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Abstract 

Freely and openly available, remotely-sensed Earth observation (EO) data are rapidly 

developing in terms of increased geo-spatial resolution and temporal frequency. This type 

of data requires automated workflows for handling, processing and analysis, including 

methods to convert data into valid information. This study presents a proof-of-concept 

implementation of a generic, semantic EO data cube with automated daily integration 

and semantic enrichment of Sentinel-2 data. The paper focuses on the technical 

implementation of an automated dataflow that enables semantic queries in an EO data 

cube. It proposes a transferable analytical environment with analysis-ready data to 

facilitate research on replicable extraction of EO-based indicators. Application-

independent semantic data cubes can facilitate monitoring of land cover changes and 

the development of transferable, generic EO-based indicators to support decision-makers 

in the humanitarian sector, and international initiatives, such as the United Nations’ 

Sustainable Development Goals. Syria was chosen as the study area because of the on-

going conflict and humanitarian demand, paired with the relatively cloud-free climate’s 

suitability for optical EO time-series analysis.  
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1 Introduction 

Possibilities for remotely-sensed Earth observation (EO) data analysis were expanded 
considerably with the launch of the Landsat programme in 1972, and again by offering free 
and open public access to the archive in 2008 (Wulder et al., 2012). The launching of the 
Sentinel fleet by the Copernicus programme in 2014 has further increased the spatial 
resolution and temporal frequency of free and open EO data for analysis, with a promise of 
continued observation for many years to come (Drusch et al., 2012). We are currently 
witnessing a shift towards an alternative approach for storage and analysis using multi-
dimensional data cubes for massive, gridded data (Baumann, 2017), bringing users to data, 
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rather than data to users. Google Earth Engine is another approach that is also bringing 
users to data. This enables access to massive amounts of geo-spatio-temporal data that are 
ready for analysis. Even in the isolated case of Sentinel-2, automated workflows are necessary 
to handle approximately 3.4TB of data captured every day (ESA, 2017), not to mention 
fusion with other similar sensors (e.g. Landsat) or integration with different datasets (e.g. 
radar, digital elevation models, socio-economic data). 

Thanks to the consistent global coverage of free and open EO data, independent of political 
borders, EO data are ideal sources of evidence for generating useful information products to 
support decision-makers. This is especially the case when EO data sources are combined or 
integrated with additional sources, including non-EO ones. For example, night-time light EO 
data integrated with the Joint Research Centre’s Global Human Settlement Layer (GHSL) 
and disaggregated population data were used to assess the humanitarian impact of the Syrian 
conflict (Corbane et al., 2016). 

Indicator extraction from EO data is often necessary because the spatial resolution and 
acquisition frequency of EO data do not allow direct measurements of many objects or 
events on Earth (i.e. mixed pixels or relatively slow events). In the case of optical EO data, 
objects cannot be measured directly at all (e.g. pixels with similar reflectance values can 
represent different objects, surfaces, etc.). Non-physical entities (e.g. political boundaries) 
also cannot be directly measured. EO-based indicators can complement indicators or reports 
from other in-situ sources. Possibilities for the extraction of EO-based indicators are much 
more diverse if initial, generic semantic enrichment is applied, e.g. automatic spectral 
categorization (i.e. preliminary classification) into classes equal or inferior to land cover 
classes. Image understanding in the context of remote sensing is envisioned to include 
automated land cover classification, for which pre-classification would be a first step (Baraldi 
& Boschetti, 2012). Increased inclusion of such semantics transforms EO images into 
meaningful information in an automated way and allows queries through time, within a data 
cube model, for a plethora of target indicators.  

Current setups of reproducible research for EO data cubes require significant time and 
financial investment and are limited to larger institutions, but this might change once 
appropriate technological development has been achieved. The importance of reproducible, 
transferable, interoperable, automated and repeatable workflows to process, handle and 
analyse massive EO data is becoming more apparent in a now data-rich world. With so much 
big data, it makes sense to avoid application-specific data (pre-)processing, which contradicts 
many big data principles. At the time of writing, three national-level Open Data Cube (ODC) 
implementations are operational, seven are in-development and twenty-nine are under 
review. The Committee on Earth Observation Satellites (CEOS) has set a goal of twenty 
operational national-scale data cubes by 2022 (ODC, 2017). One notable example is a 
framework for live monitoring of the Earth’s surface (LiMES) proposed by Giuliani, Dao, et 
al. (2017), who are involved with the Swiss Data Cube (SDC) (Giuliani et al., 2017). The 
SDC is one of the operational national-level ODC implementations (Lewis et al., 2017). 
LiMES identified one of their main challenges in building a framework to be the turning of 
data into understandable information products. 
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The semantic EO data cube presented in this study suggests a fully automated framework 
not only for storing data, but also for their preliminary classification as building blocks for 
semantic analyses allowing information production. This automated, reproducible framework 
is one example for handling and analysing massive EO data, and demonstrates the benefits 
of automated, knowledge-based semantic enrichment for environmental change detection 
and EO-based indicator extraction for various thematic domains. 

2  Data, theory and methods 

Sentinel-2 

The European Earth observation programme, Copernicus, operates downstream services 
and owns the Sentinel satellite fleet, which is connected to other sensors called ‘contribution 
missions’. The Sentinel-2 satellites are equipped with a multi-spectral instrument (MSI) 
observing 13 spectral bands (443nm–2190nm). A swath width of approximately 290km is 
captured with spatial resolutions ranging from 10m to 60m: three visible bands and one near-
infrared band (10m); six red-edge/shortwave-infrared bands (20m); and three atmospheric 
correction bands (60m). 

Currently, two Sentinel-2 satellites continuously and systematically collect observations – 
Sentinel-2A and 2B, launched on 23 June 2015 and 7 March 2017, respectively. The nominal 
average revisit time at the equator is every 5 days, with more frequent data capture towards 
the poles. Data are processed and provided by the European Space Agency (ESA) as level-
1C (L1C), which includes radiometric calibration to top-of-atmosphere (TOA) reflectance 
and geometric corrections (e.g. orthorectification and spatial registration). L1C scenes are 
available as granules (i.e. tiles), approximately 100km by 100km, containing around 500MB 
of data. 

Area of interest 

The study area is located in northwestern Syria, along the border with Turkey, and is covered 
by three adjacent Sentinel-2 granules (37SBA, 37SCA, 37SDA), over an area of more than 
30,000km2 (latitudes 36.01°-37.05°N; longitudes 35.67°-39.11°E), as depicted in Figure 1. 
These three granules are provided in the same projection (UTM zone 37N, EPSG: 32637). 
All Sentinel-2 L1C scenes available on the Copernicus Open Access Hub for these granules 
are included in the data cube, resulting in a dense time-series beginning 28 June 2015 until 
the most recent scenes (i.e. at the time of writing, 31 January 2018), a total of 479 Sentinel-2 
scenes. These granules are captured by two Sentinel-2 relative orbits (78 and 121), resulting 
in temporally denser data where the orbits overlap (see Figure 1). 

The study area’s data characteristics indicate suitability for optical time-series analyses. 
According to the Köppen-Geiger classification, the climate is mostly warm Mediterranean 
(Csa) in the western part of the study area, transitioning into warm and semi-arid (BSh) 
towards the east (Peel, Finlayson, & McMahon, 2007). The annual average cloud-cover 
percentage, extracted from ESA’s L1C metadata, also decreases from west to east. The 
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majority of scenes acquired from May to October have a cloud-cover percentage below 10%, 
while otherwise generally ranging between 20% and 40%. 

 

Figure 1: Overview of study area with Sentinel-2 relative orbits based on simplified acquisition swaths, 

showing an approximate orbit overlap in purple. 

Preliminary classification 

Image pre-classification is an initial classification of remotely-sensed images for use in image-
understanding workflows. Spectral-based image pre-classification, as implemented by the 
Satellite Image Automatic Mapper™ (SIAM™, release 88v7), divides the feature space of a 
multi-spectral image into semantic semi-concepts using a knowledge-based approach, in 
contrast to data-driven approaches (e.g. supervised classification) (Baraldi et al., 2010a; 
Baraldi, 2011, 2018). A physical, model-based decision-tree using a priori knowledge of 
spectral profiles is applied to each pixel for the spectral categorization. Assuming images are 
calibrated to a minimum of TOA reflectance, these semi-concepts are comparable and 
therefore transferable between multiple images and optical sensors without any additional 
user-defined parametrization (i.e. the process is fully automatic). 

According to Marr (1982), human vision begins with a pre-attentive first stage. The output is 
a symbolic primal sketch, including both a raw and a final version. The raw primal sketch is 
pure spectral differentiation of grey shades and colour tones, and the final primal sketch 
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groups similar shades and tones. Pre-classification is a primal sketch in Marr’s sense, where 
semi-concepts are groups of spectrally similar pixels. 

Semi-concepts are considered semi-symbolic in that they are an initial step in connecting 
sensory data (i.e. pixel values) to symbolic, semantic classes (Baraldi & Boschetti, 2012). They 
require further context, analysis or additional information to classify pixels into symbolic 
classes, such as land-cover classes. More general to more detailed semi-concepts may be 
considered a sort of multi-scale segmentation (Baraldi & Boschetti, 2012). Our 
implementation uses multiple semantic semi-concept granularities generated by SIAM™ to 
enable semantic queries (Baraldi, 2018). 

Open Data Cube initiative 

The Open Data Cube (ODC) initiative evolved from the Australian Geoscience Data Cube 
(AGDC) with the objective of providing a means to store, manage and analyse large volumes 
of EO data. The initiative has three goals: (i) increase the impact of EO; (ii) build a user 
community; and (iii) provide free and open software, including documentation (CEOS, 
2017). Since CEOS is one of the founding members, the initiative seeks to align EO with 
overarching international agendas, such as the United Nations Sustainable Development 
Goals (SDGs). By fostering continental- and global-scale applications, the ODC initiative 
aims to improve decision-makers’ use of EO-based information. 

In following the data cube paradigm, ODC is conceptually comparable to array databases 
such as rasdaman (Baumann et al., 1998) and SciDB (Stonebraker et al., 2013), or database 
extensions such as SciQL (Kersten et al., 2011; Zhang et al., 2011). Indexing generates a 
metadata database including the location and properties of EO data, while ingestion 
generates its own data storage as NetCDF files. In both cases, the logical view offered to the 
user is a multi-dimensional data cube. Access is provided either by a Python application 
programming interface (API), e.g. usable in a Jupyter notebook (Kluyver et al., 2016), or by 
the ODC Web-based user interface. While a detailed review goes beyond the scope of this 
paper, the ODC has been selected because the data cube paradigm is best suited for the 
application, the technology has been proven to be robust and scalable, and it allows for 
transferable approaches through its open source licence. 

3  Implementation 

The automated workflow encompasses downloading Sentinel-2 data, re-formatting, 
preliminary classification with SIAM™ (i.e. information layer creation), indexing images, and 
ingesting information layers into an implementation of the ODC (Figure 2). This process 
runs automatically every day for each of the three study area granules. The result is daily 
incorporation of the most recently available data ready for analysis, including semantic 
queries. At the time of writing, 479 Sentinel-2 scenes from 28 June 2015 to 31 January 2018 
have been processed. 
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Computing environment 

The hardware used for this implementation is a Red Hat Enterprise Linux 7 virtual machine, 
with 16 virtual central processing units (CPUs) at 2.5 GHz clocking, 31 GB random-access 
memory (RAM) and 3 TB of generic, all-use storage. 

Two reproducible virtual conda environments for Python are used. Data download to 
processing with SIAM™ is automated using cron, Python scripts and a conda environment 
with Python 2.7.x, Scipy, Geospatial Data Abstraction Library (GDAL) and requests. Data 
cube indexing, ingestion, Python API access and resulting analysis are conducted with a 
conda environment recommended for ODC installations (Geoscience Australia, CSIRO, & 
NCI, 2017d). This Python 3.5.x environment includes the datacube, jupyter, matplotlib, 
Scipy, basemap and basemap-data-hires packages for working with existing Jupyter 
notebooks (CEOS-SEO, 2017) and ones created by the authors. 

Image acquisition 

A command line interface (CLI) was implemented in Python, similar to the work of Olivier 
Hagolle (2018), to query the Copernicus Open Access Hub’s API. Temporal restraints are 
set based on start and end times for data acquisition or ingestion to the hub. Spatial restraints 
can be set based on a point, polygon or granule name, the last of which is based on an in-
house API that returns the centre point of any existing Sentinel-2 granule by name. If this 
option is used, only the identified granule is downloaded from any matching results, 
including targeted extraction from older, multi-granule products in the archive, dating from 
before 6 December 2016. Results are automatically unzipped, and any products already 
located in the target directory are not downloaded again. 

Data formatting for SIAM™ 

Following complete and successful download, the necessary bands from each newly acquired 
Sentinel-2 scene are automatically re-formatted. SIAM™ is sensor-independent, but input 
data format requirements are based on Landsat for high-resolution data. Six bands – blue, 
green, red, near infrared and two medium infrared bands – are used (i.e. 2, 3, 4, 8, 11, 12). 
Bands 11 and 12 are resampled from 20m pixels to 10m using SciPy. Sentinel-2's MSI does 
not collect a thermal band, so a constant is used to ignore thermal decision rules in SIAM™. 
Based on the assumption that pixels with a value of 0 in any of the input bands contain no 
data and not a measured value of 0 (see discussion), a no-data mask is generated. Finally, the 
six Sentinel-2 bands of TOA reflectance values are converted to an 8-bit range, stacked in 
ascending order and saved in the ENVI data format for SIAM™ using GDAL. 

Information layer generation with SIAM™ 

Automated generation of four semi-concept granularities (i.e. 18, 33, 48 and 96 semi-
concepts) and four additional information layers has been implemented. The additional 
layers are: (1) a binary vegetation mask based on vegetation-related semi-concepts; (2) a 
pentanary haze mask, a discretised continuous sub-symbolic variable; (3) a greenness index, 
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i.e. (NIR / R) + (NIR / MIR1) – (Vis / MIR1) (Baraldi et al., 2010b; Baraldi, 2018); and (4) a 
panchromatic brightness image, a linear combination of all multi-spectral input bands. 
Processing of each Sentinel-2 scene takes approximately 5–6 minutes. 

Indexing images and information layers 

A product description needs to be defined in the ODC implementation database in order to 
index data. Indexing links to externally stored data and is backed by PostgreSQL. Product 
descriptions identify metadata common to all datasets of that product (Geoscience Australia, 
CSIRO, & NCI, 2017b) and only need to be defined once. 

Metadata necessary for indexing is automatically generated for each dataset. This has been 
implemented for Sentinel-2 and SIAM™-generated information layers by modifying existing 
Python scripts provided by ODC. This metadata includes spatio-temporal data extents, data 
format, projection, bands/layers, file paths relative to the metadata, and more. A copy of the 
source Sentinel-2 dataset’s metadata is included in the information layer metadata to 
document provenance. Once metadata has been generated, indexing automatically follows 
using a Python script and the data cube’s API. 

Ingestion of information layers 

Once data have been indexed, they can be ingested, resulting in automated tiling of an 
indexed product into NetCDF files for more efficient access, creating a gridded time-series 
data cube (Geoscience Australia, CSIRO, & NCI, 2017c). The data cube API automatically 
creates a new product description, re-projects the data if necessary, tiles them accordingly, 
creates the necessary metadata and indexes them, with automatic checks to avoid duplication. 

In this implementation, automated ingestion of information layers in 100km2 tiles (i.e. 10km 
by 10km by one time-step) occurs, keeping the original projection (i.e. UTM zone 37N, 
EPSG: 32637). At the time of writing, 58,477 tiles of ingested information layers have been 
created, a total of 144 GB.  

Python API 

Once data have been indexed and ingested, they can be accessed using a Python API 
(Geoscience Australia, CSIRO, & NCI, 2017a). This API accesses data from a given indexed 
or ingested product for a defined spatio-temporal extent and returns a Dataset object defined 
by the xarray Python package. This Python object is a multi-dimensional, in memory, array 
with dimension names, and is used for further analysis (e.g. in Jupyter notebooks). 



Augustin et al 

 

221 
 

 

Figure 2: Automated workflow overview from download to queries and indicator extraction, the latter 

using the Python API. 

4 Result and discussion 

Semantic data cube 

The largest benefit of the semantic data cube implemented here is that it fully automates data 
acquisition, semantic enrichment and access to data ready for analysis. Generic, application-
independent semantic enrichment allows queries and EO-based indicator extraction for a 
variety of thematic tasks, and ensures reproducible results and repeatable analysis. An 
additional benefit of using SIAM™ is that it can be applied to data from multiple optical 
sensors, as long as they have been calibrated to TOA reflectance. Future incorporation of 
additional sensors would, in particular, expand the temporal extent of possible queries and 
analysis. Other EO data can also be incorporated (e.g. digital elevation model (DEM), 
gridded precipitation data) in order to further analysis possibilities. 

One challenge is that processing using the Python API occurs predominantly in memory. 
This complicates implementation on the current hardware as it requires loading the complete 
dataset prior to analysis, which is a hardware limitation for smaller institutions. Even if many 
processes can be chunked, not all processes lend themselves to being divided, or they may 
produce similar but differing results (e.g. in the case of data-dependency in image-wide 
analyses). 

A default exclusion of pixels with a value of 0 in any of the six Sentinel-2 bands used as input 
for SIAM™ (i.e. no-data masking) has been implemented because information about pixels 
not containing data for each band is not yet supplied with Sentinel-2 products. Even if the 
acquisition footprint is supplied in the metadata, each band’s measurements at the edge of a 
swath are most often not perfectly aligned. Pixels with a measured value of 0 in any of the six 
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bands are excluded from semantic enrichment to reduce faulty semi-concept assignment, for 
example at the edge of a swath. Nevertheless, the authors are aware that this assumption may 
occasionally exclude meaningful information (i.e. when a valid measurement has a value of 
0). Querying to test this assumption can, however, be done within the existing 
implementation, since the original Sentinel-2 bands are also indexed in the data cube. This 
will be conducted in the future to better assess the ramifications of this assumption. 

Applications 

Many new applications exist or are being envisioned for EO data cubes. These applications 
range from creating custom mosaics or composites (i.e. most recent cloud-free over a user- 
defined time span, seasonal composites), to various time-series analyses. Much research has 
been invested in looking at the dynamics of water. Surface water is a feature that can be 
relatively well differentiated from other types of land cover, using radar or optical data 
sources. Mueller et al. (2016) analysed 25 years of Landsat data using an implementation of 
the ODC, calculating a pixel-based normalized percentage of water detection, excluding no-
data and clouds. Figure 3 demonstrates a similar method applied to the semantic data cube 
implemented here, but using water-like semi-concepts from SIAM™ instead of the 
Australian water-detection algorithm (i.e. Water Observation from Space). Here, pixels 
masked as no-data as well as cloud-like and unclassified semi-concepts have been excluded 
from the analysis, such that only pixels deemed to be clear observations are included and 
considered valid. It shows the normalized percentage of water semi-concept pixels related to 
other valid semi-concepts (e.g. vegetation-like) from 31 January 2016 to 31 January 2018. 
The percentage was obtained by analysing a total of 103 observations along the dimension of 
time. 
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Figure 3: Normalized water detection based on water semi-concepts in Syria near the border with 

Turkey, excluding no-data, cloud-like and unclassified pixels, from 31 January 2016 to 31 January 2018 

(103 time observations). Method similar to Mueller et al. (2016). 

Pekel et al. (2016), in a similar application, carried out a global JRC study of water, but using 
Google Earth Engine. The most recent results available are from 2015, since results cannot 
be calculated in an automated way, unlike analysis using the Australian ODC and the ODC 
implementation featured in this paper. Pekel et al.’s results are, however, global. 

In the implementation presented here, all of the application areas mentioned in the course of 
this paper and many more can be covered based on user-generated queries without requiring 
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the re-processing of the original data. The generic initial semantic enrichment in conjunction 
with flexible queries through time allows inferring new information layers or higher semantic 
levels (see Tiede et al., 2017).  

One planned application of the approach presented here will complement and greatly extend 
an initial example based on Landsat data and SIAM™ semi-concepts by Tiede, Lüthje, & 
Baraldi (2014), which introduced automated post-classification change detection related to 
vegetation. More specifically, it focused on irrigated agriculture in Syria after the start of the 
on-going conflict as an indicator of conflict-related changes. This particular example could 
greatly benefit from access to an automated, reproducible data cube infrastructure, moving 
away from bi-temporal change towards incorporating data in a temporally dense way over 
the period of interest, either within one year, or between multiple years. Such a shift 
inherently moves in the direction of developing indicators based on various sources of 
evidence to support decision-making. 

5  Conclusions 

Data cubes are on the rise as a viable solution for remotely-sensed big EO data storage and 
analysis. They allow users to access the same pre-processed data, supporting reproducible 
analysis, and facilitate analysis using dimensions beyond the spatial (e.g. time) as additional 
axes in the data cube. 

The innovation presented here is the set-up of a semantic data cube, which, in contrast to 
existing data cubes, stores information together with the data, thus allowing ad-hoc semantic 
queries. This is made possible via a fully automated workflow, including generic semantic 
enrichment of data to information layers, which adds this functionality to the ODC. 
Exemplarily shown is the utilization of the semantic data cube for extracting surface water 
dynamics in a use case located in Syria. Due to the generic approach, the same pre-processed 
data can be queried for other EO-based indicator extraction in a wide variety of thematic 
domains. This avoids application- and data-specific classification algorithms commonly 
proposed in recent open data cube literature. With the availability of free and open data 
having high spatial resolution and temporal frequency, we expect a general movement away 
from bi-temporal change analysis to change through or utilizing time, rather than controlling 
for it, as has been seen in EO-data analysis up to now. This implementation enables multi-
temporal queries and analysis. 

Indicator development based on dense EO time-series, or seasonal slices, is the next step to 
leveraging the potential of EO data, especially as data sources, such as Sentinel-2, are 
collected over periods of more than just a few years. Indicator extraction is necessary 
because the reflectance is only a proxy for detecting and identifying objects. This 
implementation can assist in detecting, monitoring, quantifying and even discovering new 
visible land-cover dynamics and processes (e.g. meandering rivers, ephemeral lakes, irrigated 
agriculture patterns or uncharacteristic vegetation removal), and offer evidence for 
supporting the requirements, actions and goals of multiple existing global initiatives. 
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