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Abstract 

The movements of animals or humans are characterized by starting points, transitions and 

end points, where starting and end points typically represent distinct locations. Knowledge 

of such locations and movement patterns is relevant to predict future movements or to 

detect regularities in movement behaviour. We present a Brownian bridge-based 

approach applied to human movement data to extract regularities of people staying in 

distinct locations. Such information is, for example, of interest in zoology (e.g. animal home 

range estimation) or health (e.g. detection of deviations from regular behaviour of people 

with cognitive impairments). To obtain information about where a person stayed, we 

derived the areas of their whereabouts from GPS trajectories by using a Brownian bridge 

movement model (BBMM). The resulting whereabouts areas were intersected with these 

GPS trajectories to create so-called whereabouts tables, which describe time of day, 

duration and place of a person’s stay. The probability of finding a person in a particular 

area within a particular time window was determined. The whereabouts areas of two 

people were investigated and assessed by using two tailored quality measures: spatial 

accuracy and spatial uniqueness. In order to reduce the computational costs of BBMM, 

down-sampling was investigated. With respect to spatial accuracy, results improved by 

down-sampling. 
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1 Indroduction 

Predictive models for the movement of animals date back to the 1970s (e.g. Van Winkle, 
1975). In those days, movement records were based on on-site observations and were 
recorded manually. With the advent of GPS technology, the recording of movements 
became a topic of interest also in research dealing with human behaviour (Preisler et al., 
2004; Shih et al., 2015; Turchin, 1998). As technology improved over the years, data 
collection and the reconstruction of trajectories became more and more advanced, and there 
was a surge in interest among researchers wanting to model movement behaviour. One way 
to understand movement behaviour is to describe it as a set of stays in some small 
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whereabouts ranges and movement between these whereabouts ranges. The whereabouts 
ranges represent starting and endpoints of movement, and this is where essential behavioural 
information can be gathered. In animal ecology, the application of such movement models is 
a very lively research area. For instance, there are many approaches to estimate animals’ so-
called home ranges in order to determine the locations in which the animals are likely to be 
found (Powell & Mitchell, 2012; Van Winkle, 1975; Walter et al., 2011). Kernel-density 
estimations (KDE) are mostly used for animal home range computation (Walter et al., 2011). 
In recent years, the Brownian bridge movement model (BBMM) has often been used on 
GPS trajectories to estimate home ranges, animal migration routes or movement patterns. 
BBMM offers an improvement over KDE because it considers transitions and the time 
between successive positions (Bullard, 1999; Farmer et al., 2010; Fischer, Walter & Avery, 
2013; Horne et al., 2007; Sawyer et al., 2009; Takekawa et al., 2010). Using BBMM, Horne et 
al. (2007) introduced estimating probability density functions, or rather utilization 
distributions (UDs). The different probability levels of the UD give insight into how likely it 
is that an entity will stay in a certain area. Depending on the research interest, UDs can tell us 
about animal resource use, frequency of space use, dynamics of populations, or home ranges 
(Bullard, 1999; Horne et al., 2007). 

From those ranges or areas, regular movement behaviour can be determined, e.g. where and 
when an entity regularly spends time. Moreover, deviations from regular whereabouts ranges 
can be detected. In animal movement ecology, for example, the estimation of migration 
routes can be extended to predict the usual return of the animals in the summer or winter 
season. So far, BBMM has been used mostly on animal movement data, but we investigated 
whether the model would also be of interest for human movement behaviour analysis to 
estimate human whereabouts ranges, complementing the time-based and density-based 
clustering methods already used to address this task (Ashbrook & Starner, 2003; Castelli et 
al., 2007; Hightower et al., 2005; Kang et al., 2004). The existing approaches generate 
location clusters by identifying stay points from the GPS trajectory (Ye et al., 2009). A 
disadvantage of spatio-temporal clustering approaches is that they cannot attribute two 
different stays in the same place to one cluster; instead, this results in two individual clusters, 
or rather centroid points, being created (Kang et al., 2004; Ye et al., 2009). With the 
approach presented in this paper, the process is reversed: activity areas belonging to one 
regularity class are estimated by using location clusters. The location clusters are the 
whereabouts ranges obtained from BBMM to determine frequently visited places (Horne et 
al., 2007). By establishing a user’s regular movement behaviour from those whereabouts 
ranges, alerts could be triggered when unusual behaviour is recognized (Castelli et al., 2007). 
For instance, assistive systems for people with cognitive impairments could be implemented 
to compensate for those deficits (Hort et al., 2007). 

In this paper, we aim to answer the following questions: 

 How does BBMM perform with respect to quality and computational costs for 
modelling human movement data in order to detect regularities? 
Applying BBMM to large datasets of movement points leads to very long 
processing times. To reduce processing times, the BBMM was applied to daily, 
high-sampled GPS trajectories of humans. In order to obtain a ground truth data 
set, the trajectories and trip protocols of two individuals were recorded. The 
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resulting probability surfaces for the seven days of the week were merged to 
obtain the seven reference whereabouts ranges (Monday to Sunday). These 
merged activity ranges were then used to determine regularities in human 
movement behaviour: the trajectories were intersected with the corresponding 
BBMM’s whereabouts ranges to create whereabouts areas and whereabouts tables 
(see step 3 in section 2.1 below, and Figure 1) describing stays of at least 15 
minutes. We investigated how resulting whereabouts areas model the 
whereabouts of the person, particularly in urban environments. As explained in 
detail in section 2.3, the spatial accuracy and the uniqueness of the resulting 
whereabouts areas were assessed by calculating the distance between the tagged 
locations and the centroids of the whereabouts areas, i.e. we measured how well 
the tagged locations were recognized by the enhanced BBMM. The method 
allows the detection of further regularities, and the more accurate the area 
calculated the better the actual regularity can be determined. 

 

Figure 1: Model of trajectory intersection with whereabouts area (shown as a polygon), and 

corresponding whereabouts table 

If the real-time use of the method with mobile devices is considered, then a second research 
question arises: 

 Can we reduce computational costs of BBMM by simply down-sampling the 
existing data? 
For comparative purposes, data was down-sampled from 3 to 60 seconds in order 
to reduce the number of track points to assess the possible real-time application 
of the approach. For this, a comparison of the spatial quality for the 3-second and 
the 60-second samplings was carried out (see section 3.2). 

Whereas Brownian bridges have been used for human GPS data (Lin & Hsu, 2014), as far as 
we know BBMM has not yet been applied to human movements. Section 2 describes the 
proposed BBMM adaptation and introduces the spatial quality measures. In Section 3, 
empirical results are discussed. Finally, the conclusions of our work are provided. 
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2 Brownian Bridge-based Approach 

Brownian Bridge-based Regularity Extraction 

Step 1 (Figure 2): GPS trajectories are preprocessed before BBMM is applied to them. All 
trajectories are cleaned of common data errors, such as redundant GPS points, outliers or 
points with identical coordinates (smooth & filter). The result of applying BBMM to GPS 
trajectory data is a utilization distribution (UD) which describes the whereabouts ranges by 
way of probabilities. For UD estimation, it is necessary to split at midnight and merge the 
trajectories so that each trajectory belongs only to one regularity class. Regularities that are 
grouped by days (i.e. weekdays as cycle classes) are of interest. Hence, the recorded 
trajectories are split and merged into one trajectory for each observed day (split & merge). 

 

Figure 2: Brownian bridge-based regularity extraction 

Step 2: BBMM estimates the probability of staying in a specific area based on the knowledge 
of space and time distance between any two successive positions of a recorded movement 
path. BBMM is a kernel method and considers timestamps of measured positions, e.g. GPS 
measurement on the earth’s surface. To estimate BBMM probability density function from 
trajectories, BBMM uses a random walk, or rather Brownian bridge, to describe the 
probability of staying at a certain place at a certain time between successive GPS 
observations (Horne et al., 2007). The model considers the Brownian motion variance 

(BMV) parameter σm
2  which is related to an entity’s speed and direction and mirrors the 

variance of the random walk between any two successive positions. The BMV is estimated 
by using a maximum likelihood approach (Horne et al., 2007) based on the empirical data 

(Section 2.2). Furthermore, the incorporated location error δ2 reflects the circular normally-
distributed uncertainty in the positions (Horne et al., 2007). A 95% Horizontal Error of 9 
metres is used for the Global Average Position Domain Accuracy (WJH Technical Center, 
2014) because of a missing independent estimate for our data. The result of applying BBMM 
on GPS trajectory data is a UD which describes whereabouts ranges by the use of 
probabilities. This discrete bivariate probability density function is interpreted as a two-
dimensional relative frequency distribution for an entity’s positions over an observed period 



Venek et al 

24 

 

of time (Van Winkle, 1975). The combination of spatial and temporal information provides 
precise estimates of space use (Byrne et al., 2014). The model estimates the UD for cells of a 
grid superimposed on the positions describing the probability of staying in each grid cell over 
the entire observation time (Horne et al., 2007). 

After applying BBMM to each trajectory separately, the result is a set of UDs. Each UD 
estimates the probability p of which area A the person P stayed in on day d. The 
whereabouts ranges are derived from the UDs and describe the minimum area A in the UD 
space for which the relocation probability p of a person P is equal to a specified value v. We 
are looking for that v which defines the whereabouts ranges, so that they represent the places 
where the person stayed longest during that day. A whereabouts range can be defined as an 
estimated minimum area on which the relocation probability of a person is equal to a 
specified value. For example, in animal ecology, 50% and 95% BBMMs are commonly used 
to describe the core area of use and the standard home range size, respectively (Fischer et al., 
2013). Therefore, whereabouts ranges are derived from UDs with probabilities from 50% to 
95% in steps of 5%, i.e. to estimate those ranges in which the relocation probability of a 
person is between 50% and 95% for that day. 

Step 3:The daily whereabouts ranges of one probability level are fitted to one reference 
whereabouts range for each weekday, which is called a whereabouts area. The resulting 
whereabouts areas describe the merged ranges over the same weekday of a person’s 
particular relocation probability. Probability levels between 50% and 95% are evaluated to 
find the percentage level which best suits the task of determining whereabouts areas for the 
ground truth data (Section 2.2). Spatial quality measures are used in order to compare ground 
truth with the resulting whereabouts areas. The UD does not include time or regularity 
information about when and how long a person stays where. To extract the additional 
information, the boundaries of the whereabouts areas are intersected with the corresponding 
trajectories to produce a person’s whereabouts table. 

During the intersection process, the whereabouts areas are modified. These areas are formed 
by polygons of the whereabouts range in which, according to our ground truth data, a person 
stayed at least 15 minutes, intersecting with trajectories. The first and last points of the 
trajectory within the polygon are the entry and exit points, with start and end timestamps 
(Figure 1). The timestamps are used to obtain the stay duration within the area. The 
centroids of the polygons obtained are used as detected place positions for the quality 
evaluation and to assess the probability level v. 

Additionally, the minimum stay duration criterion is applied to each of the resulting 
intersection points in the table. If the stay duration at the intersection lasts less than 15 
minutes, the entry is removed from the table. The results are whereabouts tables containing 
spatial information (centroids of polygons) and time information (stay durations within the 
polygons with corresponding timestamps). Hence, it is possible to reconstruct when a person 
stayed in a certain area and on which day. Using this table, the regularities can be computed 
easily by counting different places visited for a specific daytime interval. 

For detailed explanation of BBMM and UD, we refer to Horne et al. (2007). For calculation, 
the adehabitatHR package was used (Calenge, 2006), with the R version 3.2.0 (R Core Team, 
2015). The package includes the Brownian bridge kernel method to estimate animal home 
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ranges, and uses a square-cell grid on which the UD is estimated. The side length of cells is 

obtained from the empirical data (Section 2.2). R is a free software environment for 
statistical computing and graphics.1 

Ground truth data 

To obtain a trajectory data set that has ground truth, two people recorded their daily life 
using GPS devices. They logged every stay with arrival and departure times and documented 
each stay ≥ 15 minutes in a trip protocol. The locations and times included in the protocol 
serve as the validation data for the model. Person A recorded using a QSTARZ GPS Travel 
Recorder BT-Q1000XT; person B used a QSTARZ GPS Data Recorder CR-Q1100P. In 
order to ensure appropriate data quality, a sampling rate of 3 seconds was used (Schneider et 
al., 2015). To ensure that all places were tagged in identical fashion, the people involved in 
the test provided the Open Street Map (OSM)2 features (mostly buildings) of their 
whereabouts. The centroids of each OSM feature were set as coordinates for the tagged 
places. The trip protocol created additionally includes reported modes of movement, such as 
walking, jogging, driving, motorcycling and cycling. This resulted in mean BMVs of (A) 

σm
2 = 0.05 and (B) σm

2 = 1.7. Trajectories of over 150 km were excluded because unusual 
behaviours like air travel or longer journeys were not included in our whereabouts range 
estimation. 

Person A tagged 25 places and travelled 587.7 km in total; person B tagged 36 places and 
covered 460.4 km. This yielded 39 recorded and reported daily trajectories for A, and 38 for 
B. The BBMM was applied to the trajectories split and merged of actual observation days. 

A square-cell grid was created and used to estimate the UD for each cell (see step 2 in 
Section 2.1). The side length of one cell (53 m) was calculated by averaging the sum of the 
square root of the area of each tagged place (35 metres) and adding twice a location error of 
9 metres (WJH Technical Center, 2014). The UD estimation of the BBMM is applied to 53 x 
53 m cell grids. For each trajectory, a different grid is computed. 

For a preliminary assessment of the computational costs of BBMM, the shortest (480 m) and 
longest (85.9 km) trajectories were compared. In terms of processing times (Lenovo T450s, 
i7-5600U 2.6 GHz, 12 GB RAM), this means a time range between 2 seconds and 7.2 hours. 
After down-sampling the trajectories from 3 seconds to 60 seconds, the processing time 
decreases to 150 milliseconds and 59.8 minutes. 

Quality evaluation 

The objective of the quality evaluation is to assess the spatial quality performance of the 
approach. Therefore, two measures are introduced: Qsa computes the accuracy of the spatial 
detections, and Qsu the uniqueness of the detected places. For both measures, the maximum 

                                                           
1 http://www.r-project.org 

2 https://www.openstreetmap.org/copyright 
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value is 1 and the minimum value is 0. The ground truth data presented in Section 2.2 is used 
as input data for the model; the trip protocols of persons A and B are the validation data. 

Spatial accuracy 

In this context, spatial accuracy relates to the distances between tagged places (ground truth) 
and detected places (centroids from the whereabouts area), and the number of detected 
places. There are T tagged places and P detected places. Around each tagged place, a circular 

buffer with a radius r = 53 metres is created, which is the same length as the grid cell side 
length used for the BBMM. 

For a detected place to be assigned to a tagged place, the Euclidian distance between the 

tagged place Pt and the detected place Pp must be less than or equal to r. A distance matrix 

with elements dt,p is obtained for which dt,p equals zero if the Euclidian distance between 

tagged and assigned detected places is greater than r. 

‖𝑃𝑝 − 𝑃𝑡‖2 ∶= √(𝑥𝑝 − 𝑥𝑡)
2 + (𝑦𝑝 − 𝑦𝑡)

2 

𝑑𝑡,𝑝 ∶=  {
‖𝑃𝑝 − 𝑃𝑡‖2, 𝑓𝑜𝑟 ‖𝑃𝑝 − 𝑃𝑡‖2 ≤ 𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Next, the mean of the distances for each tagged place is computed: 

𝑑̅𝑡 ∶=  
∑ 𝑑𝑡,𝑝
𝑃
𝑝  

∑ 𝑠𝑔𝑛(𝑑𝑡,𝑝)
𝑃
𝑝

  

Then the degree of correctness of the detected places (denoted by qt) for each tagged place 
is obtained. This value assesses how accurate the detection of the tagged place is. There are 

three cases: (1) as long as d̅t ≤ 
r

2
 is valid, the detected place is assumed to be correctly 

detected; (2) when 
r

2
 < d̅t ≤ r, the mean distance is divided by r; (3) values equal to 1 

indicate best recognition of the tagged place, while values equal to 0 indicate the worst 
recognition. In other words, the tagged place is not detected. 

𝑞𝑡  ∶=

{
 
 

 
 1 𝑖𝑓 𝑑̅𝑡 ≤

𝑟

2

1 −
𝑑̅𝑡
𝑟

𝑖𝑓 
𝑟

2
 < 𝑑̅𝑡  ≤ 𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑄𝑠𝑎 ∶= 
∑ 𝑞𝑡
𝑇
𝑡

𝑇
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In the final step, values of qt are added and divided by the total number of tagged places T. 

Hence, Qsa shows the accuracy of the correctly-assigned detected places. 

Spatial uniqueness 

The uniqueness of a detected place assigned to a tagged place is shown by Qsu. This measure 
can be referred to as the uniqueness of recognizing tagged places, or rather of assigned 
detected places. It compares the number of detected places which are assigned to multiple 

tagged places Nmultiple to the total number of detected places P. 

𝑄𝑠𝑢  ∶=  1 − 
𝑁𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒

𝑃
 

The number of detected places assigned to tagged places Nassigned is not to equal the 

number of tagged places, because one tagged place can be recognized by more than one 
detected place. The number of detected places assigned to tagged places is determined by 

𝑀 ∶=
𝑁𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑

𝑃
 

3 Empirical Results and Discussion 

Whereabouts modelling on original trajectories 

Percentage levels – step 2, whereabouts range estimation: The number of detected 
places, spatial accuracy and uniqueness are computed for persons A and B for five 
percentage levels from 50% to 95% (Table 1). In general, the number of detected places rises 
with increasing probability due to the growing size of the investigated whereabouts areas. 
Higher probability levels (e.g. 85% for person B) may merge two or more polygons of the 
whereabouts area of the previous probability level (e.g. 80%), which slightly increases the 
number of detected places, for example from 70 to 74 detected places. In Figure 4, the 80% 
BBMM represented inherits five polygons, while the 85% BBMM provides two. The rising 
number of detected places for 95% BBMM is due to the many small stretched polygons 
along the trajectory. With 95% relocation probability, the transitions of persons A and B are 
considered; hence, the recognition of detected places is not useful. The highest spatial 
accuracy for person A is 0.306 for 80% BBMM, and for person B 0.273 for 85% BBMM. 
Comparing the number of the detected places and the spatial accuracy of persons A and B in 
scatterplots (see Figure 3), no certain percentage value can be determined to define a 
universal, valid, standard probability level. The range between 75% and 85% shows 

moderately promising results. On the other hand, the spatial uniqueness Qsu is always 1, 
which means that the radius around each tagged place is sufficient to ensure the spatial 
uniqueness of a detected place. The whereabouts areas of a person, which are represented by 
polygons, show approximately where the person stays on a certain day. When comparing the 
number of detected places and measured areas of two whereabouts areas, e.g. Tuesday and 
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Sunday (Table 2), spatial differences between weekday and weekend whereabouts areas (thus 
a kind of regularity) emerge. 

Table 1: Results of the probability level evaluation 

 Person A Person B 

Whereabouts area 50% 75% 80% 85% 95% 50% 75% 80% 85% 95% 

Number of tagged 
places 

25 25 25 25 25 36 36 36 36 36 

Number of detected 
places 

2 74 142 289 783 25 44 70 74 404 

M 1.000 0.297 0.162 0.083 0.024 0.680 0.455 0.300 0.378 0.064 

𝑄𝑠𝑎 0.004 0.294 0.306 0.289 0.199 0.189 0.214 0.234 0.273 0.216 

𝑄𝑠𝑢 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 

Figure 3: Scatterplots of spatial accuracy vs. number of detected places for persons A and B 

Table 2: Comparison of Tuesday and Sunday whereabouts areas 

  Tuesday Sunday 

  75% 80% 85% 75% 80% 85% 

Person A 
#detected places 7 9 9 28 74 153 

Area [m²] 5.2e4 6.9e4 8.9e4 8.5e4 25.4e4 97.1e4 

Person B 
#detected places 6 14 14 8 23 11 

Area [m²] 6.7e4 10.2e4 14.8e4 8.9e4 17.1e4 5.5e4 

Interpretation of recognition rate: In Figures 4 and 5, 75%, 80% and 85% polygons for 
Tuesdays for person A (“home” and “work”) and B (“home”) are illustrated. The yellow 
dots mark tagged places from the ground truth data; the green, red and blue dots mark the 
detected places. The shapes of the polygons reflect the streets and areas in which the person 
moved, with some extension around these due to the random walk assumption, or rather 
BMV of the BBMM. Tagged places which are frequently used and in which the person 
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stayed most of the total observed time (e.g. “home” or “work”) are likely to be detected. 
Single short stays are not likely to be considered (e.g. visiting a grocery store). 

Regularities – step 3, whereabouts table creation: From the whereabouts tables, we can 
reconstruct at what time a person was in a certain area by binning the intersected trajectories 
into 1 hour bins. For example, between 9 and 10 a.m. on Tuesday, person A was in the 
polygon m. Based on the frequency and the unique IDs of the polygons, the probability of 
where and when a person is likely to stay there is estimated. In Figure 6, the relative 
frequency over times of the day of staying in the polygon “home” on any Tuesday is 
presented. 

Person B turned the GPS recorder off while spending time in buildings. After restarting the 
tracker, whether at the same place or at another, the intervening time is taken into account 
and random walk around the area is assumed. The resulting whereabouts area expands in a 
circular fashion because of the time supposedly spent in this area and the shape of the 
inherited functions of the BBMM. This is the reason why the spatial accuracy is so low 
(Table 1). 

 

Figure 4: 75% (green), 80% (red), and 85% (blue) “home” and “work” polygons for Tuesday for person 

A, including tagged (yellow) and detected (green, red, blue) places, with polygon labelled m 

 

m 
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Figure 5: 75% (green), 80% (red), and 85% (blue) “home” polygon for Tuesday for person B, with 

tagged (yellow) and detected (green, red, blue) places 

Other interferences on the quality of the whereabouts range estimation relate to the quality 
of the GPS data. Although smoothing and filtering is performed, some issues remain, such as 
GPS tracker jump-starts or increased GPS error inside buildings. Using BBMM for 
movement behaviour modelling in urban environments requires sophisticated preprocessing, 
such as merging trajectories with additional artificial GPS points, and minimizing GPS error 
as far as possible. 

 

Figure 6: Relative frequency over daytime bins for polygon m extracted from the whereabouts table of 

the 75% Tuesday whereabouts area for person A. Values overnight are missing because the tracker 

was turned off. 
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Comparison with resampled trajectories 

In order to ensure future implementation as a real-time application, efforts were made to 
improve the processing times by resampling trajectories and reducing sampling rates from 
high (3 seconds) to low (60 seconds) sampling rates. The effects of down-sampling on 
BBMM results can be seen by comparing the quality results and processing time of the 75% 
whereabouts area with those of the 80% whereabouts area (person A), and the 80% 
whereabouts area with those of the 85% whereabouts area (person B), shown in Table 3. The 
higher percentage levels (80% for person A; 85% for person B) were selected due to the 
highest spatial accuracy obtained (see Table 1). The second percentage levels (75% and 85%) 
were compared because their whereabouts areas are smaller and might increase the spatial 
accuracy. 

Down-sampling the trajectory increases spatial accuracies except for person B’s 85% area 
(Figure 7). For person B, the spatial accuracy measure of the 80% whereabouts area is higher 
than for the high-sampled trajectories, while M (i.e. the number of detected places assigned 
to tagged places) decreases due to an increase in the number of detected places. The quality 
of the correctly-assigned detected places is improved. This can be observed for person A as 

well. The number of detected places falls while Qsa increases slightly when resampling at a 
rate of 60 seconds. Unlike person B, for person A M shows a simultaneous increase of 

correctly-assigned detected places with an increase in spatial quality (Qsa). 34% of the 68 
detected places for the 75% area of person A are assigned to tagged places with spatial 

quality Qsa= 0.37. None of the cases investigated achieve a spatial accuracy of more than 0.4. 

Applying BBMM is computationally costly, particularly on 3-second sampled data. In Table 
3, the average processing times for BBMM computations are listed. Down-sampling 
decreases the processing time rapidly. In Figure 8, the 75% area from the original trajectory 
(green) and from the down-sampled trajectory (orange) of person A is illustrated. Spatial 
accuracy increases. However, the whereabouts areas grow due to the assumption of random 
walking. The tagged places are inside the polygon but not close enough to the centre point 

(orange), which facilitates low Qsa measures. This can be an indicator that the quality 

measure Qsa is not adequately defined and that a redesign is needed. 
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Table 3: Comparison of 3- and 60-second resolved GPS data for persons A (75% and 80% areas) and B 

(80% and 85% areas) 

 Person A Person B 

Whereabouts area 75% 80% 80% 85% 

Sampling rate 3 sec 60 sec 3 sec 60 sec 3 sec 60 sec 3 sec 60 sec 

Number of days 39 39 39 39 38 38 38 38 

Number of tagged places 25 25 25 25 36 36 36 36 

Number of detected places 74 68 142 97 70 96 74 133 

M 0.30 0.34 0.16 0.21 0.30 0.18 0.38 0.10 

Qsa 0.29 0.37 0.31 0.36 0.23 0.27 0.27 0.18 

Qsu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Mean processing time 
[min] 

66 3 66 3 39 3 ½  39 3 ½  

 
Figure 7: Comparison of spatial accuracies (Section 2.3) for persons A and B for 3- and 60-second 

sampling rates 
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Figure 8: 75% polygons for Tuesday for person A using 60-second (orange) and 3-second (green) 

sampling rates, with corresponding detected places (orange, green) and tagged places (yellow) 

4 Conclusions 

Until now, BBMM has been used to answer questions in animal movement ecology, e.g. 
determining frequently used places. The method, inherently, cannot extract temporal 
information about used places. Hence, questions about “when and where” cannot be 
answered. The proposed enhancement of the BBMM approach modifies and intersects 
whereabouts ranges, derived from BBMM’s utilization distributions, to gain further temporal 
information about when an entity stayed in a certain area for some time. The resulting 
whereabouts tables were used to determine regularities and probability distributions of stays 
for each polygon of the whereabouts areas. These regularities and the whereabouts areas 
could be used, for example, to support the independence of elderly people in their daily life 
or to get a deeper understanding of stay-move-stay regularities among animals. 

The approach can model whereabouts areas but it is not useful for detecting certain limited 
stay points, such as single buildings. There are two reasons for this: firstly, close but different 
stays are merged together in one whereabouts range because BBMM does not distinguish 
between them. Secondly, inside a building GPS error increases and hence the GPS points 
spread around the building. Thus, spatial quality measures concerning the coordinates of just 
single centres are inappropriate. Comparing areas, e.g. shapes of buildings, would be a better 
approach – this maintains privacy, and knowledge about precise addresses is not usually 
important for scientific purposes. 
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Due to high processing times, the GPS trajectories were down-sampled from 3 to 60 
seconds. Computational costs decreased and quality measures remained comparable to the 
high-sampling case. In order to identify points of stay, adaptations of spatio-temporal 
clustering methods could be considered and/or compared to our approach. The methods do 
not determine probabilities of whereabouts or regularities of when and where an entity 
stayed in certain areas, as our approach does. The evaluation showed that the spatial accuracy 
of the method should be improved. A down-sampling of GPS trajectories is one possible 
approach. Separating trajectories based on velocity, or evaluating a different merging 
technique to determine whereabouts areas might improve the results. 

Nevertheless, the quality measures introduced can be used to assess the spatial quality of 
different detection methods and to fine-tune the modelling parameters for a specific 
application. Quality measures addressing the temporal accuracy of detected places could be 
developed. After all, the proposed BBMM adaptation is suitable to determine regularities of 
people’s movement but it does not provide the expected precision to recognize single 
addresses. 
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