![]() |
![]() |
GI_Forum 2019, Volume 7, Issue 2Journal for Geographic Information Science
|
![]() |
Verlag der Österreichischen Akademie der Wissenschaften Austrian Academy of Sciences Press
A-1011 Wien, Dr. Ignaz Seipel-Platz 2
Tel. +43-1-515 81/DW 3420, Fax +43-1-515 81/DW 3400 https://verlag.oeaw.ac.at, e-mail: verlag@oeaw.ac.at |
![]() |
|
DATUM, UNTERSCHRIFT / DATE, SIGNATURE
BANK AUSTRIA CREDITANSTALT, WIEN (IBAN AT04 1100 0006 2280 0100, BIC BKAUATWW), DEUTSCHE BANK MÜNCHEN (IBAN DE16 7007 0024 0238 8270 00, BIC DEUTDEDBMUC)
|
GI_Forum 2019, Volume 7, Issue 2, pp. 98-112, 2019/12/11
Journal for Geographic Information Science
Estimating the value of real estate has applications in fields as diverse as taxation, buying and renting properties, expropriation and urban regeneration. Determining the most objective, accurate and acceptable value for real estate by considering spatial criteria is therefore important. One stochastic method used to determine real estate values is ‘nominal valuation’. In this approach, criteria that may affect land value are subjected to various spatial analyses, and pixel-based value maps can be produced using GIS. Land value maps are in raster data format and need to be compared with the actual market values. Pixel-resolution analyses are required that depend on the selected grid dimensions. First of all, nominal value maps were produced using a nominal valuation model, using criteria for proximity, visibility and terrain. These were weighted in order to produce a nominal asset value-based map according to the ‘Best Worst Method’. Changes in the unit land values were examined for maps at various resolutions; a resolution of 10 metres emerged as the ideal pixel size for valuation maps.
Keywords: GIS, real estate valuation, land valuation, nominal valuation