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Abstract 

Developments in sensor technology have contributed immensely to the growth of big 

geospatial sensor data. Moreover, advances in telecommunications have made it possible 

to use in-situ sensors to capture and transfer data about the environment in near real-time. 

The combination of various sensor types within a predefined geographic space and the 

possibility of making measurements at high temporal resolution contributes to a better 

understanding of our environment while also generating big geospatial sensor data. Big 

data from multi-sensor networks, particularly those that capture dynamic characteristics of 

the environment, have not been spared the challenges that face other types of big data. 

Specifically, the quality of data and the propagation of uncertainty through the multi-

sensor data processing workflows have remained a major concern in the big geospatial 

sensor data research community. Attempts to document, quantify and communicate the 

uncertainty associated with sensor data and related sensor network outputs have been 

made mainly in the context of individual projects. This paper aims to document the state-

of-art in defining uncertainty with regard to multi-sensor geospatial data. In particular, we 

analyse the current literature to outline different types of uncertainty, and document 

methods for handling uncertainty in the different stages of multi-sensor geospatial data 

collection, processing and delivery. 
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1 Background 

Advances in sensor technology and in telecommunications have made sensors fundamental 
sources of geospatial data. It is now possible to deploy sensors in extensive, remote and 
previously inaccessible geographic terrains (Li, Andrew, Foh, Zukerman, & Chen, 2009). 
Furthermore, with the advent of sensor webs, standardized tools have been developed to 
facilitate sensor data sharing, discovery, access and visualization (Botts, Percivall, Reed, & 
Davidson, 2007) over the internet. Consequently, it is now possible to discover and use data 
from an immense range of sensors from different manufacturers, designed for different 
types of use, deployed and operated by different entities. The various types of sensors 
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deployed in geographic space and equipped with different communication capabilities can be 
harnessed into geospatial sensor networks. Geospatial sensor networks enable the capturing 
of a wide range of environmental variables and include in-situ pre-processing. Additionally, 
movement trajectories, and health and physiological data of humans and animals, including 
heart rate, body temperature and muscle tension, can also be recorded. As a result, sensor 
data have become an integral part of complex environmental monitoring systems. The 
extraordinary volume of environmental data, captured at high velocities, consequently leads 
to big data (Zaslavsky, Perera, & Georgakopoulos, 2013). 

The heterogeneous characteristics of the hardware, software and computational capabilities 
of the sensors that compose geospatial sensor networks, coupled with the diversity of the 
environment in which the sensors are deployed, introduce data uncertainties (Reis et al., 
2015). Additionally, individual research objectives determine the choice of sensors to be 
deployed and the data quality requirements (Dasarathy, 1997). These objectives and 
requirements further influence the quality of data from sensor nodes that feed geospatial 
sensor networks. Uncertainty is defined as the quantified description of doubt in a 
measurement (Bleier et al., 2009). Epistemologically, uncertainty exists in data because any 
measurement is a simplification of reality. The uncertainty associated with sensor data, 
particularly data from multi-sensor networks in extensive geographic scales, has been a major 
concern of many applications (Feyen & Caers, 2006; Geza, Poeter, & McCray, 2009). This is 
particularly the case when sensor data are used to inform policy decisions (Maxim & van der 
Sluijs, 2011). 

The quality of geospatial data has been an ongoing pursuit in the geographic information 
science community (Duckham, Mason, Stell, & Worboys, 2001; Frank, 1998; Goodchild & 
Jeansoulin, 1998). Miniaturization and advances in computational capabilities have 
contributed to the ubiquity of sensors (Nittel, Labrinidis, & Stefanidis, 2008), resulting in the 
growth in number of possible sensor data sources and in the multi-dimensionality of the 
uncertainty of sensor data. Consequently, efforts to define, communicate and handle 
uncertainty in sensor-driven environment-monitoring systems have become fundamental 
(Matott, Babendreier, & Purucker, 2009; Refsgaard, Van der Sluijs, Brown, & Van der Keur, 
2006; Refsgaard, van der Sluijs, Højberg, & Vanrolleghem, 2007).  

Practical solutions for handling uncertainty in geospatial sensor data have been implemented 
in the context of specific projects or to serve specific application domains. Consequently, 
there is no up-to-date and widely accepted definition of uncertainty, or description of 
methods for documenting and handling uncertainty in the context of big data obtained from 
multi-sensor networks. This paper aims to document the state-of-art in efforts to define 
uncertainty and outlines the methods for handling uncertainty emanating from big geospatial 
multi-sensor data. In this endeavour, we aim to answer the following guiding questions: (a) 
What are the dimensions of uncertainty in big geospatial data emerging from multi-sensor 
sources? (b) What methods are available for defining, documenting and handling uncertainty 
at different stages of multi-sensor workflows? Based on these questions, the objectives of 
this study are: (i) to define the various dimensions of uncertainty in big geospatial multi-
sensor data; (ii) to synthesize the methods of handling uncertainty at different levels of multi-
sensor environmental monitoring systems. 
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The remainder of this paper is organized as follows. In Section 2, we provide a definition of 
uncertainty in the context of big multi-sensor data. In Section 3, we document and 
synthesize the main methods that are available in the relevant literature. In Section 4, we 
provide a conclusion regarding the critical elements of uncertainty in the age of big data from 
geospatial multi-sensor data. 

2 Definition of uncertainty 

Geospatial sensor data observations and big data analytics 

Traditionally, geographic knowledge emerged from the desktop-based spatial analysis and 
geovisualization of conventional vector and raster data models (Kitchin, 2014; Miller & 
Goodchild, 2015). However, the proliferation of location-aware sensors has contributed to 
the growth of geospatial big data. Consequently, advanced methods of analysis are required 
to address challenges associated with big data (Goodchild, 2009; Kitchin, 2013, 2014; Sui & 
DeLyser, 2012). Typically, sensor-driven methods for environment monitoring encompass 
sensing, data processing and visualization (Figure 1). In geospatial sensor data processing 
systems, space describes the sensed locations on the surface of the earth and provides a 
reference upon which different dimensions of big data can be aggregated, analysed and 
interpreted. The integration of space and time during the collection of sensor data facilitates 
big geospatial sensor data analysis (Lee & Kang, 2015) and opens up further horizons in the 
understanding of the physical and social environment.  

  

Figure 1: Typical sensing, processing and visualization paradigm of sensor-driven monitoring systems 

Uncertainty in sensor-driven environmental management systems 

Addressing uncertainty associated with multi-sensor networks requires the understanding of 
critical elements of multi-sensor data management systems. There are three basic layers in a 
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sensor-web-enabled workflow, namely the observation, management and discovery layers 
(Figure 2). The observation layer consists of the different sensor nodes in a network. Each 
sensor node is wirelessly connected to a gateway, hence streamlining the communication 
between a sensor and the data management system. This design also allows for an in-place 
computation, which improves the efficiency of sensor resources by ensuring that only pre-
processed data are transferred from a sensor node to the centralized data management 
system.  

Due to the technical characteristics of sensors and the variation in the characteristics of the 
geographic locations at which sensors are deployed, uncertainties may arise from the 
observation layer. These uncertainties should be documented, qualified and communicated 
to the centralized data management system. Information on data quality from the 
observation layer should be transferred along with the observed data.  

 

Figure 2: Critical layers of a sensor-driven environmental management system 

The second layer is the management (or processing) layer, which provides cloud-based data 
storage and is accessible via the internet. The management layer also handles communication 
between the sensor nodes and the end-users. In line with the aims of the Open Geospatial 
Consortium (OGC), sensor resources are managed as discoverable and consumable 
resources. The data management layer therefore provides open standards for data processing 
via Web Processing Services (WPS). Uncertainties associated with the management layer 
must be documented and communicated as part of the metadata. 
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The third layer entails discovery and visualization. This is where remote users can discover, 
access, visualize and download resources from the internet. The process of discovery is 
actualized through standardized communication protocols. The results of the discovery 
process can only support policy decisions if the end-users understand both the data and the 
uncertainties associated with the entire chain of data collection, management, processing and 
visualization.  

There are two categories or types of uncertainty that are relevant for sensor data. The first is 
the unintentional uncertainty that originates from random effects in the measuring system. 
Unintentional uncertainty can be evaluated by statistical methods. The second category is the 
intentional type, which originates from malicious physical or digital attacks on a sensor 
system (Ni et al., 2009; Shi & Perrig, 2004). In this work, we focus on the unintentional 
errors that if not properly quantified and documented can propagate through the sensor 
network and impede the quality of data and information obtained from sensor data 
management systems. 

Research on data quality has been an ongoing endeavour within geographic information 
science research (Devillers, Bédard, Jeansoulin, & Moulin, 2007; Duckham et al., 2001; 
Veregin, 1999). Techniques for assessing and improving data quality have also been 
documented (Batini, Cappiello, Francalanci, & Maurino, 2009). Rodriguez and Servigne 
(2012) and Rodríguez and Servigne (2013) classified the data quality dimensions in each of 
the layers as follows: observation layer (accuracy, reliability, spatial precision, completeness 
and communication reliability); management layer (consistency, currency and volatility); 
discovery layer (timeliness, availability and adequacy). 

Description of uncertainty in the sensor web 

The OGC’s Sensor Web Enablement (SWE) framework specifies standardized service-
oriented interfaces for describing sensor resources (Botts, Percivall, Reed, & Davidson, 2008; 
Bröring et al., 2011). Noteworthy standards for documenting data quality in the sensor web 
include: (a) Sensor Model Language (SensorML), (b) Observation & Measurement (O&M), 
(c) Sensor Observation Service (SOS), (d) Sensor Planning Service (SPS), and (e) SWE 
Common Data and Services. 

SensorML defines models and XML schema for describing processes associated with the 
measurement and post-measurement transformation of sensor observations (Botts & Robin, 
2007; Botts, Robin, Greenwood, & Wesloh, 2014). Specific aims of SensorML that are 
relevant for documenting sensor data quality include: (i) to provide performance and quality 
of measurement characteristics (e.g., accuracy, threshold); (ii) to provide an explicit 
description of the process by which an observation was obtained (i.e., its lineage); (iii) to 
archive fundamental properties and assumptions regarding sensor systems and 
computational processes. These aims intended not only to document the processes involved 
in sensor data measurements, but also to describe and document the quality characteristics 
associated with the sensor data.  

Observation & Measurement (O&M) provides a standard framework for representing 
observations, measurements, procedures and metadata in a sensor system (Reed, Botts, & 
Davidson, 2007). Within the O&M specification, an observation is an event aimed at 
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measuring or determining the value of a property by using known procedures. The O&M 
document can capture information about data quality with respect to the measurement 
process. An uncertainty-enabled observation and measurement profile has been developed as 
an extension of the original O&M document (Stasch et al., 2012).  

Additionally, in order to bridge the gap between sensor observations and environmental 
modelling, Uncertainty Markup Language (UncertML) was developed to enable uncertainty-
handling in sensor-driven modelling environments (Williams, Cornford, Bastin, & Pebesma, 
2009). Consequently, a web-based uncertainty-handling framework that is built around 
UncertML documentation is now possible via UncertWeb (Bastin et al., 2013). More 
specifically, the QualityML was defined in order to provide a more holistic description of 
sensor data quality (Ninyerola et al., 2014). 

3 General framework for handling multiple dimensions of 
uncertainty in multi-sensor networks 

Overall dimensions of handling uncertainty 

In multi-sensor networks, there are multiple phases, including collection (in the observation 
layer), processing (management and processing layer), and discovery. In each phase, there 
may be multiple actors (users and stakeholders) or nodes (sensor nodes). The interaction 
between the many phases, actors (with different needs and inputs) and different processes 
involved in the multi-sensor framework contribute to multiple dimensions of uncertainty in 
multi-sensor data systems. Consequently, various strategies for identifying, managing and 
eliminating uncertainty in sensor data during acquisition, processing and utilization have 
been proposed. Specifically, Walker et al. (2003) define dimensions of uncertainty under 
three categories: location (context, input, parameter, model), levels (statistical, scenario, 
ignorance), and nature (epistemic and variability). Further taxonomies in the definition and 
classification of uncertainty are provided by Funtowicz & Ravetz (1990), Klauer & Brown 
(2004), and Sigel, Klauer, & Pahl-Wostl (2010). Here, we synthesize the dimensions into 
different categories and further link the dimensions to a specific sensor data management 
layer to facilitate uncertainty-handling in sensor data from multiple sources. 

Methods of handling sensor-based uncertainty are dependent primarily on the needs and 
preferences of users in a particular application domain. The purpose of the categorization in 
this study is to provide an efficient guideline that can be adopted by users from multiple 
disciplines that use sensor data in their analyses. There are three general steps to consider 
when handling uncertainty of geospatial sensor data: (1) identification, (2) documentation, 
and (3) clarification.  

In the identification phase, a classification scheme or an uncertainty matrix is used to 
highlight uncertainty associated with specific sensor data and processes (Warmink, Janssen, 
Booij, & Krol, 2010). The classification scheme provides a systematic means of representing 
and quantifying the specific aspects of the uncertainty at hand (Refsgaard et al., 2007; Walker 
et al., 2003). Identification enables a user to frame the uncertainty concisely and guides 
subsequent phases of handling the uncertainty.  
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In the description phase, metadata describing the uncertainty and the associated data is 
created. The description of uncertainty may be supplemented by a description of the 
dimensions of data quality, including accuracy, completeness, consistency, timeliness, 
interpretability and accessibility (Batini et al., 2009; Scannapieco & Catarci, 2002). Metadata 
enables subsequent data-users to recognize and consider the deficits in the dataset. A 
practical solution to describe uncertain information within metadata is provided by 
UncertML (Williams, Cornford, Bastin, & Ingram, 2008). When documenting uncertainty 
information in metadata, a bottom-up or a top-down approach can be adopted (Devillers et 
al., 2007). 

In the bottom-up approach, information on uncertainty from data producers, sensor 
calibration parameters and systematic deviations are noted in the metadata and parsed to the 
upper levels in the sensor data management and analysis workflow. At the bottom level, 
information on uncertainty can be detailed and linked to individual records and processes. 
However, in higher levels of the data-handling workflow, aggregated measures can be used 
to describe uncertainty. This introduces a level of complexity in understanding uncertainty, 
particularly if the data originates from an interconnected network of multiple sensor nodes.  

In a top-down approach, quality information is not explicitly available for individual 
elements. Instead, globally aggregated statements about processes or data are used to 
communicate uncertainty. Furthermore, in the top-down approach, expert analysis and 
judgements on the impact of uncertainty on the output from a sensor-monitoring system are 
made. The subjective nature of human perception introduces the risk of misinterpretation or 
wrong estimation by the expert, while on the other hand it can allow the identification of 
errors or inconsistencies which are unforeseeable in sensitivity or statistical analysis.  

The final step in data handling is the clarification phase. Here, uncertain records are flagged, 
which implies adding a quality tag to the potentially erroneous data with the intention of 
correcting for the influence of uncertainty in the data. This constitutes the highest level of 
uncertainty-handling. Data and processing quality is not only assessed but also improved by 
alterations in the process chain or in the data records. 

 

Figure 3: Phases of handling uncertainty in geospatial sensor environmental management systems 
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Further, strategies for handling uncertainty aim at improving the quality of the data and can 
be separated into data-driven and process-driven methods (Batini, Cappiello, Francalanci, & 
Maurino, 2009). Data-driven techniques focus on improving the quality of data by modifying 
the data value in order to increase their trustworthiness. On the other hand, process-driven 
methods involve redesigning those components of a sensor data management system that are 
identified as contributing to the uncertainty in the data. Consequently, in process-driven 
methods it may be necessary to collect new data after redesigning the specific components of 
a sensor management system. As a result, process-driven methods tend to be relatively 
expensive. 

Synthesized categories of methods for handling uncertainty in multi-sensor 
frameworks 

Strategies for handling uncertainty (Bastin et al., 2013; Batini et al., 2009; Sigel et al., 2008) 
can be grouped to specific layers of a sensor network framework. Strategies which can be 
applied to the observation layer include: 

(1) Merging: New data, collected under the same acquisition design, can be merged and 
aggregated to remove outliers or the influence of random errors in a few observations. 

(2) Replacement: Entails a fresh data collection under the same acquisition design in 
order to replace uncertain data from an earlier acquisition step. An advantage of this 
data-driven process is that it is cost-efficient because only the measuring step is 
repeated. For instance, uncertainty caused by unusual weather phenomena can be 
compensated by replacement.  

(3) Process-redesign: Entails collecting new data under a redesigned data-acquisition 
framework. Arithmetic overflows, unreliability or wrong datasets (incorrect sample) 
emerging due to poor research design can be accounted for. 

(4) Metadata description: Generating a complete metadata set that includes calibration 
parameters of sensors used in observation. This ensures that subsequent data-handling 
processes benefit from the technical specification of the measuring equipment and the 
associated influence on precision as part of the descriptors of uncertainty. 
Additionally, uncertainty flags can also be included in the metadata description 
(Devaraju, Jirka, Kunkel, & Sorg, 2015). 

In the management layer, the following methods can be used: 

(1) Interpolation: Interpolation methods can be used to integrate data to a unified 
reference framework. For instance, data from heterogeneous sources or those with 
different granularity can be synchronized at a uniform temporal resolution. Gaps and 
errors in the data can be calculated using an interpolation approach and documented 
in an UncertML document. An example was tested in the INTAMAP project 
(Williams, Cornford, Bastin, Jones, & Parker, 2011) 
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(2) Statistical methods: Statistical analysis of the data can be executed to flag records 
that do not fall within expected statistical ranges. The error localization can be 
corrected by identifying values which do not satisfy certain rules (Batini et al., 2009). 

(3) Probability calculations are a common approach for describing or quantifying the 
uncertainty in terms of probability functions (Sigel et al., 2010).  

(4) Sensitivity analysis methods such as the Monte Carlo method are often used for 
simulating the impacts of uncertain data within the sensor-data process model. Bastin 
et al. (2013) give a selection of software packages for handling uncertainty in this 
manner. 

(5) Ontology-driven models: These methods use descriptive ontology web languages 
(OWL) to create standardized semantics for communication between different nodes 
and users of the geospatial sensor resources (Yi & Calmet, 2005).  

(6) General likelihood uncertainty estimation (GLUE): These methods identify the 
most likely source of uncertainty in data by comparing multiple models, including 
fuzzy set theory and Bayesian models (Beven & Freer, 2001). 

Methods which are related to the discovery layer are: 

(1) Scientific judgement: Experts can use their knowledge to detect uncertainty in the 
last step of the workflow. While the uncertainty may be identified in this manner, 
another re-examination of the process workflow would be necessary to improve the 
data and outcomes of the study. This may include a fresh collection of data under the 
same research design, or a redesign of the data acquisition process. 

(2) Geovisualization approaches exist for illustrating the uncertain results graphically or 
in maps by using transparency, capacity or colour bleaching (Li, Kraak, & Ma, 2007). 

A summary of the methods for handling uncertainty in different sensor network layers is 
provided in Table 1. 

Table 1: Categories of methods for handling uncertainty by phase, paradigm of implementation, 

approach and applicable geospatial sensor network layer. 

Method Phase Paradigm Approach 
Sensor 

network layer 

Merging Clarification Bottom-up Data-driven Observation 

Replacement Clarification Bottom-up Data-driven Observation 

Process redesign Clarification Bottom-up Process-driven Observation 

Metadata Description Bottom-up Process-driven Observation 

Interpolation  Clarification Bottom-up Data-driven Management 

Statistical analysis Clarification Bottom-up Data-driven Management 

Probability Description Top-down Data-driven Management 
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Ontology-driven models Description Bottom-up Process-driven Management 

GLUE Identification Top-down Data-driven Management 

Sensitivity analysis Identification Bottom-up Process-driven Management 

Scientific judgement Identification Top-down Process-driven Discovery 

Visualization Description Top-down Process-driven Discovery 

4 Conclusion 

In this study, we have provided a concise documentation of methods for handling 
uncertainty in different dimensions of big geospatial data from multi-sensor data 
frameworks. The development of a Sensor Web Enablement (SWE) framework and the 
formulation of OGC standards have contributed immensely to streamlining the quality of 
sensor data by providing standard schemas for defining and documenting uncertainty in the 
SWE. Of particular relevance to the research on uncertainty are the Observation & 
Measurement schemas that standardize the documentation of observations, and SensorML, 
UncertML and QualityML. Furthermore, UncertWeb now makes it possible not only to 
document the uncertainties at different points in the modelling framework but also to trace 
the propagation of the uncertainty through the modelling workflow. 

In spite of the efforts to build standardized methods for documenting uncertainty, the 
developments and implementations of the methods are still domain-specific. This eventuates 
in the risk of duplicating effort and results in redundancies. In this paper, we have provided a 
generalized outline that can be adopted by researchers from across thematic domains. 
Furthermore, we have described common dimensions of uncertainty in geospatial sensor-
data management, which may support researchers in identifying the crucial aspects to 
consider when dealing with big data obtained from multi-sensor sources. 

One limitation of this work is that we did not include a practical case to demonstrate the 
methods and dimensions outlined. However, adequate examples can be found in the 
literature (Bastin et al., 2013; Devaraju et al., 2015; Erickson, Cline, Tirpankar, & Henderson, 
2015). From a usability perspective, the methods described in the literature and the case 
studies require users to have good computational skills. Future implementations should 
consider the development of simple user interfaces. In addition, while attempts have been 
made to document error propagation in sensor-driven environmental modelling systems, 
further work needs to be done to support a feedback mechanism whereby model results can 
be used to improve the quality of data (Yue, Zhang, & Tan, 2015). 
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