![]() |
![]() |
GI_Forum 2019, Volume 7, Issue 1Journal for Geographic Information Science
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
GI_Forum 2019, Volume 7, Issue 1, pp. 54-68, 2019/06/19
Journal for Geographic Information Science
Movement data analysis is a high-interest topic in many scientific domains. Even though Python is the scripting language of choice in the GIS world, currently there is no Python library that would enable researchers and practitioners to interact with and analyse movement data efficiently. To close this gap, we present MovingPandas, a new Python library for dealing with movement data. Its development is based on an analysis of state-of-the-art conceptual frameworks and existing implementations (in PostGIS, Hermes, and the R package trajectories). We describe how MovingPandas avoids limitations of Simple Feature-based movement data models commonly used to handle trajectories in the GIS world. Finally, we present the current state of the MovingPandas implementation and demonstrate its use in stand-alone Python scripts, as well as within the context of the desktop GIS application QGIS. This work represents the first step towards a general-purpose Python library that enables researchers and practitioners in the GIS field and beyond to handle and analyse movement data more efficiently
Keywords: trajectory, spatio-temporal analysis, python, movement data analysis