indicated a distinct variation in species richness along the elevational gradient studied. We found a linear relationship with increasing elevation. Cobanoglu and Sevgi (2009) reported a similar pattern for epiphytic lichens with elevations from 1300 m to 1900 m in Turkey. However, a majority of former studies reported an unimodal relationship (Bruun et al. 2006; Grytnes et al. 2006; Baniya et al. 2010, 2012). Unlike these studies, which generally covered long elevational gradients, our study was more closely confined to a local scale, with an elevational gradient covering temperate to subalpine forests, but not reaching areas above the timberline. Therefore our linear relationship can be interpreted as part of an unimodal relationship on larger scales.

Lichen species composition showed a strong species turnover along CCA axis I (elevation) and CCA axis II (land use-types). Natural and exploited forests supported diverse lichen vegetation which decreased towards meadows and cultivated land. These results confirm findings from European land-use gradients from forest to agricultural land-use types (Stofer et al. 2006).

Conclusion

We conclude that besides elevation as a general climate proxy, differences in land use, which directly affect canopy openness, are the two main general factors of both lichen species richness and composition in this area of the Himalayas in Nepal. Forests with diverse habitats and relatively low canopy openness harbour more lichen species than meadows and cultivated land. However, elevation and canopy openness are not direct drivers. Canopy openness influences light intensity and relative moisture on the forest floor and tree trunks, which directly affect lichen diversity. In addition, elevation serves as a general climate proxy for temperature or precipitation, which more directly influences both species richness and composition of lichen communities. Highest species richness of lichens was reached at the highest altitudinal level of our survey, indicating that the maximum total species richness of lichens as well as the richness of most of the studied species groups is at or above 3800 m in this part of the Himalayas.

Acknowledgement

We thank the Swiss National Science Foundation (JRP IZ70Z0_131338 to CS, MN and K. K. Shrestha) for financial support. We are also grateful to all members of the CDB-WSL Project, Prof. Dr. Krishna Kumar Shrestha, Prof. Dr. Khadga Basnet, Dr. Jyoti Pd. Gajurel, Mr. Shiva Devkota, Mr. Sanjeev Kumar Rai, Mr. Hem Bdr. Katuwal, Mr. Yam Aryal and Mr. Rajesh Tamang for their kind support. We thank all local people of Ghunsa, KCA, and Utra Kumar Rai for his help with collecting lichens in the field.

References

Anonymous 2009. *Kanchenjunga conservation area*. Kanchenjunga conservation area management council.

Anonymous 2011. Kanchenjunga conservation area. Kanchenjunga conservation area management council.

Aryal, K.P., E.E. Kerkhoffn, N. Maskey & R. Sherchan 2010. Shifting Cultivation in the Sacred Himalayan Landscape: A case study in the Kanchenjunga Conservation Area. WWF Nepal.

Awasthi, D.D. 1991. A key to the microlichens of India, Nepal and Sri-Lanka. *Bibliotheca Lichenologica* 40: 1–137.

Awasthi, D.D. 2007. A compendium of the macrolichens from India, Nepal and Sri-Lanka. India.

Baniya, C.B., G.P.S. Ghimire & B. Kattel 1999. Diversity of lichens in Nepal. *Banko Jankari* 9: 26–28.

Baniya, C.B., T. Solhøy, Y. Gauslaa & M.W. Palmer 2010. The elevation gradient of lichen species richness in Nepal. *The Lichenologist* 42: 83–96.

Baniya, C.B., T. Solhøy, Y. Gauslaa & M.W. Palmer 2012. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. *Folia Geobotanica* 47: 135–151.

Bergamini, A., C. Scheidegger, S. Stofer, P. Carvalho, S. Davey, M. Dietrich, F. Dubs, E. Farkas, U. Groner, & K. Kaerkkaeinen 2005. Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. *Conservation Biology* 19: 1051–1062.

Bruun, H.H., J. Moen, R. Virtanen, J.A. Grytnes, L. Oksanen & A. Angerbjörn 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. *Journal of Vegetation Science* 17: 37–46.

Chaudhary, R.P. 1998. *Biodiversity in Nepal: Status and conservation*: Bangkok, Thailand.

Cobanoglu, G. & O. Sevgi 2009. Analysis of the distribution of epiphytic lichens on Cedrus libani in Elmali Research Forest (Antalya, Turkey). *Journal of Environmental Biology* 30: 205–212.

Frazer, G.W., C.D. Canham & K.P. Lertzman 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, user's manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York. (http://www.ecostudies.org)

Gautam, C.M. & T. Watanabe 2004. Reliability of Land Use/Land Cover Assessment in Montane Nepal: A Case Study in the Kangchenjunga Conservation Area (KCA). *Mountain Research and Development* 24: 35–43.

Giordani, P., G. Incerti, G. Rizzi, F. Ginaldi, S. Viglione, I. Rellini, G. Brunialti, P. Malaspina & P. Modenesi 2010. Land use intensity drive the local variation of lichen diversity in Mediterranean ecosystems sensitive to desertification. *Bibliotheca Lichenologica* 105: 139–148.

Grytnes, J.A., E. Heegaard & P.G. Ihlen 2006. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. *Acta oecologica* 29: 241–246.

Hale, M.E. 1983. The biology of lichens. London.

Hill, M.O. & H.G. Gauch 1980. Detrended Correspondence Analysis: An Improved Ordination Technique. *Vegatatio* 42: 47–58.

Li, S., W.Y. Liu & D.W. Li 2013a. Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China. *Ecological Indicators* 29: 93–104.

Li, S., W.Y. Liu & D.W. Li 2013b. Epiphytic lichens in subtropical forest ecosystems in southwest China: Species diversity and implications for conservation. *Biological Conservation* 159: 88–95.

Li, S., W. Liu, L. Wang, W. Ma & L. Song 2011. Biomass, diversity and composition of epiphytic macrolichens in primary and secondary forests in the subtropical Ailao Mountains, SW China. *Forest Ecology and Management* 261: 1760–1770.

Löbel, S., T. Snäll & H. Rydin 2006. Species richness patterns and metapopulation processes–evidence from epiphyte communities in boreo nemoral forests. *Eugraphy* 29: 169–182.

Lücking, R., B.P. Hodkinson & S.D. Leavitt 2016. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera. *The Bryologist* 119: 361–416.

Marmor, L., T. Tõrra, L. Saag & T. Randlane 2012. Species richness of epiphytic lichens in coniferous forests: the effect of canopy openness. *Annales Botanici Fennici* 49: 352–358.

McCullagh, P. & J.A. Nelder 1989. *Generalized Linear Models* (2nd ed.). London.

Mežaka, A., G. Brūmelis & A. Piterāns 2008. The distribution of epiphytic bryophyte and lichen species in relation to phorophyte characters in Latvian natural old-growth broad leaved forests. *Folia Cryptogamica Estonica* 44: 89–99.

Mežaka, A., G. Brūmelis & A. Piterāns 2012. Tree and stand-scale factors affecting richness and composition of epiphytic bryophytes and lichens in deciduous woodland key habitats. *Biodiversity and Conservation* 21: 3221–3241.

MFSC 2009. Nepal Fourth National Report to the Convention of Biological Diversity. Singha Durbar, Kathmandu, Nepal: Ministry of Forests and Soil Conservation, Government of Nepal.

Motiejûnaitë, J. & W. Faùtynowicz 2005. Effect of land-use on lichen diversity in the transboundary region of Lithuania and northeastern Poland. *Ekologija* 3: 34–43. Odor, P., L. Kiraly, F. Tinya, F. Bortignon & J. Nascimbene 2013. Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. *Forest Ecology and Management* 306: 256–265.

Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O'Hara, G.L. Simpson, P. Solymos, M. H.H. Stevens, E. Szoecs & H. Wagner. 2016. vegan: Community Ecology Package. R package version 2.4-0. http://CRAN.R-project. org/package=vegan

Pinokiyo, A., K.P. Singh & J.S. Singh 2008. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. *The Lichenologist* 40: 47–62.

R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.Rproject.org/.

Rai, H., R. Khare, R.K. Gupta, & D.K. Upreti 2011. Terricolous lichens as indicator of anthropogenic disturbances in a high altitude grassland in Garhwal (Western Himalaya), India. *Botanica Orientalis: Journal of Plant Science* 8: 16-23.

Scheidegger, C., M.P. Nobis & K.K. Shrestha 2010. Biodiversity and livelihood in land-use gradients in an era of climate change-outline of a Nepal-Swiss research project. *Botanica Orientalis: Journal of Plant Science* 7: 7–17.

Scheidegger, C. & S. Werth 2009. Conservation strategies for lichens: insights from population biology. *Fungal Biology Reviews* 23: 55–66.

Sharma, L.R. 1995. *Enumerations of the Lichens of Nepal.* Biodiversiy Profile Project. Tec. Pub. No.3, DN-PWC, Kathmandu, Nepal.

Shrestha, K.K., & S.K. Ghimire 1996. Plant diversity inventory of poposed Kanchenjunga Conservation Area (Ghunsa and Simbua Valleys). Kathmandu, Nepal: WWF Nepal Progaram Report series 22.

Singh, K.P. & G.P. Sinha 2010. *Indian lichens: an annotated checklist*. Botanical Survey of India, Ministry of Environment and forests.

Stofer, S., A. Bergamini, G. Aragon, P. Carvalho, B.J. Coppins, S. Davey, M. Dietrich, E. Farkas, K. Karkkainen, C. Keller, L. Lokos, S. Lommi, C. Maguas, R. Mitchell, P. Pinho, V.J. Rico, A.M. Truscott, P.A. Wolseley, A. Watt & C. Scheidegger 2006. Species richness of lichen functional groups in relation to land use intensity. *The Lichenologist* 38: 331–353.

Tasser, E. & U. Tappeiner 2002. Impact of land use changes on mountain vegetation. *Applied vegetation science* 5: 173–184.

Wolseley, P.A., S. Stofer, R. Mitchell, A.M. Truscott, A. Vanbergen, J. Chimonides & C. Scheidegger 2006. Variation of lichen communities with landuse in Aberdeenshire, UK. *Lichenologist* 38: 307–322.

Authors

Til Bikram Chongbang – corresponding author

holds an M.Sc. in Botany from Tribhuvan University, Kathmandu, Nepal. Now a member of the biology teaching staff at the National School of Sciences, Lainchour, Kathmandu, he is particularly interested in lichens and ethnobotany. E-mail: tbchongbang@ yahoo.com

Christine Keller¹

is an expert in lichen taxonomy and ecology. She is a member of the scientific staff at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf. E-mail: christine.keller@wsl.ch

Michael Nobis¹

is a botanist and macroecologist with a research focus on trait-environment relationships, species distribution modelling, species migration and biological invasions. He is a member of the scientific staff at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. E-mail: michael.nobis@wsl.ch

Christoph Scheidegger¹

focuses in his research on the conservation biology of lichens and plants, population genetics and landscape ecology, and biodiversity assessment and evaluation at the landscape level. He recently coordinated a research project in Nepal. He is a senior scientist and group leader at the Swiss Federal Institute for Forest, Snow and Landscape Research WSL. E-mail: christoph.scheidegger@wsl.ch

Chitra Bahadur Baniya

is Associate Professor of Ecology and Resource Management at the Central Department of Botany, Tribhuvan University, Kathmandu, Nepal. His major field of interest is quantitative ecology of plants and lichens. His present teaching and research mainly focus on open-source programs, such as *R* statistical packages and science in philosophy. E-mail: cbbaniya@ gmail.com

¹ Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, CH-8903 Birmensdorf.

Appendix 1 - List of lichens, their family, growth forms, substrate groups, photobiont partner and frequency of occurrence along land use types in the study area. Cru - crustose, Fol - foliose, Fru - fruticose, Lep - leprose, Cort - corticolous, Musc - muscicolous, Saxi - saxicolous, Terr - terricolous, BGA - blue green alga, GA - green alga, C - cultivated land, M - meadow, E - exploited forest, F - natural forest.

S.N.	Name of Lichen species	Short form	Family	Growth form	Substrate group	Photobiont partner	Frequency (Number)	Land use types
1	Amandinea punctata (Hoffm.) Coppins & Scheid.	Ama pun	Caliciaceae	Cru	Cort	GA	2	F
2	Aspicilia caesiocinerea (Nyl.ex Malbr.) Arnold	Asp cae	Megasporaceae	Cru	Saxi	GA	12	C, E, M, F
3	Aspicilia cinerea (L.) Körb.	Asp cin]	Cru	Saxi	GA	4	C, E, F, M
4	Aspicilia contorta (Hoffm.) Körb.	Asp con		Cru	Saxi	GA	2	E, F
5	Aspicilia griseocinerea Räsänen	Asp gri		Cru	Cort	GA	1	С
6	Bacidia laurocerasi (Delise ex Duby) Zahlbr.	Bac lau	Ramalinaceae	Cru	Cort	GA	1	F
7	Bacidia rubella (Hoffm.) A. Massal.	Bac rub		Cru	Cort	GA	2	F, E
8	Bryoria himalayensis (Motyka) Brodo & D. Hawksw.	Bry him	Parmeliaceae	Fru	Cort	GA	1	F
9	Bryoria lactinea (Nyl.) Brodo & D. Hawksw.	Bry lac	-	Fru	Cort	GA	1	E
10	Bryoria smithii (Du Rietz) Brodo & D. Hawksw.	Bry smi	-	Fru	Cort	GA	3	M, F, E
11	Bryoria tenuis (Dahl) Brodo & D. Hawksw.	Bry ten		Fru	Cort	GA	5	E, M, F
12	Buellia aethalea (Ach.) Th. Fr.	Bue aet	Caliciaceae	Cru	Saxi	GA	1	F
13	Buellia inornata Zahlbr.	Bue ino		Cru	Cort	GA	1	E
14	Buellia montana H. Magn.	Bue mon	-	Cru	Cort	GA	2	M
15	Calicium subquercinum Asah.	Cal sub		Cru	Cort	GA	4	F, E
16	Caloplaca chlorina (Flot.) Sandst.	Calchl	leloschistaceae	Cru	Cort	GA		M
1/	Caloplaca citrina (Hottm.) Ih. Fr.	Cal cit	-	Cru	Cort	GA	1	F
18	Caloplaca encephalarti (Kremp.) Zahlbr.	Cal enc	-	Cru	Cort	GA	1	E
19	Caloplaca farinosa Poelt & Hinter.	Cal far	-	Cru	Cort	GA	3	F
20	Caloplaca holocarpa (Hoffm.) Wade	Cal hol	-	Cru	Cort	GA	1	F
21	Caloplaca holochracea (Nyl.) Zahlbr.	Cal hol	-	Cru	Saxi	GA	1	M
22	Caloplaca isabellina Poelt & Hinter.	Cal isa		Cru	Saxi	GA	5	M, C, E
23	Candelaria indica (Hue) Vain.	Can ind	Candelariaceae	Fol	Saxi	GA	3	C, E, M
24	Candelariella vitellina (Hottm.) Müll. Arg.	Can vit		Cru	Saxi	GA	1	M
25	Candelariella xanthostigma (Pers. ex Ach.) Lettau	Can xan	D	Cru	Cort	GA	2	E, M
26	Cefrelia braunsiana (Mull.) W. Culb. & C. Culb.	Cet bra	Parmeliaceae	Fol	Cort	GA	4	E, F, M
2/	Cetrelia cetrarioides (Delise) W. Culb. & C. Culb.	Cet cet		Fol	Cort	GA	10	E, F, M
28	Cetrelia olivetorum (Nyl.) W. Culb. & C. Culb.	Cet oli	-	Fol	Cort	GA	1	E F F
29	Cerrelia pseudoliveforum (Asahina) W. Culb. & C. Culb.	Cet pse	Carlantara	Fol	Cort	GA	2	E, F
30	Chaenotheca chrysocephala (Ach.) Th. Fr.	Cha chr	Coniocybaceae	Cru	Cort	GA	3	r r
31	Chaenotheca phaeocephala (lurner) In. Fr.	Cha pha	-	Cru	Cort	GA	1	E F
32	Chaenotheca frichialis (Ach.) Helib.		Chanadaireanna	Cru	Con	GA	1	Г 14
33	Chrysoffilix candelaris (L.) Laundon	Chr can	Chrysofficaceae	Lep	Saxi	GA	1	M F
34	Chrysofhrix chiorina (Ach.) Laundon	Chr chi	Cladaningan	Lep	Cort	GA	1	с с
35	Chrysonnix xannina (van.) Kab	Clarabl		Lep	Muss	GA CA	1	E E
27	Cladoina chiorophaea (Florke ex Sommeri,) Spreng.	Clacor	Ciddonidcede	Fru	Musc	GA	1	r C
28	Cladonia corrifora (L.) Willd	Cla coc		Fru	Muse	GA	6	E M
20	Cladonia conjectaca (Elärke) Sprena	Clacon	-	Fru	Musc	GA	0	E, M
40	Cladonia conmocraed (norke) spreng.	Clacor	-	Fru	Musc	GA	4	L, I
41	Cladonia crispata var. cetrariiformis (Delise) Vain	Cla cri	-	Fru	Cort	GA	3	F F
12	Cladonia fimbriata (L.) Er	Cla fim	-	Fru	Musc	GA	1	F
43	Cladonia furcata (Huds) Schrad	Cla fur	-	Fru	Cort	GA	4	E E M
44	Cladonia macilenta Hoffm	Cla mac	-	Fru	Terr	GA	1	M
45	Cladonia macroptera Rösönen	Cla mac		Fru	Saxi	GA	1	E
46	Cladonia ramulosa (With) Laundon	Cla ram	-	Fru	Musc	GA	1	M
47	Cladonia scabriuscula (Delise) Nyl.	Cla sca	-	Fru	Saxi	GA	2	E. M
48	Cladonia stellaris (Opiz) Pouzar & Vězda	Cla ste		Fru	Terr	GA	1	Ē
49	Cladonia subconistea Asahina	Cla sub	-	Fru	Cort	GA	2	E
50	Cladonia subsquamosa Kremp.	Cla sub	-	Fru	Cort	GA	1	E
51	Cladonia subulata (L.) F.H. Wigg.	Cla sub		Fru	Cort	GA	1	м
52	Cladonia verticillata (Hoffm.) Schaer.	Cla ver		Fru	Musc	GA	1	С
53	Coccocarpia erythroxyli (Spreng.) Swinsc. & Krog	Coc ery	Coccocarpiaceae	Fol	Saxi	BGA	2	M, C
54	Collema subconveniens Nyl.	Col sub	Collemataceae	Fol	Cort	BGA	2	F
55	Dibaeis baeomyces (L. f.) Rambold & Hertel	Dib bae	Icmadophilaceae	Cru	Saxi	GA	1	E
56	Coenogonium luteum (Dicks.) Kalb & Lücking	Coe lut	Coenogoniaceae	Cru	Cort	GA	3	F, E
57	Diploschistes scruposus (Schreb.) Norman	Dip scr	Ghraphidaceae	Cru	Saxi	GA	1	м
58	Diplotomma alboatrum (Hoffm.) Flot.	Dip alb	Caliciaceae	Cru	Cort	GA	1	E
59	Diplotomma himalayense S. Singh & D.D. Awasthi	Dip him	1	Cru	Cort	GA	3	E, M
60	Diplotomma proximatum (Magn.) S. Singh & D.D. Awasthi	Dip pro]	Cru	Cort	GA	3	E, F
61	Erioderma meiocarpum Nyl.	Eri mei	Pannariaceae	Fol	Cort	BGA	3	F, M
62	Evernia mesomorpha Nyl.	Eve mes	Parmeliaceae	Fru	Cort	GA	5	F, M, E
63	Hypotrachyna cirrhata (Fr.) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Hyp cir		Fol	Cort	GA	5	E, M, F
64	Hypotrachyna nepalensis (Taylor) Divakar, A. Crespo, Sipman, Elix & Lumbsch	Hyp nep		Fol	Cort	GA	6	F, E, M
65	Flavoparmelia caperata (L.) Hale	Fla cap		Fol	Saxi	GA	1	M

S.N.	Name of Lichen species	Short	Family	Growth	Substrate	Photobiont	Frequency	Land use
1		form		form	group	partner	(Number)	types
66	Glyphis cicatricosa Ach.	Glv cic	Graphidaceae	Cru	Cort	GA	1	F
67	Graphis piaroalauca Leight	Grania		Cru	Cort	GA	1	F
107	Graphis mgrogladed Leight.	Cruing		Cit	Cont	CA.	2	
00				Ciu	Con	GA	3	E, F
69	Graphis rimulosa (Mont.) Trevis.	Gra rim		Cru	Cort	GA	1	F
70	Graphis scripta (L.) Ach.	Gra scr		Cru	Cort	GA	4	E, F
71	Graphis sikkimensis Nagarkar & Patw.	Gra sik		Cru	Cort	GA	5	F, E
72	Graphis sorediosa Nagarkar & Patw.	Gra sor		Cru	Cort	GA	1	F
73	Haematomma puniceum (Sm. ex Ach.) Massal.	Hae pun	Haematommataceae	Cru	Cort	GA	6	F, M, E
74	Heterodermia anaustiloba (Müll, Ara.) D.D. Awasthi	Het ana	Physciaceae	Fol	Cort	GA	3	E.F
75	Heterodermia borvi (Eée) Kr P Singh & S.R. Singh	Hethor	,	Fol	Cort	GA	6	EMCE
76	Heterodermia comosa (Eschut) Follman & Poden	Hot com		Fol	Cort	GA	2	L, M, C, I
70		Her com			Con	GA	2	M, E
//	Heterodermia diademata (laylor) D.D. Awasthi	Het dia	-	Fol	Cort	GA	1	F
78	Heterodermia firmula (Nyl.) Trevis.	Het fir		Fol	Cort	GA	1	E
79	Heterodermia incana (Stirt.) D.D. Awasthi	Het inc		Fol	Cort	GA	1	E
80	Heterodermia obscurata (Nyl.) Trevis.	Het obs		Fol	Saxi	GA	3	M, E
81	Heterodermia pellucida (D.D. Awasthi) D.D. Awasthi	Het pel		Fol	Cort	GA	1	E
82	Heterodermia pseudospeciosa (Kurok.) W. Culb.	Het pse		Fol	Cort	GA	1	E
83	Heterodermig rubescens (Räsänen) D.D. Awasthi	Het rub		Fol	Cort	GA	2	F F
0.0	Heterodermid robescens (Multi) Trovia	Hetene		Fel	Cort	CA.	2	c, 1
04	Helerodernia speciosa (woli.) Irevis.	пет spe		F01	Con	GA	3	E
85	Heterodermia togashii (Kurok.) D.D. Awasthi	Het tog	-	FOI	Cort	GA	0	E, M, F
86	Heterodermia tremulans (Müll. Arg.) W. Culb.	Het tre		Fol	Cort	GA	1	M
87	Heterodermia verrucifera (Kurok.) W.A. Weber	Het ver		Fol	Cort	GA	1	F
88	Hypogymnia hypotrypa (Nyl.) Rass.	Hyp hyp	Parmeliaceae	Fol	Cort	GA	4	F, E
89	Hypogymnia vittata (Ach.) Gasil.	Hyp vit		Fol	Cort	GA	2	F, E
90	Hypotrachyna crenata (Kurok.) Hale	Hyp cre		Fol	Saxi	GA	1	E
01	Hypotrachyna erendra (Rolok,) Hale	Hup ove		Fol	Cort	GA	1	F
71		Hyp exs			Con	GA	1	C
92	Hypotrachyna infirma (kurok.) Hale	Hyp inf		FOI	Cort	GA	1	F
93	Hypotrachyna majoris (Vain.) Hale	Hyp maj		Fol	Cort	GA	1	M
94	Hypotrachyna revoluta (Flörke) Hale	Hyp rev		Fol	Cort	GA	1	м
95	Hypotrachyna scytophylla (Kurok.) Hale	Hyp scy		Fol	Saxi	GA	4	M, C, E
96	Hypotrachyna sinuosa (Sm.) Hale	Hyp sin		Fol	Saxi	GA	4	C, M, E
97	Hypotrachypa sublaeviaata (Nyl.) Hale	Hyp sub		Fol	Cort	GA	1	C
08	Lacallia frovana D.D. Awasthi	Las fro	Umbilicariacoao	Fol	Savi	GA	1	
70		Las ire	Uniplicanacede	FOI	Suxi	GA	1	M C
99	Lecanora trustulosa (Dicks.) Ach.	Lec fru	Lecanoraceae	Cru	Saxi	GA	1	C
100	Lecanora albella (Pers.) Ach.	Lec alb		Cru	Cort	GA	3	M, E
101	Lecanora allophana (Ach.) Nyl.	Lec all		Cru	Cort	GA	1	E
102	Lecanora campestris (Schaer.) Hue	Lec cam		Cru	Saxi	GA	2	E, F
103	Lecanora cenisia Ach.	Lec cen		Cru	Saxi	GA	4	M, F, C
104	Lecanora chlarotera Nyl.	Lec chl		Cru	Cort	GA	8	F.E.M
105	Lecanora intricata (Ach.) Ach	Lec int		Cru	Savi	GA	1	M
105		Lee nel		Cru	Caul	CA.	2	C M
100		Lec poi		Ciu	JUXI	GA	2	C, M
107	Lecanora rugosella Zahlbr.	Lec rug		Cru	Cort	GA	4	F, E
108	Lecanora saligna (Schrad.) Zahlbr.	Lec sal	-	Cru	Cort	GA	1	F
109	Lecanora strobilina Ach.	Lec str		Cru	Cort	GA	1	м
110	Lecanora varia (Hoffm.) Ach.	Lec var		Cru	Cort	GA	1	M
111	Lecidea betulicola (Kullh.) H. Magn.	Lec bet	Lecideaceae	Cru	Cort	GA	1	F
112	Lecidea ervthrophaea Flörke ex Sommerf	Lec erv		Cru	Cort	GA	1	F
113	lecidea fuscoatra (L.) Ach	Lec fue		Cru	Savi	GA	1	A4
114		Leever		Cru	Caul	CA.	1	
114		Lec vor	1	Ciu	Suxi	GA	1	14
115	Lecidella elaeochroma (Ach.) M. Choisy	Lec ela	Lecanoraceae	Cru	Cort	GA	1	M
116	Lepraria crassissima (Hue) Lettau	Lep cra	Stereocaulaceae	Cru	Saxi	GA	1	M
117	Lepraria ecorticata (J.R. Laundon) Kukwa	Lep eco		Cru	Saxi	GA	1	M
118	Lepraria membranacea (Dicks.) Vain.	Lep mem		Cru	Cort	GA	2	M, E
119	Leptogium askotense D.D. Awasthi	Lep ask	Collemataceae	Fol	Cort	BGA	1	E
120	Leptogium burnetiae Dodae	Lep bur	1	Fol	Cort	BGA	3	F, E. M
121	Leptoqium chloromelum (Sw.) Nyl	lep ch	1	Fol	Cort	BGA	1	F
122	Lentonium cygnescens (Rabenh) Körh	Len ava	1	Fol	Cort	BGA	1	F
100	Leptogram cydnescens (Ruberni,) NOD.	Lep cyu	-	Fel	Cert	BCA	7	-
123	Lepiogium peaiceilatum K.M. Jørg.	Lep ped			Cort	DGA	/	с, г, М
124	Leptogium saturninum (Dicks.) Nyl.	Lep sat		Fol	Cort	BGA	1	м
125	Lethariella cladonioides (Nyl.) krog	Let cla	Parmeliaceae	Fru	Cort	GA	1	M
126	Lobaria isidiosa (Müll. Arg.) Vain.	Lob isi	Lobariaceae	Fol	Cort	BGA	1	F
127	Lobaria pindarensis Räsänen	Lob pin		Fol	Cort	BGA	3	F
128	Lobaria retigera (Bory) Trev.	Lob ret	1	Fol	Cort	BGA	5	E.F
120	Melanelia panniformis (Nyl.) Essl	Mel nan	Parmeliaceae	Fol	Cort	GA	1	M
120	Malanalia tominii (Ovner) Eral	Maltan	. annonuceue	Fol	Savi	GA	2	A.4
130		INIEI form			Saxi	GA	2	M
131	Menegazzia terebrata (Hottm.) A. Massal.	Men ter		Fol	Cort	GA	6	E, F
132	Mycobilimbia hunana (Zahlbr.) D.D. Awasthi	Myc hum	Lecideaceae	Cru	Terr	GA	1	С
133	Mycoblastus affinis (Schaer.) T. Schauer	Myc aff	Tephromelatacae	Cru	Cort	GA	2	F
134	Myelochroa subaurulenta (Nyl.) Elix & Hale	Mye sub	Parmeliaceae	Fol	Cort	GA	1	F
135	Nephroma isidiosum (Nyl.) Gyeln.	Nep isi	Nephromataceae	Fol	Musc	BGA	1	м
136	Nephroma nakaoj Asabina	Nen nak		Fol	Cort	BGA	4	E.E.M
127	Nephromonesis penhromoidae (Nul.) Abti 9 Parall	Nennan	Parmeliacoao	Fol	Cort	GA	1	., _, F
100	Ochectechia andreana (Uleffer) A Ul	I veh ueb	Cabaalaala'	1 01 Cm	Con	SA CA	1	-
138	Ochrolechia anarogyna (Ποππ.) Arhold	Ocn and	Conrolecniaceae	Cru	Jaxi	GA	1	
139	Ochrolechia parellula (Müll. Arg.) Zahlbr.	Och par	4	Cru	Saxi	GA	1	F
140	Ochrolechia rosella (Müll. Arg.) Vers.	Och ros		Cru	Cort	GA	8	E, F, M

S.N.	Name of Lichen species	Short form	Family	Growth form	Substrate group	Photobiont partner	Frequency (Number)	Land use types
141	Parmotrema thomsonii (Stirt.) A. Crespo, Divakar & Elix	Par tho	Parmeliaceae	Fol	Cort	GA	1	E
142	Parmelia squarrosa Hale	Par squ		Fol	Cort	GA	2	М
143	Parmeliella cinerata Zahlbr.) P.M. Jørg.	Par cin		Fol	Cort	BGA	1	E
144	Parmelina quercina (Willd.) Hale	Par que		Fol	Cort	GA	4	F, C, E, M
145	Parmotrema cetratum (Ach.) Hale	Par cet		Fol	Cort	GA	2	E, F
146	Parmotrema latissimum (Fée) Hale	Par lat		Fol	Cort	GA	1	F
147	Parmotrema nilgherrense (Nyl.) Hale	Par nil		Fol	Cort	GA	5	E, F, M
148	Parmotrema praesorediosum (Nyl.) Hale	Par pra		Fol	Cort	GA	1	м
149	Parmotrema pseudocrinitum (Abbayes) Hale	Par pse		Fol	Cort	GA	1	м
150	Parmotrema pseudonilgherrense (Asahina) Hale	Par pse		Fol	Cort	GA	8	E, M, F
151	Parmotrema reticulatum (Taylor) M. Choisy	Par ret		Fol	Saxi	GA	2	C, E
152	Parmotrema saccatilobum (Taylor) Hale	Par sac		Fol	Cort	GA	1	E
153	Parmotrema sancti-angelii (Lynge) Hale	Par san		Fol	Saxi	GA	1	M
154	Parmotrema subarnoldii (Abbayes) Hale	Par sub		Fol	Saxi	GA	2	C, M
155	Parmotrema tinctorum (Despr. ex Nyl.) Hale	Par tin		Fol	Cort	GA	1	E
156	Parmotrema ultralucens (Krog) Hale	Par ult		Fol	Saxi	GA	-	M
157	Peltigera didactyla (With.) J.R. Laundon	Pel did	Peltigeraceae	Fol	Musc	BGA	1	E
158	Pelfigera dolichorrhiza (Nyl.) Nyl.	Pel dol		Fol	Cort	BGA	3	F, E
159	Peltigera dolichospora (D.A. Lu) Vitik.	Pel dol		Fol	Cort	BGA	2	E, F
160	Pelfigera malacea (Ach.) Funck	Pel mal		Fol	Musc	BGA	1	F
161	Pelfigera membranacea (Ach.) Nyl.	Pel mem		Fol	Musc	BGA	2	F
162	Pelfigera polydactylon (Neck.) Hoffm.	Pel pol		Fol	Musc	BGA	3	E, F
163	reingera praetextata (Florke) Zopt	Pei pra	Partura :	Fol	Musc	BGA	1	с г
164	Pertusaria albescens (Huds.) M. Choisy & Wern.	Per alb	Pertusariaceae	Cru	Cort	GA	1	t r
165	Pertusaria amara (Ach.) Nyl.	Per ama		Cru	Cort	GA	1	
166	Pertusaria amarescens Nyl.	Per ama		Cru	Saxi	GA	2	M, E
16/	Pertusaria commutata Müll. Arg.	Per com		Cru	Saxi	GA	-	E
168	Pertusaria composita Zahlbr.	Per com		Cru	Cort	GA	1	M
169	Pertusaria hemisphaerica (Flörke) Erichsen	Per hem		Cru	Cort	GA	1	F
1/0	Pertusaria krogiae A.W. Archer, Elix, Eb. Fisch., Killmann &	Per kro		Cru	Cort	GA	1	E
171	Serus	Devile		Creat	Cont	C.4	1	-
1/1	Perfusaria lactea (L.) Arnold	Per lac		Cru	Cort	GA	1	F
1/2	Perfusaria ophthalmiza (Nyl) Nyl.	Per oph		Cru	Cort	GA	1	F
1/3		Per per		Cru	Corr	GA	2	
174	Perfusaria psoromica A.W. Archer & Elix	Per pso		Cru	Corr	GA	2	м, г
175	Perfusaria unibricola A. W. Archer & Elix	Per umb		Cru	Cort	GA	2	с с
170	Portucaria vanthoplaca Müll. Ara	Perven		Cru	Cort	GA	1	F
177	Phreamhuarin cilists (Hoffer) Mahara	Pha eil	Physicses	Eal	Cont	GA CA	1	
170	Phaeophysica childra (Hollini, Moberg	Pha and	rnysciacede	Foi	Con	GA CA	4	C, E
1/7	Phaeophysica endococcina (Korb.) Moberg	Pha his		Fol	Cort	GA	1	M, C
181	Phaeophysica hispidula var. overpatula (Zahlhr) Mehera	Pha his		Fol	Cort	GA	2	F
182	Phaeophyscia nispidola val. exonatola (Zambil) Moberg	Pha pri		Fol	Savi	GA	1	C
183	Phaeographis extrusa (Stirt) Zahlbr	Pho evt	Graphidaceae	Cru	Cort	GA	1	F
184	Physics argence (Ach.) Flot	Phlara	Phyctidaceae	Cru	Cort	GA	1	F
185	Physicia caesia (Hoffm) Fürnr	Phy cae	Physciaceae	Fol	Savi	GA	3	MC
186	Physica caesia (Horm.) Form.	Phy dil		Fol	Cort	GA	1	F
187	Physicia analala (Gmelin) Mobera	Phy sem		Fol	Cort	GA	1	F
188	Physica tenella (Scon) DC	Phy ten		Fol	Saxi	GA	1	M
189	Platismatia erosa W Culb & C Culb	Pla ero	Parmeliaceae	Fol	Cort	GA	3	E E M
107	Polychidium ctinitatum Văzda & W.A. Wohor	Pol eti	Massalongiacogo	Fru	Cort	BGA	1	E, I, M
101	Poring chloroticg (Ach.) Müll Arg	Por chl	Poringcege	Cru	Savi	GA	1	F
192	Porpidia albocoerulescens (Wulfen) Hertel & Knonh	Por alb	Lecidegrege	Cru	Saxi	GA	1	F
192	Pyxine berteriana (Fée) Imsh	Pvx her	Caliciaceae	Fol	Cort	GA	2	FF
101	Ramalina condunticans Vain	Ram con	Ramalinaceae	Fru	Cort	GA	- 8	FE M
195	Ramalina hossei Vain	Ram bos		Fru	Cort	GA	4	F F M
196	Ramalina roesleri (Hochst) Hue	Ram roe		Fru	Cort	GA	3	_, , , , , , , , , , , , , , , , , , ,
107	Ramalina sinensis latta	Ramein		Fru	Cort	GA	1	, i F
108	Rhizocarpon badioatrum (Elörke ex Spreng) Th. Fr	Rhibad	Rhizocarpaceae	Cru	Savi	GA	2	F M
100	Rhizocarpon obscuratum (Ach.) A. Massal	Rhi obs	Kinzocurpuceue	Cru	Savi	GA	1	L, M
200	Rhizoplaca chrysoleuca (Sm.) Zoof	Rhi chr	lecanoraceae	Fol	Saxi	GA	2	M
200	Ringding efforescens Malme	Rin off	Physciaceae	Cru	Cort	GA	1	M
201	Rinoding instruct (Krempelh, in Nyl.) Mamle	Rin ins		Cru	Cort	GA	2	ME
203	Rinodina lecideina H. Mavrhofer & Poelt	Rin lec		Cru	Saxi	GA	-	с., <u>с</u>
204	Rinoding sophodes (Ach.) A. Massal	Rin spo		Cru	Saxi	GA	1	M
205	Sclerophora amabilis (Tibell) Tibell	Sclama	Conjocybaceae	Fru	Cort	GA	1	F
206	Stereocaulon paradoxum I M. Lamb	Ste nor	Stereocaulaceae	Fru	Saxi	GA	7	M.F.C
207	Stereocaulon piluliferum Th.Fr.	Ste pil		Fru	Saxi	GA	2	C. E
208	Sticta nylanderiana Zahlbr.	Sti nvl	Lobariaceae	Fru	Cort	GA	2	
209	Sticta praetextata (Räsänen) D.D. Awasthi	Sti pra		Fru	Cort	GA	2	E.E
210	Sticta weigelii (Ach.) Vain	Sti wei		Fru	Cort	BGA	-	F
211	Sulcaria sulcata (Lév.) Bystr. ex Brodo & D. Hawksw	Sul sul	Parmeliaceae	Fru	Cort	GA	2	F. E
212	Nephromopsis ahtii (Randl, & Saga) Randl, & Saga	Nep aht		Fol	Cort	GA	7	. –
213	Nephromopsis laureri (Kremp.) Kurok.	Nep lau	1	Fol	Cort	GA	5	, F, E, M
	· · · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1		1				

S.N.	Name of Lichen species	Short	Family	Growth	Substrate	Photobiont	Frequency	Land use
		form		form	group	partner	(Number)	types
214	Umbilicaria badia Frey	Umb bad	Umbilicariaceae	Fol	Saxi	GA	4	C, E,
215	Umbilicaria indica var. indica Frey	Umb ind		Fol	Saxi	GA	8	F, M, E
216	Umbilicaria vellea (L.) Ach. em. Frey	Umb vel		Fol	Saxi	GA	3	M, F
217	Usnea bailey (Stirt.) Zahlbr.	Usn bai	Parmeliaceae	Fru	Cort	GA	1	E
218	Usnea cirrosa Motyka	Usn cir		Fru	Cort	GA	8	E, F, M
219	Usnea compressa Taylor	Usn com		Fru	Cort	GA	5	F, M, E
220	Usnea cornuta Körb.	Usn cor		Fru	Cort	GA	4	E, M, F
221	Usnea himalayana Bab.	Usn him		Fru	Cort	GA	2	E, F
222	Usnea longissima Ach.	Usn lon		Fru	Cort	GA	3	F, E
223	Usnea pygmoidea (Asahina) Y. Ohmura	Usn pyg		Fru	Cort	GA	1	M
224	Usnea sp1 Dill. ex Adans.	Usn sp1		Fru	Cort	GA	3	M, E
225	Usnea sp2 Dill. ex Adans.	Usn sp2		Fru	Cort	GA	2	F, M
226	Verrucaria nigrescens Pers.	Ver nig	Verrucariaceae	Cru	Saxi	GA	1	С
227	Xanthoparmelia tinctina (Maheu & A. Gillet) Hale	Xan tin	Parmeliaceae	Fol	Cort	GA	1	м
228	Xanthoria fallax (Hepp) Arnold	Xan fal	Teloschistaceae	Fol	Cort	GA	2	M, C
229	Xanthoria parietina (L.) Th. Fr.	Xan par		Fol	Cort	GA	1	F

Appendix 2 – TukeyHSD test for multiple comparisons of mean species richness of lichens between land-use types and b. Biplot CCA scores.

a) TukeyHSD test for multiple comparisons of mean species richness of lichens between land-use types.

Variables	Difference	Lower	Upper	p adjusted
Exploited-Cultivated	14.46	3.93	24.99	0.00
Natural-Cultivated	12.33	2.05	22.60	0.01
Meadow-Cultivated	9.90	-0.62	20.43	0.07
Natural-Exploited	-2.13	-12.09	7.82	0.94
Meadow-Exploited	-4.56	-14.77	5.66	0.63
Meadow-Natural	-2.42	-12.38	7.53	0.91

b) Pearson correlations between environmental variables and CCA axes.

Variables	CCA1	CCA2		
Elevation	0.964	-0.184		
Exploited forest	-0.005	-0.178		
Natural forest	-0.187	-0.573		
Meadow	0.161	0.355		
Canopy openness	0.193	0.755		

Appendix 3 – Regression analysis results modelled for lichen species richness, growth forms, substrate types and photobiont types as
response variables and canopy openness and elevation as predictor variables. The Quasi-Poisson family error fitted in GLM (General-
ized Linear Model). p-values refer to linear (linear model) or quadratic (linear 🕉 quadratic model) coefficient. p-value codes: 0 '***'
0.001 ***' $0.01 $ **' $0.05 $ · ' 0.1 ns (non-significant) for $p > 0.1 $ which means marginal significance.

Predictor variables	Response variables	Model	Degrees of freedom	Residual deviance	Deviance explained	ΔD ²	p(> t value)
Canopy openness	Total lichen richness	Intercept	35	222.23		0	***
		Linear	34	199.19	23.04	0.104	*
		Linear & quadratic	33	192.35	6.85	0.134	ns
	Crustose species richness	Intercept	35	65.36		0	***
		Linear	34	58.56	6.80	0.104	
		Linear & quadratic	33	57.96	0.60	0.113	ns
	Fruticose species richness	Intercept	35	111.10		0	***
		Linear	34	99.39	11.71	0.105	*
		Linear & quadratic	33	90.94	8.45	0.18	0.09
	Corticolous species richness	Intercept	35	289.78		0	***
		Linear	34	218.15	71.63	0.247	**
		Linear & quadratic	33	204.48	13.67	0.294	ns
	Saxicolous species richness	Intercept	35	104.63		0	***
		Linear	34	79.87	24.76	0.23	**
		Linear & quadratic	33	75.72	4.15	0.27	ns
	Cyanolichen species richness	Intercept	35	68.57		0	0.37
		Linear	34	55.61	12.96	0.189	*
		Linear & quadratic	33	54.72	0.89	0.202	ns
	Green algal lichen species	Intercept	35	189.80		0	***
	richness	Linear	34	174.93	14.87	0.078	
		Linear & quadratic	33	168.55	6.38	0.112	ns
Elevation	Total species richness	Intercept	35	222.23		0	***
		Linear	34	163.35	53.88	0.26	**
		Linear & quadratic	33	160.42	2.93	0.28	ns
	Crustose species richness	Intercept	35	65.36		0	***
		Linear	34	56.24	9.12	0.14	*
		Linear & quadratic	33	55.97	0.27	0.14	ns

Predictor variables	Response variables	Model	Degrees of freedom	Residual deviance	Deviance explained	ΔD ²	p(> t value)
Elevation	Foliose species richness	Intercept	35	137.8		0	***
		Linear	34	104.81	32.99	0.24	**
		Linear & quadratic	33	102.2	2.61	0.26	ns
	Fruticose species richness	Intercept	35	111.10		0	***
		Linear	34	92.02	19.08	0.172	*
		Linear & quadratic	33	91.65	0.37	0.152	ns
	Corticolous species richness	Intercept	35	289.78		0	***
		Linear	34	235.08	54.7	0.189	**
		Linear & quadratic	33	227.09	7.99	0.216	ns
	Cyanolichen species richness	Intercept	35	68.57		0	0.23
		Linear	34	59.13	9.44	0.138	*
		Linear & quadratic	33	58.38	0.75	0.149	ns
	Green algal lichen species	Intercept	35	189.80		0	***
	richness	Linear	34	140.67	49.13	0.259	**
		Linear & quadratic	33	138.19	2.48	0.272	ns

Appendix 4 – Representative hemispherical photographs chosen from the analysed images characterizing transects in Ghunsa Valley, Kanchenjunga. (1 = 2000 m, 2 = 2600 m, 3 = 3000 m, 4 = 3400 m and 5 = 3800 m; E = eastern slope, W = western slope; c = cultivated land, e = exploited forest, m = meadows and f = natural forest).

1Ecb 1Emb 1Eea 1Efb	
openness = 70.5% openness = 62.4% openness = 55.75% openness = 9.98	%
1Wcb 1Wmb 1Web 1Wfb2	
openness = 84.76% openness = 82.81% openness = 37.05% openness = 38.46	5%
2Ecb1 2Efb 2Wcb 2Wmb	
openness = 62.35% openness = 31.48% openness = 65.46% openness = 58.3%	3%
Web 2000 2000 2000 2000 2000 2000 2000 20	
21709 21709 0 0 0 0 0 0 0 0 0 0	3%

