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Abstract 

Today, we have access to a vast amount of weather, air quality, noise or radioactivity 

data collected by individuals around the globe. This volunteered geographic information 

often contains data of uncertain and of heterogeneous quality, in particular when 

compared to official in-situ measurements. This limits their application, as rigorous, work-

intensive data-cleaning has to be performed, which reduces the amount of data and 

cannot be performed in real-time. In this paper, we propose a method to evaluate 

dynamically learning the quality of individual sensors by optimizing a weighted Gaussian 

process regression using an evolutionary algorithm. The evaluation was carried out in south-

west Germany in August 2016 for temperature data from the Wunderground network and 

the Deutsche Wetter Dienst (DWD), in total 1,561 stations. Using a 10-fold cross-validation 

scheme based on the DWD ground truth, we show significant improvements for the 

predicted sensor readings: we obtained a 12.5% improvement on the mean absolute error. 

Keywords:  

crowdsourcing air temperature; data quality assessment; Evolutionary Learning; Gaussian 

process regression; volunteered geographic information. 

1 Introduction 

Today, we are living in an era where sensors are cheap, can be easily obtained, and can be put 
into use with little effort – they are becoming ubiquitous. In the field of geo-science in 
particular, this leads to many new data sources and opportunities. In addition to classical data 
sources such as government organizations, individuals are now providing data voluntarily, so 
called volunteered geographic information (VGI). These information sources range from 
smartphones and GPS-equipped mobile devices to privately owned weather stations on such 
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sites as Wunderground1 or OpenSenseMap2. Projects such as OpenStreetMap (OSM)3 
empower individuals, encouraging them to provide data and participate in the creation of an 
open map. All these possibilities could lead to ‘collective [geo] sensing’ (Blaschke et al., 
2011). The increased availability of data sources leads to a greatly increased resolution in 
both the spatial and the temporal dimensions. 

Measurements can be made in-situ, at any given area of interest, and can be re-located if the 
need arises.  

But these new data sources come with new challenges regarding their use. To ‘produce 
results that can be trusted’ (Stewart, 2011), the quality and location of measurements have to 
be known. Traditional data sources are often standardized measurements provided by 
government agencies. Most of the time, their quality and the exact location to which they 
refer are well-known; they are calibrated regularly and can be collected more or less 24/7. 
VGI does not have this advantage. VGI is provided by different organizations and acquired 
differently. The resulting diversity in credibility, data structure etc. can add additional 
uncertainty to the results, which prevents the use of VGI without appropriate pre-
processing. A good example is the recent study of Meier et al. (2017), in which they discuss 
the use of crowdsourced weather data for the city of Berlin in 2015. During their quality 
assessment, they had to filter out over 50% of the available data and stated that ‘rigorous 
data quality assessment is the key challenge’ (Meier et al., 2017). And while this quality 
assessment can be done by experts and on historical data, the associated workload is high. 
This is not feasible for ‘big data’ or in real time. 

The goal of this paper is to assess the quality of citizen science weather data from these new 
data sources to improve predictions and meteorological models. To solve the problem, we 
propose an automated quality assessment based on an evolutionary algorithm. Based on 
benchmark measurements, the algorithm learns the quality of each sensor. We then apply the 
calibrated data in a Gaussian Process Regression (GPR) to predict the measurement of 
interest. Our approach allows us to incorporate expert knowledge as a-priori information in 
the evolutionary algorithm, as well as iterative improvement of the quality assessment with 
each new measurement. It is derived from the field of ubiquitous computing as well as well-
known approaches from spatial statistics. We evaluate the proposed approach with a 
temperature prediction for the area of south-west Germany using data from the Deutsche 
Wetterdienst and the Wunderground network. We use the equivalent to ordinary kriging as 
our basic GPR to show the improvement even without additional background information. 

                                                        

1 https://www.wunderground.com/ 
2 https://opensensemap.org/ 
3 https://www.openstreetmap.org/ 
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2 Related Work 

Crowdsourced Sensing 

In crowdsourced sensing, a group of private and/or professional users collect and contribute 
sensor information collaboratively to form a body of knowledge. The rise of smart phones in 
particular and ‘the increasing ability to capture, [classify], and transmit a wide variety of data 
(image, audio, and location) [have] enabled a new sensing paradigm’ [Reddy et al., 2007]. 
Civic agencies of several countries across the world are already harnessing the swarm 
intelligence of the public by accelerating and scaling the use of such open innovation 
methods to help address a wide range of urban and societal problems, ranging from wildlife 
observations to air quality sensing (obamawhitehouse, 2014)4. Participatory geosensing has 
been applied successfully as an alternative to traditional environmental monitoring to study 
physical phenomena, particularly in city contexts, such as urban noise levels (D’Hondt et al., 
2013). 

In an Internet of Things, anything can be measured using „a set of observations that reduce 
uncertainty where the result is expressed as a quantity’ (Douglas, 2007). This statistically 
motivated view on measurement partially contradicts the classical view on measurement 
processes that use the DIN 1319 standard, which shaped much of the last century. 
Considering the poor spatial and temporal resolution of many measurements available today, 
anything (in addition to existing knowledge) that is better than guessing can potentially 
contribute to a measurement, even if by strict definitions it is not itself even considered a 
measurement. However, this (as is also addressed in our work) requires algorithms to cope 
with ‘the problem of interrelationship between reliability of information sources, their 
number, and the reliability of fusion results’ (Rogova et al., 2004). 

Early research focused mostly on managing distributed sensors on sensor webs, like Intel’s 
IrisNet (Gibbons et al., 2003) or Microsoft’s SenseWeb (Grosky et al., 2007). Such sensors 
and networks have long since become a reality with the broad availability of devices like 
NetAtmo, and have attracted the attention of researchers who are particularly interested in 
higher-resolution data (Chapman et al., 2017; Meier et al., 2017). In our study, the data is 
used to interpolate fine-grained temperature distributions. However, little objective research 
exists on the quality of this VGI, which uses a large number of measurements. 

Prediction of environmental factors 

The main advantage of VGI is that it provides more data and information about the 
environment which can be used to formulate and evaluate hypotheses and to gain valuable 
insights into the environment. Data gained is used to train models to predict environmental 
factors such as temperature and pollution. The basis for all spatial prediction models is 

                                                        

4 https://obamawhitehouse.archives.gov/blog/2014/12/02/designing-citizen-science-and-
crowdsourcing-toolkit-federal-government 
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Tobler’s First Law (Tobler, 1970), which states that ‘everything is related to everything else, 
but near things are more related than distant things’. One of the most frequently used 
approaches to incorporate this law is kriging (Krige, 1951), which was developed to estimate 
ore deposits, but has since been used for predictions in numerous spatial applications and 
has been modified to be more powerful and general. 

Hengl et al. (2012) used a kriging approach to predict temperatures. They included a 
temporal component to predict (with an accuracy of 2.4°C) the daily mean temperature in 

Croatia for a resolution of 1km2, combining Modis satellite images with 57,282 ground 
measurements of daily temperatures in 2008. In a follow-up study, Kilibarda et al. (2014) 
introduced an automated mapping framework for predictions of daily mean, minimum and 
maximum air temperatures using regression-kriging for a resolution of 1km, with a root-
mean-square error between 2 and 4°C.  

Gräler et al. (2016) developed an R-package called gstat, which uses copulas to enable spatio-
temporal kriging. They show the application and benefit of their approach with a prediction 
of daily mean PM10 concentration, a chemical responsible for air pollution, in 2005 in 
Germany.  

Another modification of the kriging approach can be found in Bhattacharjee et al. (2016). 
They propose a semantic kriging approach, where a high-resolution satellite snapshot is used 
to learn the systematic temperature differences between various locations based on the 
underlying land-use and the semantic information of those locations. The different land-use 
classes are learned in a semantic hierarchical network. 

Hjort et al (2011) presented another approach to predict local temperatures in the city of 
Turku, Finland. They used generalized linear models combined with regression trees and 
data from 36 stationary weather stations over a period of six years. 

An overview and the theoretical background, as well as applications of spatio-temporal 
statistics can be found in Cressie and Wikle (2015).  

3 Method 

Our approach combines a novel evolutionary learning algorithm to automatically assess and 
determine the quality of each sensor, and models this information as an uncertainty kernel. 
This is then combined with a typical ordinary kriging kernel as a GPR to predict temperature.  

Gaussian Process Regression 

We wanted to modify a regression model so that it could take into account the individual 
quality of an observation. For this purpose, classical kriging with noise is not suitable, since 
the noise factor can only model a constant additional quantity and not the non-constant 
quality of the data points. It turned out that the more general GPR meets our requirements, 
since it is determined by defining a covariance function. We were therefore able to model the 
quality of measurements by constructing the appropriate covariance function. In particular, 
we combined a Matern covariance function with a covariance function that maps a quality 
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parameter of an observation to an uncertainty of its correctness. We use a Matern covariance 
function for the following reasons. Since every physical process is of local nature, we may 
assume that the measurement of temperature on earth follows Tobler’s first law of 
geography. Furthermore, we may assume that local fluctuations can still occur due to 
meteorological and topographical effects. The limit of a Matern covariance function yields an 
exponential covariance function, and thus realizes Tobler’s first law of geography. However, 
appropriate choices of the parameters result in less smooth functions, which are more 
suitable to fit the local fluctuations but are still smooth enough to be robust against statistical 
noise.  

For the following paragraphs about Gaussian Processes, regressions and modelling, compare 
Edward et al (2006), in particular Chapter 4 for definitions and properties of covariance 
functions. 

Let y be the quantity we want to predict at a point p, and D =  {(pi, yi, qi)| i ∈ [1 … n] } be 

a set of data points, where pi denotes a specific point in geo-coordinates,  yi  an observation 

of y at point pi, and qi the quality parameter of the measurement. We assume that the 
observations are measurements of a physical process; they can thus be assumed to follow 
Tobler’s first law of geography. If we furthermore assume that the errors of the 
measurements follow a normal distribution, it is reasonable by definition to model the 
quantity y as a Gaussian process.  

We define the function 

κQ(qi, qj) ∶=  {

λ

qi
2    if i = j 

0           else

}   

for the quality parameters of two observations, where λ > 0 is a fixed scaling parameter. It is 
a covariance function, since it is positive everywhere and only non-zero on the diagonal. 

Furthermore let κM(d(pi, pj)) be a Matern covariance function with respect to the distance 

d(pi, pj) = | pi − pj |. Since the sum of two covariance functions is itself a covariance 

function,  

κ ((pi, yi, qi), (pj, yj, qj)) : =  κM(d(pi, pj)) + κQ(qi, qj)     

also defines a covariance function.  

For a subset S ⊂ D, we denote by GPRκ(p | S) the corresponding GPR for the quantity y at 
a point p under the observation S, which is implemented by our new (combined) Kernel 

function: κ ((pi, yi, qi), (pj, yj, qj)).  
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Evolutionary Algorithm 

We use an evolutionary algorithm to train the quality parameter. The algorithm iteratively 
generates new variants of the set of data points with modified qualities. We evaluate the 
fitness of each variant by considering the prediction error obtained using the GPR. 

As defined above, let D =  {(pi, yi, qi)| i ∈ [1 … n] } be a set of data points, 𝑆 ⊂ D a subset, 

and GPRκ(p |S) the corresponding GPR for the quantity y at point p under the observation 

S. For another subset  S′ ⊂ D, we define the fitness function fit(S′ | S) ≔  ∑ (s′ −s′∈S′

GPRκ(s′ |S))2, which measures the error between observations in S’ and their prediction by 
the GPR under the observations S. 

Let DWD denote the dataset of the Deutsche Wetterdienst and WG the dataset of 

Wunderground. They contain tuples of the form (pi, yi), where pi = (lati, longi) are geo-

coordinates and yi is the measured temperature at this point. To evaluate our model using a 
10-fold cross validation scheme, we apply a test / train split to DWD, which yields the 

decomposition into DWDvalid and DWDtrain.  

In the training process (Figure 1, 1–5), we build and use an evolutionary algorithm without 

crossover. For each generation, the Dcur is divided into Dpred, Dunchanged and Dmut in the 

proportion 0.3 : 0.5 : 0.2. Dpred is chosen to contain 20% of the data points with the highest 

quality in Dcur. The remaining points in Dcur are assigned randomly.  
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Figure 1: Graphic representation of the evolutionary algorithm. At each iteration, the termination 

criteria are checked, and if negative, the mutation and learning process is performed. 

Each generation is evaluated using a fitness function based on the value of the MSE for 

predicting Dpred of the generation. The fitness value determines whether the observations in 

Dpred can be better reproduced by the parent generation Dcur \Dpred, or by the new 

generation. 

Our algorithm performs the following steps (the numbering is analogous to that in Figure 1): 
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1: The training process is initialized with the population Dcur ≔ DWDtrain ∪ WG as the 

union of DWDtrain with WG, where the qualities are set to 1 for datapoints of  DWDtrain 

and to some fixed value μ ∈ (0,1] for datapoints of WG. 

2–4: After a minimum number of iterations given by the hyper-parameter minIter, the 
training process can be terminated if the improvement of the last few iterations is below a 
certain threshold and seems to have been converged. If the training process exceeds the 
maximum number of iterations maxIter, the training process will be forcibly terminated. 
Here, minIter is set to 20 and maxIter to 100.  

5–6: The fitness value of the current population Dcur is evaluated against that of its previous 

generations. If Dcur results in a worse fitness score, the current generation will roll back 
towards the last generation. 

7: From Dmut two mutations are reproduced: 

Dmut
1 : =  {(pi, yi, (0.9 ∗ qi + 0.1))| (pi, yi, qi) ∈ Dmut } and Dmut

2 : =  {(pi, yi, (0.9 ∗
qi))| (pi, yi, qi) ∈ Dmut } are created by randomly raising or lowering the quality of the 

elements in Dmut. 

8: The variant from {Dmut, Dmut
1 , Dmut

2  } that results in the highest fitness score will be 

selected. We replace Dmut with the selected variant Dselected to create the next generation.  

9: The result of the algorithm is a quality value for each sensor, which is then used in the 
GPR with our new combined covariance function. 

4 Evaluation 

Dataset 

Our dataset is based on temperature measurements, taken each day at 12:00 MET within the 
latitude / longitude range of [47’ 5’’; 49’ 5’’; 7’5’’; 9’5’’] for all weather stations of the DWD 
and Wunderground station networks. The models were trained on the data from 01.08.2016 
to 04.08.2016 and evaluated from 05.08.2016 to 08.08.2016. 42,966 observations were used 
from 1,561 weather stations (48 DWD stations; 1,513 Wunderground network stations).  

We used a ten-fold cross-validation for the learning approach and predicted temperatures at 
randomly chosen DWD weather stations, which were removed from the training data set. 
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Figure 2: Spatial distribution of the stations in Google Maps. The DWD stations are shown in red. 
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Parametrization 

To evaluate the impact of our proposed approach, we compared four different 
parametrizations for the predictions:  

Table 1: Overview of Parametrizations 

Model Prediction Method 

Baseline (Benchmark) Ordinary kriging using only DWD stations. 

Naïve Fusion Ordinary kriging using all weather stations. 

A-Priori Information Adapted GPR with a-priori values for uncertainty for all 
stations. 

Learned Model  Proposed new model. 

The Baseline model represents the state-of-the art prediction without the benefit of VGI 
data. The Naïve Fusion represents the blind use of the additional data without regard to the 
data quality. To our knowledge, this blind use has not been done before. It shows the 
potential risks of VGI but also provides a second benchmark for using in quality assessment. 
A-Priori Information represents the knowledge of experts regarding the quality of 
measurements, e.g. experience of prolonged use or specifications of sensors. In this study, 
we determined the quality value for each station class by a simple grid-search. We assumed in 
this parametrization that the quality of each sensor class was the same; we did not 
differentiate between sensors. The DWD stations had a quality value of 0.98, the 
Wunderground sensors a quality value of 0.81. The Learned Model represents the proposed 
new model. Based on the A-Priori Information parameter, for each sensor a unique 
uncertainty value is learned iteratively via the combined model presented.  

5 Results and Discussion 

The results for the temperature prediction can be seen in Table 2, and graphically in Figure 3. 

Table 2: Summary of prediction results in degrees Celsius. In brackets, the percentage improvement 

compared to the Benchmark. 

MODEL MEAN ABSOLUTE 
ERROR 

STANDARD DEVIATION 

Baseline (Benchmark) 1.12°C 0.83°C 

Naïve Fusion 1.26°C (-12.5%) 1.03°C 

A-Priori Information 1.21°C (-8.0%) 0.99°C 

Learned Model 0.98°C (12.5%) 0.76°C 
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We used the Mean Absolute Error (MAE) as error metric, as this shows the quality of the 
prediction in a single value and is well established. The standard deviation (SD) is used to 
show the volatility of the quality of the results.  

We see that the ranking of the MAE and SD is the same for every model. Not surprisingly, 
the Naïve Fusion model performs the worst. Without any quality assessment, the influence 
of false measurements and of the high variance in placement decreases the quality of the 
prediction compared to the traditional approach, the Baseline model. The increased 
availability of information inherent in VGI is overshadowed by the poor and heterogeneous 
quality of the measurements. The inclusion of a very simple quality assessment in the A-
Priori information model already shows an increase in prediction quality, even though there 
is no differentiation between the stations within each class. However, it still performs less 
well than the Baseline model. The Learned model performs the best overall, performing 
more than 20% better than the Naïve Fusion model. This is the result of the learning process 
and the covariance function used. Sensors which perform badly overall give less credence to 
the prediction result over time. Low quality sensors are automatically filtered out based on 
their data, e.g. when they are inside buildings, are defective, or produce constant values.  

But while the accuracy of the prediction is important, the increased spatial resolution of the 
prediction is one of the main advantages VGI presents. Figure 3 shows the resulting 
predictions of the different models; the A-Priori information model was omitted as it is 
almost identical to the Naïve Fusion model. 
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Figure 3: Resolution of predictions 

We can see the differences in resolution and prediction for each model. The Naïve Fusion 
presents a highly detailed map of temperature as the number of available sensors is quite 
high. There is a strong but fluid transition between the different areas. When compared to 
Figure 1, the number of weather stations is directly connected to the sharpness of the map, 
which can be seen in the south and the west. Outliers are seen on this map. The temperature 
range is from 14.6°C to 35.23°C. The Baseline model shows a low spatial resolution and a 
low overall temperature, as well as a small temperature range, from 17.27°C to 24.12°C. The 
small number of DWD weather stations can be seen by the rough transition between the 
different prediction areas. In the south-west of the map, there is a higher number of DWD 
stations and the map is much smoother. The Learned model strikes a balance between the 
other models. The temperature is between 17.77°C and 27.52°C and the transitions are 
smooth overall. A clear distinction between warmer and colder areas can be seen, allowing a 
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detailed temperature map. The overall trend of the temperature distribution over our study 
area stays the same for all predictions. The graphic analysis shows clearly the advantages of 
VGI. Whereas in the MAE prediction results, the Baseline outperforms the Naïve Fusion 
quite strongly, in the practical use to create informative maps, in our opinion the Naïve 
Fusion outperforms the Baseline. 

Error Distribution  

To further evaluate and understand the different models, we examine their error distribution. 
Figure 4 shows the histogram of the prediction errors for each model. One can see that the 
Naïve Fusion and A-Priori models are almost identical. This is not surprising, as the two are 
quite similar in their parametrization and underlying modelling logic. Both resemble a broad 
normal distribution with, overall, a large range, of around 10°C. There is a slight negative 
bias in the predictions overall, indicating that these models overestimate the temperature. 
This is most likely the result of the difference in placement of the reference stations and the 
citizen weather stations. As mentioned earlier, the standardized placement of DWD stations 
leads to the exclusion of several climatic conditions, e.g. urban heat islands. These are 
captured by the citizen weather stations and lead to an overestimation of the temperature, as 
these effects are not filtered out. The baseline model on the other hand underestimates the 
temperature, as the majority of its errors lie between 0 and 2, which leads to a skewed 
distribution. We assume this is the result of a small number of outlier stations, which 
decrease the mean temperature of the overall distribution, in particular as stations in the 
warmest cities of Germany are in this area (Freiburg and Karlsruhe), as well as of the 
presence of different climatic regions, such as the Black Forest and the Upper Rhine valley. 
But we also see the effect of the standardized placement, as the standard deviation of the 
errors is lower than for the other two models. This presents a more coherent prediction, 
which can also be seen if the Baseline and Naïve Fusion models are compared (see Figure 3). 
Finally, the Learned model shows a similar distribution to the Baseline model, but the spread 
of the distribution is even smaller and the centre of the errors lies between 0 and 1. Similar to 
the graphic prediction in Figure 3, the shape is a combination of the Baseline and Naïve 
Fusion models. The histogram supports the hypothesis that our Learned model manages to 
leverage the advantages of VGI successfully. 

Of further interest is that the highest errors for all models are negative. Interestingly, the 
outlier is most noticeable for the Baseline model. We would have expected that such a high 
error would only be present in VGI measurements. This indicates that there is at least one 
station among the reference stations used for the evaluation which has a relatively low 
temperature compared to all other stations nearby. Therefore, even when using official data 
sets we would urge caution and the need for a rigorous understanding of the data before 
analysing the data sets for the generation of insights. 
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Figure 4: Histograms of the Prediction Error Out Of Sample.  

6 Conclusions and Future Work 

In this study, we proposed an automated quality assessment of VGI sensors, with weather 
stations as the concrete use-case. The proposed approach combined a new evolutionary 
learning algorithm with GPR to learn and model the quality of sensors in order to produce 
reliable and accurate predictions without the need to clean the data beforehand. We 
evaluated the approach on weather data, as this is the most accessible type of data and is 
therefore suitable for use by researchers and practitioners alike. Our results showed an 
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improvement in the prediction quality of 12.5% over the established benchmark of DWD 
weather stations, simply by including in addition the quality of the measurement. 
Furthermore, we showed that the naïve use of citizen weather stations improves the spatial 
resolution of the temperature prediction immensely. The proposed approach preserved this 
improvement of the spatial resolution while providing the full benefit of VGI, as discussed 
in e.g. Blaschke et al. (2011) and Meier et al. (2017). For the smart cities of the future and 
urban climate, this approach allows for more in-depth analyses, as to date the existing 
measurement networks are rather sparse (e.g. for temperature and air pollutants). New 
(crowdsourced) measurement approaches, as in the SMARTAQNET project5, or involving 
cars equipped with sensors, are currently being developed. Our approach allows full 
advantage to be taken of these innovations. 

This research has several restrictions, however, which should be taken into account. First, we 
evaluated our approach only on temperature data in South-West Germany for a short period 
at the beginning of August 2016. While the data set for training as well as the set for 
evaluation are quite big, they are based on just a small fraction of the total data available. In 
particular, seasonal and daily cycles have not been examined. Second, we only fully 
implemented and compared one prediction method (ordinary kriging) and one kernel 
approach to incorporate the uncertainty. While the reasoning for this is discussed in our 
section on method, a more in-depth comparison could lead to different results. Third, we did 
not compare our results to those of a manually cleaned data set (as in Meier et al., (2017)). 
We assume this could lead to an improvement of both the Naïve Fusion and the A-Priori 
methods, but this is beyond the scope of the current study.  

In the future, an evaluation using different data sets would be of great interest, especially for 
air pollutants and in different climatic regions. Another interesting question would be the 
inclusion of different kernels as well as of background information. The work of 
Bhattacharjee et al. (2016) presents an example using semantic kriging which includes land 
use information and could be used as an alternative kernel to ordinary kriging. Another 
approach is found in regression-kriging, discussed in Hengl et al. (2007). Arnfield (2003) 
presents an overview of causal factors for the influence on temperature. The use of spatio-
temporal prediction instead of only spatial prediction could lead to further insights. Kilibarda 
et al. (2014) show the application of such spatio-temporal kriging and the benefits it 
provides. The challenges here lie in the selection and modelling of the suitable kernel as well 
as in the computational complexity. Finally, the results of our error analysis for the Baseline 
model show a strong skewness. Further investigations into this error could lead to interesting 
insights.  

                                                        

5 http://www.smartaq.net/ 
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