
Mohiuddin et al. 

18 
 

Detection of Urban Expansion 

using the Indices-Based Built-Up 

Index Derived from Landsat 

Imagery in Google Earth Engine 

 GI_Forum 2023, Issue 2  

Page: 18 - 31  

Full Paper 

Corresponding Author: 

gulam.mohiuddin@hnee.de 

DOI: 10.1553/giscience2023_02_s18 
 

Gulam Mohiuddin1, Jan-Peter Mund1 and Kazi Jahidur Rahaman1 

1Eberswalde University for Sustainable Development, Germany 

Abstract 

Urban expansion, particularly in the global south, has brought numerous environmental 

consequences which require regular investigation. The current study assessed the growth of 

built-up areas in the Chbar Ampov district (Phnom Penh, Cambodia) using the Indices-Based 

Built-Up Index (IBI) derived from Landsat 8 satellite imagery. We applied the IBI method to 

satellite images from 2013 to 2021 to determine changes in the built-up area over time and 

their correlation with land surface temperature (LST). The research revealed generally 

consistent urban expansion (1.68 square kilometres per year) in the study area within the 

period. Despite minor inconsistencies due to temporary land-use changes and cloud 

interference, the results support the study's major conclusions. The findings reinforce the 

necessity of meticulous monitoring and management of urban expansion. Dynamic analysis 

and practical research methods can contribute to sustainable urban development 

practices, thus ensuring a balance between human progress and environmental 

preservation. 
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1 Introduction  

Urbanization is a prevalent trend in today's world. It is projected that by 2050, 68% of the 

global population will inhabit urban areas, with a particularly high percentage in Asia (UN, 

2018). Rapid urban expansion and its impacts on the environment and society have recently 

gained increased attention (Liu et al., 2022). While urban agglomerations offer economic 

advantages, they also pose environmental problems, such as air and water quality changes, loss 

of biodiversity, and the urban heat island (UHI) effect (Molina & Molina, 2004). Moreover, 

urbanization-induced habitat loss and fragmentation affect species distribution and population 

structures, particularly in the developing world. 

Rapid unplanned urbanization can significantly influence inhabitants' health and wellbeing 

(Mohamed & Worku, 2019; Patra et al., 2018). Thus, it is essential to monitor urban growth, 

identifying urbanization patterns and trends over time. Studying the expansion of urban areas, 
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predominantly characterized by man-made structures or built-up areas, is essential for 

understanding how land cover changes over time. Insights from urban expansion studies can 

help to take inform decisions about land use and to promote sustainable urban development, 

management and planning (Feng et al., 2019; Ban et al., 2015; Schneider et al., 2010).  

The terms “urban expansion” and “built-up area expansion” are used synonymously in this 

study, covering any man-made structure, including bare land and construction zones. 

Remote sensing helps the study of changes in built-up areas over time by providing a means 

to observe and analyse the earth's surface (Liu et al., 2022; Nguyen et al., 2018; Dutta et al., 

2015; Sharma et al., 2013). Satellite imagery can provide a synoptic coverage of an area over 

time, allowing the detection and measuring of changes in built-up areas. Hence, remote sensing 

(in our case, using the cloud-based remote sensing platform Google Earth Engine (GEE)) can 

help monitor urban expansion, identify areas of growth or decline, and assess the impact of 

urban development on the environment. GEE has an extensive archive of satellite imagery 

and built-in tools for data processing, visualization, and analysis (Walker et al., 2022). 

Mapping built-up areas is more straightforward and accurate when land-use indices are used 

(Rasul et al., 2018; Kumar et al., 2012; Xu, 2008), exploiting the fact that built-up surfaces tend 

to reflect more in the middle infrared region of the electromagnetic spectrum than in the near-

infrared (Aggarwal, 2004). The normalized difference built-up index (NDBI) was introduced 

to extract built-up areas (Zha et al., 2003). Since then, NDBI has been adopted in many studies 

(Bouhennache et al., 2019; Zhou et al., 2014; Kumar et al., 2012; He et al., 2010; Xu, 2008) 

and is now arguably the most widely used index for identifying built-up areas. However, 

researchers have used different indices to identify spatiotemporal changes in urban growth 

(Mohamed & Worku, 2019; Li et al., 2018; Nguyen et al., 2018; Dutta et al., 2015; Rahman et 

al., 2012; Maktav & Erbek, 2005). Despite being a popular approach, spectral techniques based 

on a simple band ratio considering one particular LULC class have limitations for identifying 

urban areas. Urban areas consist of various land-cover types, such as concrete, asphalt, trees, 

grass, water, soil and roof materials, which all have different radiometric properties in remote 

sensing images. Hence, it is challenging to define a spectral class as "urban". Additionally, some 

urban land-cover categories are similar to non-urban cover types, making it challenging to use 

a single index for images of both urban and suburban areas (Barnsley & Barr, 1996; Mesev, 

1998). The urban landscape was initially generalized using a V-I-S model (vegetation, 

impervious surfaces and bare soil) (Ridd, 1995). However, this model did not distinguish 

bodies of open water, an essential part of an urban ecosystem. Waterbodies were therefore 

masked out before analysis (Wu & Murray, 2003). The normalized difference water index 

(NDWI) was introduced to extract waterbodies; the spectral index used green and near-

infrared bands (NIR) (McFeeters, 1996). Later, it was argued that typical NDWI includes noise 

from built-up areas, and a modified version of the index, the MNDWI, was proposed to 

address this challenge (Xu, 2006). This modified version uses a middle-infrared band (e.g. band 

6 in Landsat 8) instead of NIR. 
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Studies suggest that Land Surface Temperature (LST) is another significant indicator for 

identifying urban areas. For instance, Weng et al. (2008) explored the spatial distribution of 

LST across different Land Use and Land Cover (LULC) types. The research revealed that areas 

with heavy urbanization, covered primarily by impermeable surfaces and having scant 

vegetation, displayed elevated LST values. Another study, by Amiri et al. (2009), employed 

Landsat satellite data to delve into the impacts of varying LULC types on LST. Their findings 

suggested that urban zones marked by high density and dominated by concrete and asphalt 

surfaces demonstrated higher LST values compared to less densely populated residential zones 

with abundant green spaces. Such insights underscore the potential of LST as a tool in 

detecting urban areas. 

The Indices-based built-up index (IBI) was introduced to address the difficulty of 

distinguishing between built-up and non-built-up areas using thematic bands (Xu, 2008). IBI 

uses three land-cover indices covering the urban ecosystem's basic components – vegetation, 

water and built-up area. Using the Google Earth Engine platform and Landsat imagery, this 

study used the IBI to investigate the expansion of urban areas in a peripheral district of the 

city of Phnom Penh in Cambodia from 2013 to 2021.  

2 Study area 

Chbar Ampov is a district in southeastern Phnom Penh, Cambodia (Figure 1). It was created 

in December 2013 from existing communes and is separated from the city by the Bassac River. 

The district has an area of 86.7 square kilometres and a population of 5,280 (National Institute 

of Statistics, 2019). 

 

Figure 1: Study area 
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3 Materials and method 

The study used satellite images from the Google Earth Engine Landsat 8 archive. Landsat Tier 

1 data were used because they provide the best quality and are particularly suitable for change 

detection (USGS, 2022). Google Earth historical images were used to interpret the changes in 

a built-up area and to verify the IBI results. 

Applying a cloud filter of 10% generated a total of 30 Landsat-8 images from 2013 to 2021. 

Before calculating the indices, several pre-processing steps were taken. Cloud-masking was 

used to remove the cloudy pixels from the analysis. Radiometric calibrations were conducted 

to correct variations in the sensor's sensitivity to atmospheric conditions over time, and solar 

illumination at the time of the imaging. All the images were clipped to the study area. 

An overview of the complete methodology is given in Figure 2. 

 

Figure 2: Methodology workflow 

3.1 IBI calculation 

The indices-based built-up index (IBI) was calculated using three spectral indices: NDBI, 

MNDWI and normalized difference vegetation index (NDVI) (Equations 1, 2 and 3). Finally, 

the IBI was calculated by integrating the equations for NDBI, NDVI and MNDWI (Equation 

4) (Xu, 2008): 

NDBI = (SWIR1 – NIR) / (SWIR1 + NIR) …………………………....………...(eqn 1) 

MNDWI = (G – SWIR1) / (G + SWIR1) …………….……………………...  …(eqn 2) 

NDVI = (NIR – R) / (NIR + R) ……………………………………................… (eqn 3) 
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IBI = 2 * SWIR1 (SWIR1 + NIR) – [NIR / (NIR + R) + G / (G + SWIR1)] / 

          2 * SWIR1 (SWIR1 + NIR) + [NIR / (NIR + R) + G / (G + SWIR1)]  …  (eqn 4) 

where SWIR1 is the first shortwave infrared band, NIR is the near-infrared band, G is the 

green band, and R is the red band, which are located at bands 6, 5, 3 and 4 in Landsat-8. 

3.2 LST calculation 

Several studies have employed a range of LST estimations Rajeshwari & Mani (2014)). We 

calculated the LST using one thermal infrared (TIR) band (band 10) and three operational land 

imager (OLI) bands (bands 3, 4, 5) from the Landsat 8 satellite. The formulas employed for 

determining LST were sourced from Avdan & Jovanovska (2016). We excluded TIR band 11 

from our computations to circumvent increased calibration uncertainty. Landsat Level-1 

products have already undergone geometric correction (Young et al., 2017). We performed 

radiometric (Equation 5) and thermal calibration (Equation 6) as part of the pre-processing:  

Radiance = R = ML * Qcal + AL                    (eqn 5) 

where ML and AL are band-specific multiplicative rescaling factors, and Qcal is the thermal 

band. 

Top-of-atmosphere brightness temp. = TB = (K2 / ln(K1 / R + 1) – 273.15  (eqn 6) 

where TB is the top-of-atmosphere brightness temperature, and K1 and K2 are band-specific 

thermal conversion constants. 

Based on the NDVI (Equation 3), the proportion of vegetation (Equation 7) was calculated to 

estimate emissivity (Equation 8): 

Prop. of vegetation = Pv = ((NDVI – NDVImin)/(NDVImax – NDVImin))^2  (eqn 7) 

Emissivity = E = 0.004 * Pv + 0.986      (eqn 8) 

where NDVImin and NDVImax are the minimum and maximum values of NDVI. 

The LST was then estimated using the brightness temperature, radiance, Planck’s constant, 

velocity of light and emissivity (Equation 9): 

LST = TB / [1 + (R * TB/ (h * c/s)) * ln(E)]      (eqn 9) 

where TB is the top-of-atmosphere brightness temperature, R is the wavelength of the emitted 

radiance, h is Planck’s constant, c is the velocity of light, s is the time unit (second), and E is 

emissivity. 

3.3 Method for analysis and interpretation 

After the IBI calculation, images were converted into binary images using a 0.013 threshold. 

This threshold was suggested by Xu (2008) in the study that introduced IBI. All pixel values 
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greater than 0.013 were considered built-up areas; the rest were non-built-up; areas for both 

classes were calculated from the numbers of pixels. Using binary images from each year, visual 

interpretation was then carried out to understand yearly changes. A total of seven images were 

visually presented and interpreted, one image for each year, except 2015 and 2020. The binary 

images from 2013 and 2021 were compared with Google Earth Images and their respective 

LSTs to obtain an overview of the changes. To understand the relationship between built-up 

area and LST, a correlation test between IBI and LST was performed based on 400 random 

points in the study area. 

3.4 Validation of IBI 

Validation was carried out using 200 random points to assess the accuracy of the IBI results 

(Figure 3). The same points were used for each year of the study period. Using Google Earth 

historical images to calculate user accuracy, producer accuracy and kappa statistics, the points 

were then validated if they correctly identified the built-up and non-built-up classes. 

 

Figure 3: Location of validation points 

4 Results 

There are visually noticeable changes in the built-up area in Chbar Ampov from 2013 to 2021 

(Figure 4) in the northwest and southeast. The northwest part of the district is connected to 

the core city (Phnom Penh). Changes in this area are part of the urban expansion of the core 

city, and the change has been gradual.  
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Figure 4: Built-up and non-built-up areas (2013–2021) 

The grey patches visible in 2016, 2018, 2019 and 2021 are empty pixels because of cloud. The 

apparent fluctuations in built-up areas in the southeast are explained below. 

 

Figure 5: Built-up area changes and LST, 2013 and 2021 
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Figure 5 illustrates the IBI results, an RGB image (red, green and blue bands) from Google 

Earth, and LST, for the years 2013 and 2021, allowing the extent of changes to the urban 

landscape between 2013 to 2021 to be observed directly. By contrast, changes in the southeast 

are due primarily to the construction of a golf resort. The patterns of built-up areas identified 

within the IBI correspond visually to those in the Google Earth RGB image and LST.  

 

Figure 6: Total built-up area (2013–2021) 

The total built-up area is calculated using the number of pixels in each class (presented 

graphically in Figure 6). The trend line (dotted) suggests a positive relationship between built-

up area and time, with an average increase of 1.68 square kilometres per year.  

The construction of the golf course in the southeast of the study area in 2016 included bare 

soil, which was later covered by vegetation. This kind of temporary land use – an area identified 

as built-up which later becomes non-built-up – explains why some years (2017 and 2021) 

feature less built-up area than earlier years (2016 and 2019) (see Figure 7 for greater detail). 

Another reason for differences is cloud cover. For instance, in 2021, areas that in 2020 had 

appeared as built-up were filtered out because of cloud. It is important to note that the clouds 

in the Google Earth RGB images are not comparable to the IBI images from Landsat, because 

the two sets of images do not present the exact same cloud patterns. 

Since LST appears to be a useful indicator for identifying built-up areas, a correlation test 

between IBI and LST was performed at 400 random points. The correlation coefficient was 

0.78, indicating a strong correlation between built-up areas and LST (see Figure 8). 
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Figure 7: Explanation of the built-up area fluctuation 

 

Figure 8: Relationship between IBI and LST 
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5 Validation of results 

A thorough validation of results from the IBI was carried out on 200 random points (Figure 

3) using historical images from Google Earth. The producer, user and overall accuracy were 

calculated to ensure that the IBI results accurately represent the built-up and non-built-up 

classes. Previous studies stated that the minimum accuracy for classification should be 85% if 

images are to be interpreted meaningfully (Anderson et al., 1976). Our results showed an 

overall accuracy of 95 to 98%, and Kappa statistics ranged from 0.85 to 0.88. See Table 1.  

Table 1: Accuracy and Kappa statistics of IBI 

Year Overall 
accuracy 

Kappa Producer 
accuracy 

User 
accuracy 

2013 98.00 0.86 93.33 82.35 

2014 98.00 0.88 84.21 94.12 

2016 97.00 0.86 95.65 81.48 

2017 96.50 0.86 80.65 96.15 

2018 96.00 0.87 84.62 94.29 

2019 96.00 0.87 85.37 94.59 

2021 95.00 0.85 84.78 92.86 

6 Discussion 

This study evaluated changes in the built-up area in Chbar Ampov between 2013 and 2021 

using the IBI derived from Landsat 8 satellite imagery. Our results revealed a generally 

consistent increase in the built-up area over time, at a rate of approximately 1.68 square 

kilometres per year. Additionally, the study identified a strong correlation (0.78) between 

built-up areas and LST, confirming that urban expansion is linked to increased LST. 

The built-up area threshold for this study (0.013) was the same as in Xu (2008), where the 

IBI was first introduced. (Another study used a slightly different threshold (0.018) 

(Shahfahad et al., 2021).) The threshold value must be selected carefully to ensure that the 

desired class is within the threshold. 

Our findings align with previous research that utilized satellite imagery for urban change 

detection. For example, various studies reported positive correlations between urbanization 

and increased land surface temperatures (Zhou et al., 2014; Yang et al., 2014).  

While this study provides significant insights into urban expansion, it has some limitations. 

Firstly, cloud interference is a noticeable issue when the study area is tropical. In the case of 

Phnom Penh, obtaining cloud-free images is challenging. This study used a 10% maximum 

cloud filter to shortlist images, but some parts of the study area were cloudy in different 
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years. This cloud interference affects the calculation of the changes in built-up and non-built-

up areas, but as the interference is random and uncertain, it is difficult to address in the 

calculation. However, since most of the images used in our study have comparatively few 

cloudy areas, the area calculation is relatively unaffected. 

Secondly, land-use changes that turn out to be temporary and the omission of areas in 

calculation due to cloudy pixels could explain variations observed in the built-up area over 

time. For instance, the golf course under construction in 2016 was identified as a built-up 

area, but later parts of it were reclassified as areas of vegetation or water. Such factors affect 

the estimated expansion rate of built-up areas; they also create inconsistency in a time series. 

This study's findings underscore the vital role of satellite imagery in monitoring urban 

expansion. Urban planners can utilize these insights to optimize city development plans and 

implement strategies for mitigating urban heat island (UHI) effects. The results also support 

the theory of UHIs, where urbanization leads to increased LSTs. This increase in LST is due 

primarily to replacing natural surfaces with built-up areas, which absorb and re-radiate more 

heat (Oke, 1982). 

A more extended time series for the whole city of Phnom Penh, including a buffer area 

around the city, would be helpful for a holistic picture of the city’s urban expansion. To 

address the problem of cloud interference, a fusion between radar and multispectral images 

would help in obtaining uninterrupted time series data, since radar data are not affected by 

cloud (Reiche et al., 2015) and built-up areas return stronger radar signals. Visualizations of 

LST and built-up areas can be compared in order to understand UHIs more fully. Machine 

learning and deep learning-based supervised classification are effective methods to extract 

different LULC classes. They could offer a fruitful approach to build time series for future 

studies (Li et al., 2019). Finally, the relationship between urban expansion and other 

environmental parameters like air quality or vegetation cover can be investigated using our 

approach.  

7 Conclusion 

The intensifying phenomenon of urban expansion and its environmental impacts, especially 

in the global south, necessitate the continuous monitoring of urban growth. This study offers 

insights into urban change detection utilizing the IBI derived from Landsat 8 imagery. In the 

process, it reveals a substantial correlation between the rise in built-up area and LST. While 

temporary land-use changes and fluctuating weather conditions created an element of 

inconsistency, the primary deductions of the study remain valid. Furthermore, the 

methodology used in the study can be applied to other areas and timelines. 

In conclusion, this research emphasizes that careful monitoring and managing urban 

expansion is paramount in the contemporary world, where urbanization is an ever-present 

reality. Our approach contributes to sustainable urban development through effective 
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research methods and rigorous analysis, thus helping to ensure a balance between human 

progress and environmental preservation.  
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